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Symmetric traced monoidal categories
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Symmetric traced monoidal category
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Symmetric traced monoidal category

Superposing

C
A

C
Bf =

C
A

C
Bf

Exchange

A B
f

=

A B
f

3



Cartesian categories

The tensor is a product and the unit object is terminal.

∆A : A → A⊗ A
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A
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Cartesian categories – axioms

Naturality
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among others...
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Cartesian traced categories

Product + trace = fixpoint operator (Hasegawa 1997)
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Also known as dataflow categories.
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Graphical languages for Cartesian categories

Applying Cartesian axioms require a rewriting of the graph
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f
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B

‘Only connectivity matters’ no longer applies!

Combinatorial graph language required
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Graphical languages for Cartesian categories

Can we use something o� the shelf?

String graphs (Dixon, Kissinger) Hypergraphs (Bonchi, Gadduchi,
Kissinger, Sobociński, Zanasi)
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The compact closed problem

These frameworks are based in compact closed categories.

It is possible to construct a trace using the compact closed structure.

But finite products become biproducts in a compact closed category.

And if we add a Cartesian structure to a compact closed category it becomes
trivial anyway.
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The compact closed problem

The trace must be constructed as an atomic operation.
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f

Goal: define a sound and complete graph language for STMCs with atomic trace.
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Hypergraphs



‘Vanilla’ hypergraphs

Definition
HypΣ is the category with objects the labelled hypergraphs over a signature Σ

and morphisms the labelled hypergraph homomorphisms.
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Hypergraphs are not enough

not allowed!

We could rule out the ones that don’t fit our criteria, but this might not be
compositional.
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Linear hypergraphs

Definition
LHypΣ is the category with objects the linear hypergraphs labelled over a
signature Σ and morphisms the labelled linear hypergraph homomorphisms.
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Cospans of linear hypergraphs

A cospan M→ H← N is discrete if M and N contain no edges.

An monogamous cospan only picks the ‘open’ vertices.

Definition
MCspD(LHypΣ) is the category of monogamous cospans over LHypΣ.
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A graph language for STMCs

Are linear hypergraphs a suitable graph language for STMCs?

We need to define the operations of an STMC.

Most are fairly obvious...

F · G
F ⊗ G

id1
σ1,1
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Trace

Tr1(−)−−−−→

Tr1(−)−−−−→
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Interpreting terms as graphs

We fix a traced PROP TermΣ generated over some signature Σ.

J−K : TermΣ → MCspD(LHypΣ)

φ ψ J−K−−→
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Soundness

Equal terms
in the category

⇒
Isomorphic

interpretations as
hypergraphs
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Soundness

Theorem (Soundness)
For any morphisms f ,g ∈ TermΣ, if f = g under the equational theory of the
category then their interpretations as cospans of labelled linear hypergraphs
are isomorphic, Jf K ≡ JgK
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Definability

A cospan of
labelled linear
hypergraphs

⇒
A set of corresponding
terms in the category
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Definability

φ

ψ

Tr3(σ2,1 ⊗ id2 · id2 ⊗ σ1,1 ⊗ id1 · φ⊗ ψ ⊗ id2)
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Definability

〈〈−〉〉 : MCspD(LHypΣ) → TermΣ

Proposition (Definability)
For any F ∈ LHypΣ and edge order ≤, then m→ F ← n ≡ J〈〈m→ F ← n〉〉≤K.
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Coherence

But we cannot conclude completeness yet!

A labelled
linear hypergraph

⇒ Unique morphism in the category,
up to the equational theory

Proposition (Coherence)
For all orderings of edges ≤x on some F ∈ LHypΣ,

〈〈m→ F ← n〉〉≤1 = 〈〈m→ F ← n〉〉≤2 = · · · = 〈〈m→ F ← n〉〉≤x
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Completeness

Theorem (Completeness)
For any cospan of linear hypergraphs m→ F ← n ∈ MCspD(LHypΣ) there exists
a unique morphism f ∈ TermΣ, up to the equations of the STMC, such that
Jf K = F. Moreover, for any f ∈ TermΣ, 〈〈Jf K〉〉 = f .
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Graph rewriting



DPO rewriting

L K R

G C H

J
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DPO rewriting

L K R

G C H

J

?

We need a guarantee that this pushout complement is unique.
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Adhesive categories

L K R

G C H

J

In an adhesive category, if we have
• a rewrite rule L p←− K → R where p is mono,
• a matching L→ G

then the pushout complement K → C → R is unique
(if it exists).

We have already met an adhesive category:

Proposition
HypΣ is an adhesive category.
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Partial aAdhesive categories

Unfortunately LHypΣ is not adhesive.

Definition (Partial adhesive categories (Kissinger))
A category P is called a partial adhesive category if it is a full subcategory of an
adhesive category A and the inclusion functor I : P → A preserves
monomorphisms.
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Partial adhesive categories

Proposition
LHypΣ is a full subcategory of HypΣ.

Proposition
The inclusion functor I : LHypΣ → HypΣ preserves monomorphisms.

Corollary
LHypΣ is a partial adhesive category.

So for matchings that are mono, graph rewriting is well-defined.
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DPO rewriting example
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Conclusion

• Sound and complete graph language for symmetric traced monoidal
categories with a Cartesian structure

• This is by defining the trace as an atomic operation
• Linear hypergraphs form a partial adhesive category
• So graph rewriting can be performed as with regular hypergraphs!
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