Rewriting Graphically with Cartesian Traced Categories

George Kaye and Dan R. Ghica University of Birmingham 12 July 2021

ACT 2021

Symmetric traced monoidal categories

Symmetric traced monoidal category

Tightening

Yanking

Symmetric traced monoidal category

Superposing

Exchange

The tensor is a product and the unit object is terminal.

$$\Delta_{A} : A \to A \otimes A \qquad \diamond_{A} : A \to I$$
$$A \longrightarrow A \qquad A \longrightarrow A$$

Cartesian categories – axioms

Naturality

among others...

Product + trace = fixpoint operator (Hasegawa 1997)

Also known as dataflow categories.

Applying Cartesian axioms require a rewriting of the graph

$$A - f - C = A - f - B$$

'Only connectivity matters' no longer applies! Combinatorial graph language required

7

Can we use something off the shelf?

String graphs (Dixon, Kissinger)

Hypergraphs (Bonchi, Gadduchi, Kissinger, Sobociński, Zanasi)

These frameworks are based in compact closed categories. It is possible to construct a trace using the compact closed structure. But finite products become biproducts in a compact closed category. And if we add a Cartesian structure to a compact closed category it becomes trivial anyway.

The trace must be constructed as an atomic operation.

Goal: define a sound and complete graph language for STMCs with atomic trace.

Hypergraphs

'Vanilla' hypergraphs

Definition

 Hyp_{Σ} is the category with objects the labelled hypergraphs over a signature Σ and morphisms the labelled hypergraph homomorphisms.

We could rule out the ones that don't fit our criteria, but this might not be compositional.

Definition

 $LHyp_{\Sigma}$ is the category with objects the linear hypergraphs labelled over a signature Σ and morphisms the labelled linear hypergraph homomorphisms.

Cospans of linear hypergraphs

A cospan $M \rightarrow H \leftarrow N$ is discrete if M and N contain no edges.

An monogamous cospan only picks the 'open' vertices.

Definition $MCsp_D(LHyp_{\Sigma})$ is the category of monogamous cospans over $LHyp_{\Sigma}$.

A graph language for STMCs

Are linear hypergraphs a suitable graph language for STMCs? We need to define the operations of an STMC.

Most are fairly obvious...

Trace

We fix a traced PROP Term $_{\Sigma}$ generated over some signature $\Sigma.$

$$\llbracket - \rrbracket$$
 : Term _{Σ} \rightarrow *MCsp*_D(LHyp _{Σ})

Equal terms in the category

 \Rightarrow

Isomorphic interpretations as hypergraphs

Theorem (Soundness)

For any morphisms $f, g \in \text{Term}_{\Sigma}$, if f = g under the equational theory of the category then their interpretations as cospans of labelled linear hypergraphs are isomorphic, $[\![f]\!] \equiv [\![g]\!]$

A cospan of labelled linear \Rightarrow hypergraphs

A set of corresponding terms in the category

Definability

 $\mathsf{Tr}^3(\sigma_{2,1} \otimes \mathsf{id}_2 \cdot \mathsf{id}_2 \otimes \sigma_{1,1} \otimes \mathsf{id}_1 \cdot \phi \otimes \psi \otimes \mathsf{id}_2)$

$\langle\!\langle - angle \rangle$: $MCsp_D(LHyp_{\Sigma}) \rightarrow Term_{\Sigma}$

Proposition (Definability)

For any $F \in LHyp_{\Sigma}$ and edge order \leq , then $m \to F \leftarrow n \equiv [\langle m \to F \leftarrow n \rangle _{<}]$.

But we cannot conclude completeness yet!

A labelled linear hypergraph Unique morphism in the category, up to the equational theory

Proposition (Coherence)

For all orderings of edges \leq_x on some $F \in LHyp_{\Sigma}$,

$$\langle\!\langle m \to \mathsf{F} \leftarrow n \rangle\!\rangle_{<_1} = \langle\!\langle m \to \mathsf{F} \leftarrow n \rangle\!\rangle_{<_2} = \cdots = \langle\!\langle m \to \mathsf{F} \leftarrow n \rangle\!\rangle_{<_2}$$

 \Rightarrow

Theorem (Completeness)

For any cospan of linear hypergraphs $m \to F \leftarrow n \in MCsp_D(LHyp_{\Sigma})$ there exists a unique morphism $f \in Term_{\Sigma}$, up to the equations of the STMC, such that $[\![f]\!] = F$. Moreover, for any $f \in Term_{\Sigma}$, $\langle\!\langle [\![f]\!] \rangle\!\rangle = f$.

Graph rewriting

DPO rewriting

DPO rewriting

We need a guarantee that this pushout complement is unique.

In an adhesive category, if we have

- a rewrite rule $L \stackrel{p}{\leftarrow} K \rightarrow R$ where p is mono,
- a matching $L \to G$

then the pushout complement $K \rightarrow C \rightarrow R$ is unique (if it exists).

We have already met an adhesive category:

Proposition

 Hyp_{Σ} is an adhesive category.

Unfortunately $LHyp_{\Sigma}$ is not adhesive.

Definition (Partial adhesive categories (Kissinger))

A category \mathcal{P} is called a partial adhesive category if it is a full subcategory of an adhesive category \mathcal{A} and the inclusion functor $I : \mathcal{P} \to \mathcal{A}$ preserves monomorphisms.

Proposition

LHyp $_{\Sigma}$ is a full subcategory of **Hyp** $_{\Sigma}$.

Proposition

The inclusion functor I : $LHyp_{\Sigma} \rightarrow Hyp_{\Sigma}$ preserves monomorphisms.

Corollary

 $LHyp_{\Sigma}$ is a partial adhesive category.

So for matchings that are mono, graph rewriting is well-defined.

DPO rewriting example

- Sound and complete graph language for symmetric traced monoidal categories with a Cartesian structure
- This is by defining the trace as an atomic operation
- Linear hypergraphs form a partial adhesive category
- So graph rewriting can be performed as with regular hypergraphs!