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Network heaves Valued in
Categories of Adjunctions &
Their Laplacian
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Cellular Sheaf Theory

Theorem (|]. Curry]). Suppose D is a complete category, and Py is
the poset of face relations of a (say) simplicial complex X. Then,
there is an equivalence of categories

Shp(Alex(Py)) =~ DPx.
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Cellular Sheaf Theory

Theorem (|]. Curry]). Suppose D is a complete category, and Py is
the poset of face relations of a (say) simplicial complex X. Then,
there is an equivalence of categories

Shp(Alex(Py)) =~ DPx.

sheaves valued in the
category D

A cellular sheaf is a functor
T: PX — D

where D is an arbitrary category.



Cellular Sheaf Theory

In this talk, we consider cellular sheaves where
 Xisagraph, G = (Vg E¢)
* D is a category of categories and adjunctions

Our motivation is to compute limits i.e. global sections—consistent
assignments of data to a sheaf.






Categories of “Adjunctions”

preHilb

—

generality




Laplacians

Cat-Laplacian

Hodge (sheaf) Tarski \
Laplacian Laplacian ~ Weighted

Tarski
Laplacian

—

generality






Graph Laplacian

G = (Vg, Ez, W) is a weighted graph
w;; is weight of ij € E;
d; is degree of i € V;

n = |Vg]
The graph Laplacian is a n X n matrix,
(—Wij, l_] € EG
[Llij=14 di i=]
. 0, else

dim(ker L) = # connected components
x = —Lx where x: V. — R exponentially stable
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Tarski Laplacian

G = (V;, E; ), a graph.

F:.P; - Ltc, afunctor.

Can we compute
lim (f: P; - Sup)

where F: P; — Sup forgets right adjoints?

Definition. The Tarski Laplacian is an order preserving map

1_[ F () - 1_[ F(v)

VEV eEVg
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A Fixpoint Theorem

Theorem. Let F: P, — Ltc be a Tarski sheaf over G. Then,
Post(L) =limF

Post(L) = {x:L(x) > x}
IimF = ]x € 1_[ F):F v<e (x,) = T\%Ke(xw)

VEV

Mimics Hodge Theorem: H*(C") = ker L,

Corollary. lim F is a complete lattice.

Proof Tarski Fixed Point Theorem.




Toward Applications

* Graph Signal Processing (GSP)

* Formal Concepts

 Consensus
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Cellular Sacks




Cat-Laplacian

CatAdj is a 2-category.
F:P; — CatAdj, a cellular adjunction stack

Definition. The Cat-Laplacian is a functor

[[ror= ] [

VEV VEV

10, = | | | | Fhebee)

eedv WEde




A 2-Categorical Fixpoint Theorem

X —> L(X
A(X)v — l T§<6T£<6(XU)
éESv
n:1=A
u:L? = A

Post(L) ={X,f:X - L(X):ux o Lf o f =nx}
F: Pg — Cat, a cellular stack

(X)

‘Theorem. limF =~ Post(L)
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Cellular M-Stacks |



M-Categories

M, closed monoidal thin (preorder) category whose unit is terminal.
e.g.

* B, 2-element Boolean

I =([0,1]1,<)

* L. = ([0, 0], +,0,>)

* H, Heyting algebra

MAdj, category of M-enriched and M-adjunctions



Weighted Tarski Laplacian

F:.P,; - MCat, adjunction M-stack

W: P, - M, a weighting

Definition. The weighted Laplacian is a M-functor

1_[ F () - 1_[ F(v)

VEV g

(LX), =

| |

w

eedv
WEJDe

VEV g

Fo<eFw<e Xw)




An M-Enriched Fixpoint Theorem

F:. P, - MCat, adjunction M-stack
W: P, - M, a weighting
m € M, choice of object

Theorem.
hom(X, L(X)) = m
ifandonlyifVv<e >w
(W (e), hom(Fh e (X,), Fhice (X,))| = m




Cellular Sheaves of Lattices and the Tarski
Laplacian

Robert Ghrist* Hans Riess’

Abstract

This paper initiates a discrete Hodge theory for cellular sheaves
taking values in a category of lattices and Galois connections. The key
development is the Tarski Laplacian, an endomorphism on the cochain
complex whose fixed points yield a cohomology that agrees with the
global section functor in degree zero. This has immediate applications
in consensus and distributed optimization problems over networks
and broader potential applications.

1 Introduction

The goal of this paper is to initiate a theory of sheaf cohomology for cellu-
lar sheaves valued in a category of lattices. Lattices are algebraic structures
with a rich history [41] and a wide array of applications [13, 2, 17, 42, 34, 16].
Cellular sheaves are data structures that stitch together algebraic entities
according to the pattern of a cell complex [43]. Sheaf cohomology is a
compression that collapses all the data over a topological space — or cell
complex — to a minimal collection that intertwines with the homological
features of the base space [31].
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our paper (on Tarski Laplacian):
to appear in Homology,
Homotopy, and Applications:

accessible:
arxiv.org/abs/2007.04099

preprint w/ Paige North on M-
stacks: TBD

you can follow me on twitter:
@hansmriess

you can email me:
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my website: www.hansriess.com

Thank you.
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