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MOTIVATION

▪ The work presented here inserts itself within the broader need of modeling and 
analyzing complex systems of systems

▪ The starting point was the need to reinterpret the classical notions developed in 
engineering that are taught in a course like Signals & Systems
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MOTIVATION

▪ The work presented here inserts itself within the broader need of modeling and 
analyzing complex systems of systems

▪ The starting point was the need to reinterpret the classical notions developed in 
engineering that are taught in a course like Signals & Systems

▪ Challenge:

▪ We can model the behavior of the overall system 
of systems using composition of abstract machines 
and describe it as a sheaf over a time interval

however

System of Systems
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for non-expert?
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TEMPORAL LANDSCAPES

▪ Temporal landscapes provide the truth values of a logical system which we call 
temporal landscape logic

Definition: A temporal landscape on ℝ is a set 𝐿 of time intervals 𝑡1, 𝑡2 ⊆ ℝ, 𝑡1 ≤ 𝑡2
such that:

(a) [Down-closure] If 𝑡1, 𝑡2 ∈ 𝐿 and 𝑡1 ≤ 𝑡1
′ ≤ 𝑡2

′ ≤ 𝑡2 then 𝑡1
′ , 𝑡2

′ ∈ 𝐿

(b) [Openness] If 𝑡1, 𝑡2 ∈ 𝐿 then there exists 𝑡1
′ < 𝑡1 ≤ 𝑡2 ≤ 𝑡2

′ such that 𝑡1
′ , 𝑡2

′ ∈ 𝐿

8

For the theoretical foundations of the temporal type theory, see P. Schultz and D.I. Spivak. “Temporal 
Type Theory: A topos-theoretic approach to systems and behavior”. Springer, Birkhäuser, 2019
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9

▪ The name “temporal landscape” comes from its resemblance to the “persistence 

landscapes” used in TDA
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10

▪ We write Prop for the set of temporal landscapes, namely Prop = Hom(1, Ω)
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“ROOF”, ALWAYS-TRUE AND ALWAYS-FALSE

▪ Given a pair 𝑎 < 𝑏 in ℝ the roof over 𝑎, 𝑏 is the temporal 
landscape:

TrueBetw 𝑎, 𝑏 ≔ 𝑡1, 𝑡2 𝑎 < 𝑡1 ≤ 𝑡2 < 𝑏}

11

TrueBetw(𝑎, 𝑏)
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“ROOF”, ALWAYS-TRUE AND ALWAYS-FALSE

▪ Given a pair 𝑎 < 𝑏 in ℝ the roof over 𝑎, 𝑏 is the temporal 
landscape:

TimeBetw 𝑎, 𝑏 ≔ 𝑡1, 𝑡2 𝑎 < 𝑡1 ≤ 𝑡2 < 𝑏}

▪ The landscape for True is the maximal landscape:

true ≔ 𝑡1, 𝑡2 𝑡1 < 𝑡2 ∈ ℝ}

▪ The landscape for False is the minimal landscape, containing no 
intervals:

false ≔ ∅

12

TrueBetw(𝑎, 𝑏)
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AND, OR, IMPLICATION

▪ The conjunction (disjunction) of two landscapes, 𝜑 and 𝜓 are just their intersection (union)

▪ Given the temporal landscapes 𝜑 and 𝜓 we have:

𝜑 ⇒ 𝜓 ≔ 𝑎, 𝑏 TrueBetw 𝑎, 𝑏 ∩ 𝜑 ⊆ 𝜓}

13
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AND, OR, IMPLICATION

▪ The conjunction (disjunction) of two landscapes, 𝜑 and 𝜓 are just their intersection (union)

▪ Given the temporal landscapes 𝜑 and 𝜓 we have:

𝜑 ⇒ 𝜓 ≔ 𝑎, 𝑏 TrueBetw 𝑎, 𝑏 ∩ 𝜑 ⊆ 𝜓}

▪ Let us consider the simpler case first ¬ 𝜑 ≔ (𝜑 ⇒ false), which is equivalent to:

𝜑 ⇒ false ≔ 𝑎, 𝑏 TrueBetw 𝑎, 𝑏 ∩ 𝜑 = ∅}

This means that given 𝜑 the landscape of the negation is obtained by drawing a roof in 𝜑
whenever the landscape is false (flat on the diagonal)

15
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AND, OR, IMPLICATION

▪ The conjunction (disjunction) of two landscapes, 𝜑 and 𝜓 are just their intersection (union)

▪ Given the temporal landscapes 𝜑 and 𝜓 we have:

𝜑 ⇒ 𝜓 ≔ 𝑎, 𝑏 TrueBetw 𝑎, 𝑏 ∩ 𝜑 ⊆ 𝜓}

▪ The visual intuition of the implication generalizes that of the negation in that 𝜑 ⇒ 𝜓
contains a roof over all time intervals within which 𝜑 is contained in 𝜓:

16

𝜑 𝜓
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EXAMPLE IN A STATIC GRID WORLD 

▪ Consider an environment modelled as a grid (𝑉, 𝐸) that does not 
change over time. 

▪ Then we take the vertices 𝑉 and construct a constant behavior type 𝑉
and then take 𝐸 to be the constant subtype of 𝑉 × 𝑉 consisting of 
pairs of vertices.
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EXAMPLE IN A STATIC GRID WORLD 

▪ Consider an environment modelled as a grid (𝑉, 𝐸) that does not 
change over time. 

▪ Then we take the vertices 𝑉 and construct a constant behavior type 𝑉
and then take 𝐸 to be the constant subtype of 𝑉 × 𝑉 consisting of 
pairs of vertices.

▪ The constancy of the subtype 𝐸 really models the fact that the adjacency relation does 
not change over time: 

∀ 𝑣, 𝑣′: 𝑉 . 𝐸 𝑣, 𝑣′ ∨ ¬𝐸(𝑣, 𝑣 )

where we consider 𝐸: 𝑉 × 𝑉 → Prop

▪ Given such a predicate we can ask trivial questions such as if two vertices are adjacent or 
not or if the agent in position 𝑣 is adjacent to a cell that contains a wall or if an agent is in 
between two walls, obtaining always-true or always-false temporal landscapes 

𝑣
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INTUITIONISTIC LOGIC

▪ Let us consider the predicate

𝑂𝑐𝑐 𝑣 : 𝑉 → Prop

capturing the fact that a cell can be occupied

▪ The temporal landscape 𝑂𝑐𝑐(𝑣) represents the time intervals a cell 𝑣 is 
occupied

20
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INTUITIONISTIC LOGIC

▪ Let us consider the predicate

𝑂𝑐𝑐 𝑣 : 𝑉 → Prop

capturing the fact that a cell can be occupied

▪ The temporal landscape 𝑂𝑐𝑐(𝑣) represents the time intervals a cell 𝑣 is 
occupied

▪ If a cell is not occupied, then we say it is free: 𝐹𝑟𝑒𝑒 ≔ ¬𝑂𝑐𝑐

▪ One may assume that 𝑂𝑐𝑐 = ¬¬𝑂𝑐𝑐 however this need not hold

▪ This might appear to be: 1) “annoying” and 2) not useful, however it does 
enable us to capture some subtle nuances

21
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DOUBLE NEGATION

▪ Assume that we have three agents 𝐴, 𝐵 and 𝐶 that can occupy cells in our grid world

▪ For each agent we can then consider 𝑂𝑐𝑐𝐴, 𝑂𝑐𝑐𝐵 and 𝑂𝑐𝑐𝐶 namely the temporal 
landscape that for 𝑣: 𝑉 describes the occupancy of such a cell by a respective agent

22
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DOUBLE NEGATION

▪ Assume that we have three agents 𝐴, 𝐵 and 𝐶 that can occupy cells in our grid world

▪ For each agent we can then consider 𝑂𝑐𝑐𝐴, 𝑂𝑐𝑐𝐵 and 𝑂𝑐𝑐𝐶 namely the temporal 
landscape that for 𝑣: 𝑉 describes the occupancy of such a cell by a respective agent

▪ Suppose we want to define 𝑂𝑐𝑐 to be the predicate describing the intervals over which 
at least one of the agents 𝐴, 𝐵 and 𝐶 is in a cell 𝑣

▪ The English sentence has a slightly ambiguity that is easily distinguished by 𝑂𝑐𝑐 and 
¬¬𝑂𝑐𝑐

▪ Let then 𝑂𝑐𝑐 be the disjunction of the three predicates 𝑂𝑐𝑐𝐴, 𝑂𝑐𝑐𝐵 and 𝑂𝑐𝑐𝐶 then:

▪ 𝑂𝑐𝑐(𝑣) specifies the time intervals over which a single agent—whether 𝐴, 𝐵 or 𝐶—
remain in the cell 𝑣 throughout 

▪ ¬¬𝑂𝑐𝑐(𝑣) specifies the time intervals over which there is always at least one agent 𝑣, 
but agents can come and go

24
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DOUBLE NEGATION: EXAMPLE

▪ Fix a cell 𝑣 and let us assume 𝐴 is in 𝑣 throughout the interval  ,3 , 𝐵 is in 𝑣
throughout [2,4] and another agent 𝐶 is in 𝑣 throughout [5,6]

▪ Note that the temporal landscapes of 𝑂𝑐𝑐 and ¬¬𝑂𝑐𝑐 are not the same

25
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DOUBLE NEGATION: EXAMPLE

▪ Fix a cell 𝑣 and let us assume 𝐴 is in 𝑣 throughout the interval  ,3 , 𝐵 is in 𝑣
throughout [2,4] and another agent 𝐶 is in 𝑣 throughout [5,6]

▪ Note that the temporal landscapes of 𝑂𝑐𝑐 and ¬¬𝑂𝑐𝑐 are not the same

▪ Note that 𝑂𝑐𝑐 does not contain, for example, the interval [1.5, 3.5] expressing the 
refined idea that over such an interval there is not one specific agent in the cell

26
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DOUBLE NEGATION: EXAMPLE

27

▪ Then a question one might ask is, why would this be useful in practice?
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DOUBLE NEGATION: EXAMPLE

28

▪ Then a question one might ask is, why would this be useful in practice?

▪ Assume that there is a blinking light in the cell 𝑣 and that two consecutive blinks 
corresponds to imminent danger

▪ Then, we see that 𝑂𝑐𝑐 captures the fact that if the light is ON at time 1.5 and then 
again at 3.5 the alarm would be completely missed unless there is a way for agent 𝐴
to communicate to agent 𝐵 the fact that the light was indeed ON at 1.5 
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CONTINUOUS WORLDS AND QUANTIFIERS

▪ As we can model discrete (spatial) problems so we can model 
continuous one

▪ Now one can define the set of all possible time-parametrized
trajectories in the square domain

𝒳 ≔  1,  2 ∈ ෩ℝ × ෩ℝ |  ≤  𝑖 ≤ 6, 𝑖 = {1,2}

29

෩ℝ : the behavior type of real numbers continuously changing over any interval (𝑎, 𝑏)
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trajectories in the square domain

𝒳 ≔  1,  2 ∈ ෩ℝ × ෩ℝ |  ≤  𝑖 ≤ 6, 𝑖 = {1,2}

▪ We can consider the agent to: 1) have a certain footprint and 2) have a maximum velocity:

30

෩ℝ : the behavior of real numbers continuously changing over any interval (𝑎, 𝑏)

AgentPos ≔  :𝒳 → Prop อ
∀  1,  2: 𝒳 .  ( 1 ∧  ( 2)) ⇒ close( 1,  2) ∧

∀  :𝒳 .   ⇒ Free  ∧ −𝑣max ≤ ሶ ≤ 𝑣max
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CONTINUOUS WORLDS AND QUANTIFIERS

▪ As we can model discrete (spatial) problems so we can model 
continuous one

▪ Now one can define the set of all possible time-parametrized
trajectories in the square domain

𝒳 ≔  1,  2 ∈ ෩ℝ × ෩ℝ |  ≤  𝑖 ≤ 6, 𝑖 = {1,2}

▪ We can consider the agent to: 1) have a certain footprint and 2) have a maximum velocity:

▪ Given a constant type 𝑅 ≔ {Room𝐴, Room𝐵 , Entrance, … }

▪ We can then consider the following predicate:

31

෩ℝ : the behavior of real numbers continuously changing over any interval (𝑎, 𝑏)

AgentPos ≔  :𝒳 → Prop อ
∀  1,  2: 𝒳 .  ( 1 ∧  ( 2)) ⇒ close( 1,  2) ∧

∀  :𝒳 .   ⇒ Free  ∧ −𝑣max ≤ ሶ ≤ 𝑣max

AgentInARoom ≔ ∃ 𝑟: 𝑅 ∀  :𝒳 Pos  : AgentPos . Pos  ⇒ Room(𝑟)( )
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CONTINUOUS WORLDS AND QUANTIFIERS

AgentInARoom ≔ ∃ 𝑟: 𝑅 ∀  :𝒳 Pos  : AgentPos . Pos  ⇒ Room(𝑟)( )

Overlap between rooms 
caused by the non-zero 
footprint of the agent
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SLANTED TEMPORAL LANDSCAPES

▪ So far, all the temporal landscapes we have considered
have “straight” edges

▪ Any 1-Lipschitz function defines a temporal landscapes and so one may wonder what 
practical application could lead to a slanted landscape

▪ Consider an agent equipped with a spinning LIDAR. Assume a limited storage capacity 
onboard and the need to be able to reconstruct a map of the environment (store 
samples)

▪ The agent is moving at a constant speed in a non-uniform environment, and we 
consider the predicate:

33

SamplesInMem = ሧ

𝑖

SampleInMem(𝑖)
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SLANTED TEMPORAL LANDSCAPES

▪ Then the temporal landscape for a map as in the figure might look like as follows 

34

SamplesInMem = ሧ

𝑖

SampleInMem(𝑖)

▪ In the region of high density of returns samples will be 
overwritten and will only persist for a maximum amount of 
time (constant speed of agent and rate of measurements)

▪ In the region with low density of returns samples will not be 
overwritten as quickly and as the number of returns samples 
will persist over longer and longer intervals 

Zone A Zone B Zone C Zone D

Zone A 

Zone B

Zone C

Zone D
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CONCLUSIONS

▪ Temporal Type Theory helps to reason about complex behaviors over time, 
however it can be rather difficult to interpret

▪ Temporal Landscapes provide an intuitive way to visualize predicates 
describing complex behaviors and reason about their properties

▪ Temporal Landscapes can be used both when space and/or time are 
discrete or continuous

▪ Examples help to clarify the benefit such a visual aid can provide and 
exemplify the advantage of using an intuitionistic logic

35


