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MOTIVATION

= The work presented here inserts itself within the broader need of modeling and
analyzing complex systems of systems

* The starting point was the need to reinterpret the classical notions developed in
engineering that are taught in a course like Signals & Systems
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MOTIVATION

= The work presented here inserts itself within the broader need of modeling and
analyzing complex systems of systems

* The starting point was the need to reinterpret the classical notions developed in
engineering that are taught in a course like Signals & Systems
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MOTIVATION

= The work presented here inserts itself within the broader need of modeling and

analyzing complex systems of systems

* The starting point was the need to reinterpret the classical notions developed in
engineering that are taught in a course like Signals & Systems
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MOTIVATION

= The work presented here inserts itself within the broader need of modeling and
analyzing complex systems of systems

* The starting point was the need to reinterpret the classical notions developed in
engineering that are taught in a course like Signals & Systems

" Challenge: System of Systems
= We can model the behavior of the overall system

of systems using composition of abstract machines
and describe it as a sheaf over a time interval

however
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MOTIVATION

= The work presented here inserts itself within the broader need of modeling and
analyzing complex systems of systems

* The starting point was the need to reinterpret the classical notions developed in
engineering that are taught in a course like Signals & Systems

" Challenge: System of Systems
= We can model the behavior of the overall system

of systems using composition of abstract machines
and describe it as a sheaf over a time interval

however

= How do we analyze the system’s behavior in a way
that is mathematically sound but also easy/intuitive
for non-expert?
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MOTIVATION

= The work presented here inserts itself within the broader need of modeling and
analyzing complex systems of systems

* The starting point was the need to reinterpret the classical notions developed in
engineering that are taught in a course like Signals & Systems

" Challenge: System of Systems
= We can model the behavior of the overall system

of systems using composition of abstract machines
and describe it as a sheaf over a time interval

however

TOPOS THEORY TEMPORAL
LANDSCAPES
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TEMPORAL LANDSCAPES

" Temporal landscapes provide the truth values of a logical system which we call
temporal landscape logic

Definition: A temporal landscape on R is a set L of time intervals [t{,t;] S R, t; < t,
such that:

(a) [Down-closure] If [t;,t,] € Landt; < t; <t, <t, then|[t], t;] €L
(b) [Openness] If [t1,t,] € L then there exists t; < t; < t, < t, such that [t{,t;] € L

For the theoretical foundations of the temporal type theory, see P. Schultz and D.I. Spivak. “Temporal
Type Theory: A topos-theoretic approach to systems and behavior”. Springer, Birkhauser, 2019
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TEMPORAL LANDSCAPES

" Temporal landscapes provide the truth values of a logical system which we call
temporal landscape logic

@ iiiiiiiiiiaans If an assertion

- [11,0)] 2 holds here...
If an assertion =
holds here. . ' Egtien ther ...then there exists

hold here too a larger interval
I where 1t holds too

= The name “temporal landscape” comes from its resemblance to the “persistence

landscapes” used in TDA
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TEMPORAL LANDSCAPES

" Temporal landscapes provide the truth values of a logical system which we call
temporal landscape logic

@ iiiiiiiiiiaans If an assertion

- [11,0)] 2 holds here...
If an assertion =
holds here. . ' Egtien ther ...then there exists

hold here too a larger interval
4 where i1t holds too

= We write Prop for the set of temporal landscapes, namely Prop = Hom(1, Q)
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“ROOF”, ALWAYS-TRUE AND ALWAYS-FALSE

" Givenapaira < bin R the roof over a, b is the temporal
landscape:

TrueBetw(a, b) = {|ty, to]la < t; < t, < b}

TrueBetw(a, b)
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“ROOF”, ALWAYS-TRUE AND ALWAYS-FALSE

" Givenapaira < bin R the roof over a, b is the temporal TrueBetw(a, b)
landscape:

TimeBetw(a, b) = {[t;,t,]la < t; < t, < b}

"= The landscape for True is the maximal landscape:
true := {|t, t,] | t; < t, € R}

= The landscape for False is the minimal landscape, containing no
intervals:

false := 0@
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AND, OR, IMPLICATION

* The conjunction (disjunction) of two landscapes, @ and Y are just their intersection (union)

" Given the temporal landscapes ¢ and Y we have:
(o = ¢) = {[a,b] | TrueBetw(a,b) N ¢ < P}
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AND, OR, IMPLICATION

* The conjunction (disjunction) of two landscapes, @ and Y are just their intersection (union)
" Given the temporal landscapes ¢ and Y we have:

(¢ = ) = {la,b] | TrueBetw(a,b) N ¢ < Y}
* Let us consider the simpler case first = @ = (@ = false), which is equivalent to:

(¢ = false) := {[a, b] | TrueBetw(a,b) N @ = @}
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AND, OR, IMPLICATION

* The conjunction (disjunction) of two landscapes, @ and Y are just their intersection (union)
" Given the temporal landscapes ¢ and Y we have:
(¢ = ) :={|a,b] | TrueBetw(a,b) N S Y}
" Let us consider the simpler case first = @ = (¢ = false), which is equivalent to:
(p = false) = {[a, b] | TrueBetw(a,b) N ¢ = @}

This means that given ¢ the landscape of the negation is obtained by drawing a roof in @
whenever the landscape is false (flat on the diagonal)
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AND, OR, IMPLICATION

* The conjunction (disjunction) of two landscapes, @ and Y are just their intersection (union)

" Given the temporal landscapes ¢ and Y we have:
(o = ¢) = {[a,b] | TrueBetw(a,b) N ¢ < P}

" The visual intuition of the implication generalizes that of the negation in that ¢ =
contains a roof over all time intervals within which @ is contained in V:
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EXAMPLE IN A STATIC GRID WORLD

= Consider an environment modelled as a grid (V, E') that does not
change over time.

= Then we take the vertices V and construct a constant behavior type V

and then take E to be the constant subtype of V X V consisting of
pairs of vertices.
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EXAMPLE IN A STATIC GRID WORLD

= Consider an environment modelled as a grid (V, E') that does not
change over time.

= Then we take the vertices IV and construct a constant behavior type V

and then take E to be the constant subtype of V X V consisting of
pairs of vertices.

section

restriction
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EXAMPLE IN A STATIC GRID WORLD

= Consider an environment modelled as a grid (V, E') that does not
change over time.

= Then we take the vertices V and construct a constant behavior type V
and then take E to be the constant subtype of V X V consisting of
pairs of vertices.

= The constancy of the subtype E really models the fact that the adjacency relation does
not change over time:

Viv,v:V).E(w,v")V-aE,v")
where we consider E:V X VV = Prop

" Given such a predicate we can ask trivial questions such as if two vertices are adjacent or
not or if the agent in position v is adjacent to a cell that contains a wall or if an agent is in

between two walls, obtaining always-true or always-false temporal landscapes
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INTUITIONISTIC LOGIC

" et us consider the predicate
Occ(v):V — Prop

capturing the fact that a cell can be occupied

" The temporal landscape Occ(v) represents the time intervals a cell v is
occupied
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INTUITIONISTIC LOGIC

" et us consider the predicate
Occ(v):V — Prop

capturing the fact that a cell can be occupied

" The temporal landscape Occ(v) represents the time intervals a cell v is
occupied

= |facellis not occupied, then we say it is free: Free := =0cc
" One may assume that Occ = —1—0cc however this need not hold

* This might appear to be: 1) “annoying” and 2) not useful, however it does
enable us to capture some subtle nuances
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DOUBLE NEGATION

= Assume that we have three agents A, B and C that can occupy cells in our grid world

" For each agent we can then consider Occy, Occg and Occ. namely the temporal
landscape that for v: IV describes the occupancy of such a cell by a respective agent
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DOUBLE NEGATION

= Assume that we have three agents A, B and C that can occupy cells in our grid world

" For each agent we can then consider Occy, Occg and Occ. namely the temporal
landscape that for v: IV describes the occupancy of such a cell by a respective agent

= Suppose we want to define Occ to be the predicate describing the intervals over which
at least one of the agents A, Band C isinacellv

= The English sentence has a slightly ambiguity that is easily distinguished by Occ and
——=0cc
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DOUBLE NEGATION

= Assume that we have three agents A, B and C that can occupy cells in our grid world

" For each agent we can then consider Occy, Occg and Occ. namely the temporal
landscape that for v: IV describes the occupancy of such a cell by a respective agent

= Suppose we want to define Occ to be the predicate describing the intervals over which
at least one of the agents A, Band C isinacellv

= The English sentence has a slightly ambiguity that is easily distinguished by Occ and
——=0cc

» Let then Occ be the disjunction of the three predicates Occy, Occg and Occ, then:
= (Occ(v) specifies the time intervals over which a single agent—whether A, B or C—
remain in the cell v throughout

= ——=0cc(v) specifies the time intervals over which there is always at least one agent v,
but agents can come and go
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DOUBLE NEGATION: EXAMPLE

= Fix acell vand let us assume A4 is in v throughout the interval [0,3], B is in v
throughout [2,4] and another agent C is in v throughout [5,6]

Free = —=Occ(v)

=" Note that the temporal landscapes of Occ and =-—0cc are not the same
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DOUBLE NEGATION: EXAMPLE

= Fix acell vand let us assume A4 is in v throughout the interval [0,3], B is in v
throughout [2,4] and another agent C is in v throughout [5,6]

Free = —=Occ(v)

=" Note that the temporal landscapes of Occ and =-—0cc are not the same

= Note that Occ does not contain, for example, the interval [1.5, 3.5] expressing the
refined idea that over such an interval there is not one specific agent in the cell
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DOUBLE NEGATION: EXAMPLE

Free = —=Occ(v)

* Then a question one might ask is, why would this be useful in practice?
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DOUBLE NEGATION: EXAMPLE

Free = —=Occ(v)

* Then a question one might ask is, why would this be useful in practice?

= Assume that there is a blinking light in the cell v and that two consecutive blinks
corresponds to imminent danger

= Then, we see that Occ captures the fact that if the light is ON at time 1.5 and then
again at 3.5 the alarm would be completely missed unless there is a way for agent A
to communicate to agent B the fact that the light was indeed ON at 1.5
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CONTINUOUS WORLDS AND QUANTIFIERS

As we can model discrete (spatial) problems so we can model
continuous one

Now one can define the set of all possible time-parametrized
trajectories in the square domain

X ={(x1,x) ERxR|0<x; <6,i ={1,2}}

R : the behavior type of real numbers continuously changing over any interval (a, b)
Honeywell TOPOS
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CONTINUOUS WORLDS AND QUANTIFIERS . e

= As we can model discrete (spatial) problems so we can model | y X
continuous one T

= Now one can define the set of all possible time-parametrized f
trajectories in the square domain o Comdor o

X ={(x1,x) ERxR|0<x; <6,i ={1,2}}
= \We can consider the agent to: 1) have a certain footprint and 2) have a maximum velocity:

v (x,22:00). (1) A p(xz)) = close(y, x3)) A

AgentPos :=1{ p: X - Pro

R : the behavior of real numbers continuously changing over any interval (a, b)
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0 Entrance

CONTINUOUS WORLDS AND QUANTIFIERS 1 18
s
= As we can model discrete (spatial) problems so we can model B | Loy X
continuous one N

= Now one can define the set of all possible time-parametrized
trajectories in the square domain i Gomidor o

X ={(x1,x) ERxR|0<x; <6,i ={1,2}}
= \We can consider the agent to: 1) have a certain footprint and 2) have a maximum velocity:

v (x,22:00). (1) A p(xz)) = close(y, x3)) A

AgentPos :=1{ p: X - Pro

= Given a constant type R := {Roomy,, Roomg, Entrance, ... }
= We can then consider the following predicate:

AgentinARoom = 3(r: R) V(x: X) (Pos(x): AgentPos).Pos(x) = Room(r)(x)

R : the behavior of real numbers continuously changing over any interval (a, b)
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0 . Entrance 6

CONTINUOUS WORLDS AND QUANTIFIERS

AgentInARoom := 3(r: R) V(x: X) (Pos(x): AgentPos).Pos(x) = Room(r)(x)

Dt Corridor t1o

4
S

Overlap between rooms
caused by the non-zero
footprint of the agent
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1 2
SLANTED TEMPORAL LANDSCAPES _J 5 1} L_

* Sofar, all the temporal landscapes we have considered ™= * 1% 3 f
have “straight” edges

= Any 1-Lipschitz function defines a temporal landscapes and so one may wonder what
practical application could lead to a slanted landscape

= Consider an agent equipped with a spinning LIDAR. Assume a limited storage capacity
onboard and the need to be able to reconstruct a map of the environment (store
samples)

= The agent is moving at a constant speed in a non-uniform environment, and we
consider the predicate:

SamplesInMem = \/SampleInMem(i)
i
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| 2
SLANTED TEMPORAL LANDSCAPES __J 5 L_

_____ ._____. _____._____
SamplesInMem = \/ SampleInMem(i) ‘ ! ! ! ‘
i Zone A ZoneB ZoneC Zone D

= Then the temporal landscape for a map as in the figure might look like as follows

= |n the region of high density of returns samples will be
overwritten and will only persist for a maximum amount of
time (constant speed of agent and rate of measurements)

" |n the region with low density of returns samples will not be
overwritten as quickly and as the number of returns samples
will persist over longer and longer intervals

H ] TOPOS
oneywe \} INSTITUTE ©2019 by Honeywell Internationa I Inc. All rights reser rved

34



CONCLUSIONS

" Temporal Type Theory helps to reason about complex behaviors over time,
however it can be rather difficult to interpret

= Temporal Landscapes provide an intuitive way to visualize predicates
describing complex behaviors and reason about their properties

= Temporal Landscapes can be used both when space and/or time are
discrete or continuous

= Examples help to clarify the benefit such a visual aid can provide and
exemplify the advantage of using an intuitionistic logic
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