Applied Category Theory 2021

TEMPORAL LANDSCAPES: A GRAPHICAL LOGIC OF BEHAVIOR

BRENDAN FONG*, ALBERTO SPERANZON[§] AND DAVID I. SPIVAK*

* Topos Institute § Honeywell Aerospace

- The work presented here inserts itself within the broader need of modeling and analyzing complex systems of systems
- The starting point was the need to reinterpret the classical notions developed in engineering that are taught in a course like *Signals & Systems*

- The work presented here inserts itself within the broader need of *modeling* and analyzing complex systems of systems
- The starting point was the need to reinterpret the classical notions developed in engineering that are taught in a course like Signals & Systems

Signals

Sheaves over times intervals

- The work presented here inserts itself within the broader need of *modeling* and analyzing complex systems of systems
- The starting point was the need to reinterpret the classical notions developed in engineering that are taught in a course like *Signals & Systems*

Signals

* Shea

Sheaves over times intervals

Systems

 p^i is the input sheaf map p^o is the output sheaf map

restriction

section

- The work presented here inserts itself within the broader need of *modeling* and analyzing complex systems of systems
- The starting point was the need to reinterpret the classical notions developed in engineering that are taught in a course like Signals & Systems

Signals

Sheaves over times intervals

Systems

 p^{\imath} is the input sheaf map p^{o} is the output sheaf map

- The work presented here inserts itself within the broader need of *modeling* and analyzing complex systems of systems
- The starting point was the need to reinterpret the classical notions developed in engineering that are taught in a course like *Signals & Systems*

Challenge:

Honeywell

 We can <u>model</u> the behavior of the overall system of systems using composition of abstract machines and describe it as a sheaf over a time interval

however

- The work presented here inserts itself within the broader need of *modeling* and analyzing complex systems of systems
- The starting point was the need to reinterpret the classical notions developed in engineering that are taught in a course like *Signals & Systems*

Challenge:

Honeywell

 We can <u>model</u> the behavior of the overall system of systems using composition of abstract machines and describe it as a sheaf over a time interval

however

How do we analyze the system's behavior in a way that is mathematically sound but also easy/intuitive for non-expert?

- The work presented here inserts itself within the broader need of modeling and analyzing complex systems of systems
- The starting point was the need to reinterpret the classical notions developed in engineering that are taught in a course like *Signals & Systems*

Challenge:

 We can <u>model</u> the behavior of the overall system of systems using composition of abstract machines and describe it as a sheaf over a time interval

however

 How do we analyze the system's behavior in a way that is mTOPOS THEORY d but also TEMPORAL LANDSCAPES
Honeywell OF TOPOS INSTITUTE

TEMPORAL LANDSCAPES

 Temporal landscapes provide the truth values of a logical system which we call temporal landscape logic

Definition: A <u>temporal landscape</u> on \mathbb{R} is a set L of time intervals $[t_1, t_2] \subseteq \mathbb{R}$, $t_1 \leq t_2$ such that:

- (a) [Down-closure] If $[t_1, t_2] \in L$ and $t_1 \leq t'_1 \leq t'_2 \leq t_2$ then $[t'_1, t'_2] \in L$
- (b) [Openness] If $[t_1, t_2] \in L$ then there exists $t'_1 < t_1 \leq t_2 \leq t'_2$ such that $[t'_1, t'_2] \in L$

For the theoretical foundations of the temporal type theory, see P. Schultz and D.I. Spivak. "Temporal Type Theory: A topos-theoretic approach to systems and behavior". Springer, Birkhäuser, 2019

TEMPORAL LANDSCAPES

 Temporal landscapes provide the truth values of a logical system which we call temporal landscape logic

 The name "temporal landscape" comes from its resemblance to the "persistence landscapes" used in TDA

TEMPORAL LANDSCAPES

 Temporal landscapes provide the truth values of a logical system which we call temporal landscape logic

• We write Prop for the set of temporal landscapes, namely $Prop = Hom(1, \Omega)$

"ROOF", ALWAYS-TRUE AND ALWAYS-FALSE

Given a pair a < b in ℝ the <u>roof</u> over a, b is the temporal landscape:

TrueBetw(*a*, *b*) := {[t_1, t_2]| $a < t_1 \le t_2 < b$ }

"ROOF", ALWAYS-TRUE AND ALWAYS-FALSE

Given a pair a < b in ℝ the <u>roof</u> over a, b is the temporal landscape:

TimeBetw(*a*, *b*) := {[t_1, t_2]| $a < t_1 \le t_2 < b$ }

• The landscape for True is the maximal landscape: true := $\{[t_1, t_2] \mid t_1 < t_2 \in \mathbb{R}\}$

true

false

TrueBetw(*a*, *b*)

- The conjunction (disjunction) of two landscapes, φ and ψ are just their intersection (union)
- Given the temporal landscapes φ and ψ we have:

 $(\varphi \Rightarrow \psi) \coloneqq \{[a, b] \mid \text{TrueBetw}(a, b) \cap \varphi \subseteq \psi\}$

- The conjunction (disjunction) of two landscapes, φ and ψ are just their intersection (union)
- Given the temporal landscapes φ and ψ we have:

 $(\varphi \Rightarrow \psi) \coloneqq \{[a, b] \mid \text{TrueBetw}(a, b) \cap \varphi \subseteq \psi\}$

• Let us consider the simpler case first $\neg \varphi \coloneqq (\varphi \Rightarrow false)$, which is equivalent to:

$$(\varphi \Rightarrow \text{false}) \coloneqq \{[a, b] \mid \text{TrueBetw}(a, b) \cap \varphi = \emptyset\}$$

- The conjunction (disjunction) of two landscapes, φ and ψ are just their intersection (union)
- Given the temporal landscapes φ and ψ we have:

 $(\varphi \Rightarrow \psi) \coloneqq \{[a, b] \mid \text{TrueBetw}(a, b) \cap \varphi \subseteq \psi\}$

• Let us consider the simpler case first $\neg \varphi \coloneqq (\varphi \Rightarrow false)$, which is equivalent to:

 $(\varphi \Rightarrow \text{false}) \coloneqq \{[a, b] \mid \text{TrueBetw}(a, b) \cap \varphi = \emptyset\}$

This means that given φ the landscape of the negation is obtained by drawing a roof in φ whenever the landscape is false (flat on the diagonal)

- The conjunction (disjunction) of two landscapes, φ and ψ are just their intersection (union)
- Given the temporal landscapes φ and ψ we have:

$$(\varphi \Rightarrow \psi) \coloneqq \{[a, b] \mid \text{TrueBetw}(a, b) \cap \varphi \subseteq \psi\}$$

• The visual intuition of the implication generalizes that of the negation in that $\varphi \Rightarrow \psi$ contains a roof over all time intervals within which φ is contained in ψ :

EXAMPLE IN A STATIC GRID WORLD

- Consider an environment modelled as a grid (V, E) that does not change over time.
- Then we take the vertices V and construct a constant behavior type V and then take E to be the constant subtype of V × V consisting of pairs of vertices.

EXAMPLE IN A STATIC GRID WORLD

- Consider an environment modelled as a grid (V, E) that does not change over time.
- Then we take the vertices V and construct a constant behavior type V and then take E to be the constant subtype of V × V consisting of pairs of vertices.

EXAMPLE IN A STATIC GRID WORLD

- Consider an environment modelled as a grid (V, E) that does not change over time.
- Then we take the vertices V and construct a constant behavior type V and then take E to be the constant subtype of V × V consisting of pairs of vertices.
- The constancy of the subtype E really models the fact that the adjacency relation does not change over time:

$$\forall (v, v': V) . E(v, v') \lor \neg E(v, v')$$

where we consider $E: V \times V \rightarrow Prop$

Honeywell

 Given such a predicate we can ask trivial questions such as if two vertices are adjacent or not or if the agent in position v is adjacent to a cell that contains a wall or if an agent is in between two walls, obtaining *always-true* or *always-false* temporal landscapes

INTUITIONISTIC LOGIC

Let us consider the predicate

 $Occ(v): V \rightarrow \text{Prop}$

capturing the fact that a cell can be occupied

 The temporal landscape Occ(v) represents the time intervals a cell v is occupied

INTUITIONISTIC LOGIC

Let us consider the predicate

 $Occ(v): V \to \operatorname{Prop}$

capturing the fact that a cell can be occupied

- The temporal landscape Occ(v) represents the time intervals a cell v is occupied
- If a cell is *not* occupied, then we say it is *free*: $Free \coloneqq \neg Occ$
- One may assume that $Occ = \neg \neg Occ$ however this need not hold
- This might appear to be: 1) "annoying" and 2) not useful, however it does enable us to capture some subtle nuances

DOUBLE NEGATION

- Assume that we have three agents A, B and C that can occupy cells in our grid world
- For each agent we can then consider Occ_A, Occ_B and Occ_C namely the temporal landscape that for v: V describes the occupancy of such a cell by a respective agent

DOUBLE NEGATION

- Assume that we have three agents A, B and C that can occupy cells in our grid world
- For each agent we can then consider Occ_A, Occ_B and Occ_C namely the temporal landscape that for v: V describes the occupancy of such a cell by a respective agent
- Suppose we want to define Occ to be the predicate describing the intervals over which at least one of the agents A, B and C is in a cell v
- The English sentence has a slightly ambiguity that is easily distinguished by Occ and ¬¬Occ

DOUBLE NEGATION

- Assume that we have three agents A, B and C that can occupy cells in our grid world
- For each agent we can then consider Occ_A, Occ_B and Occ_C namely the temporal landscape that for v: V describes the occupancy of such a cell by a respective agent
- Suppose we want to define Occ to be the predicate describing the intervals over which at least one of the agents A, B and C is in a cell v
- The English sentence has a slightly ambiguity that is easily distinguished by Occ and ¬¬Occ
- Let then *Occ* be the disjunction of the three predicates *Occ_A*, *Occ_B* and *Occ_C* then:
 - Occ(v) specifies the time intervals over which a single agent—whether A, B or C remain in the cell v throughout
 - ¬¬Occ(v) specifies the time intervals over which there is always at least one agent v, but agents can come and go

Fix a cell v and let us assume A is in v throughout the interval [0,3], B is in v throughout [2,4] and another agent C is in v throughout [5,6]

■ Note that the temporal landscapes of *Occ* and ¬¬*Occ* are not the same

Fix a cell v and let us assume A is in v throughout the interval [0,3], B is in v throughout [2,4] and another agent C is in v throughout [5,6]

- Note that the temporal landscapes of *Occ* and ¬¬*Occ* are not the same
- Note that Occ does not contain, for example, the interval [1.5, 3.5] expressing the refined idea that over such an interval there is not one specific agent in the cell

Then a question one might ask is, why would this be useful in practice?

- Then a question one might ask is, why would this be useful in practice?
- Assume that there is a blinking light in the cell v and that two consecutive blinks corresponds to imminent danger
- Then, we see that Occ captures the fact that if the light is ON at time 1.5 and then again at 3.5 the alarm would be completely missed unless there is a way for agent A to communicate to agent B the fact that the light was indeed ON at 1.5

- As we can model discrete (spatial) problems so we can model continuous one
- Now one can define the set of all possible time-parametrized trajectories in the square domain

$$\mathcal{X} \coloneqq \left\{ (x_1, x_2) \in \widetilde{\mathbb{R}} \times \widetilde{\mathbb{R}} \mid 0 \le x_i \le 6, i = \{1, 2\} \right\}$$

 $[\]widetilde{\mathbb{R}}$: the behavior type of real numbers continuously changing over any interval (a, b)

- As we can model discrete (spatial) problems so we can model continuous one
- Now one can define the set of all possible time-parametrized trajectories in the square domain

$$\mathcal{X} \coloneqq \left\{ (x_1, x_2) \in \widetilde{\mathbb{R}} \times \widetilde{\mathbb{R}} \mid 0 \le x_i \le 6, i = \{1, 2\} \right\}$$

• We can consider the agent to: 1) have a certain footprint and 2) have a maximum velocity:

AgentPos :=
$$\begin{cases} p: \mathcal{X} \to \operatorname{Prop} & \forall (x_1, x_2; \mathcal{X}). ((p(x_1) \land p(x_2)) \Rightarrow \operatorname{close}(x_1, x_2)) \land \\ \forall (x; \mathcal{X}). p(x) \Rightarrow (\operatorname{Free}(x) \land -v_{\max} \leq \dot{x} \leq v_{\max}) \end{cases}$$

 $\widetilde{\mathbb{R}}$: the behavior of real numbers continuously changing over any interval (a, b)

- As we can model discrete (spatial) problems so we can model continuous one
- Now one can define the set of all possible time-parametrized trajectories in the square domain

$$\mathcal{X} \coloneqq \left\{ (x_1, x_2) \in \widetilde{\mathbb{R}} \times \widetilde{\mathbb{R}} \mid 0 \le x_i \le 6, i = \{1, 2\} \right\}$$

• We can consider the agent to: 1) have a certain footprint and 2) have a maximum velocity:

AgentPos :=
$$\begin{cases} p: \mathcal{X} \to \text{Prop} & \forall (x_1, x_2; \mathcal{X}). ((p(x_1) \land p(x_2)) \Rightarrow \text{close}(x_1, x_2)) \land \\ \forall (x; \mathcal{X}). p(x) \Rightarrow (\text{Free}(x) \land -v_{\text{max}} \leq \dot{x} \leq v_{\text{max}}) \end{cases}$$

- Given a constant type $R \coloneqq \{\text{Room}_A, \text{Room}_B, \text{Entrance}, ... \}$
- We can then consider the following predicate:

AgentInARoom := $\exists (r: R) \forall (x: \mathcal{X}) (Pos(x): AgentPos). Pos(x) \Rightarrow Room(r)(x)$

 $[\]widetilde{\mathbb{R}}$: the behavior of real numbers continuously changing over any interval (a, b)

AgentInARoom := $\exists (r: R) \forall (x: \mathcal{X}) (Pos(x): AgentPos). Pos(x) \Rightarrow Room(r)(x)$

Overlap between rooms caused by the non-zero footprint of the agent

SLANTED TEMPORAL LANDSCAPES

 So far, all the temporal landscapes we have considered have "straight" edges

- Any 1-Lipschitz function defines a temporal landscapes and so one may wonder what practical application could lead to a slanted landscape
- Consider an agent equipped with a spinning LIDAR. Assume a limited storage capacity onboard and the need to be able to reconstruct a map of the environment (store samples)
- The agent is moving at a constant speed in a non-uniform environment, and we consider the predicate:

SamplesInMem =
$$\bigvee_{i}$$
 SampleInMem (i)

SLANTED TEMPORAL LANDSCAPES

SamplesInMem =
$$\bigvee_{i}$$
 SampleInMem(*i*)

Then the temporal landscape for a map as in the figure might look like as follows

- In the region of high density of returns samples will be overwritten and will only persist for a maximum amount of time (constant speed of agent and rate of measurements)
- In the region with low density of returns samples will not be overwritten as quickly and as the number of returns samples will persist over longer and longer intervals

CONCLUSIONS

- Temporal Type Theory helps to reason about complex behaviors over time, however it can be rather difficult to interpret
- Temporal Landscapes provide an intuitive way to visualize predicates describing complex behaviors and reason about their properties
- Temporal Landscapes can be used both when space and/or time are discrete or continuous
- Examples help to clarify the benefit such a visual aid can provide and exemplify the advantage of using an intuitionistic logic

