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Introduction

Game theory is the mathematical study of interaction

among independent, self-interested agents.

– Essentials of Game Theory, Leyton-Brown and Shoham 2008

e.g. economy and ecology, learning, control, etc.  cybernetics.

“Does all this have any practical applications?” It’s really

intriguing because this question is asked in almost exactly the

same words wherever I go. [...]

I ask them, what do you think constitutes a practical

application? [...] Roughly speaking, people converge within five

to 10 minutes onto two categories of practical applications. One

is, if you manage to make several million dollars instantly. The

other is, if you manage to kill millions of people instantly.

Many people are actually kind of shocked by their own answers.

– Tadashi Tokieda, from Quanta Magazine

Game theory shows cooperation is hard...

...hopefully better math facilities will make it easier!

2

https://www.quantamagazine.org/tadashi-tokieda-collects-math-and-physics-surprises-20181127/
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Introduction

Classical game theory: normal form and extensive form

Drawbacks:

1. Too little information (NF)... how is the game actually played?

2. Too much information (EF)... exponential in the number of moves!

3. Unclear causal relationships (both).

4. Most importantly: non-compositional! ( small scale)

3



Introduction

Open games are a categorical framework for compositional game theory1:

Advantages:

1. Detailed but not unwieldly... compact notation and true causality

2. Compositional & diagrammatic ( large scale).

1Ghani, Hedges, Winschel, and Zahn 2018
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Introduction

Translating normal form games to open games is ‘trivial’...
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Introduction

Translating extensive form games to open games is non-trivial:

1. We need to seriously consider the problem of agency:

1. How do we represent correlated interests across a game?

2. How do we represent player-dependent observational constraints?

2. We need adequate composition operators to reflect the structure of the game.

To do so, we introduce:

1. Open games with agency, an improved compositional (and conceptual)

framework for games, drawing from/inspiring ‘open cybernetic systems’2.

2. An operator calculus for games, in particular new choice operators.

2Capucci, Gavranović, Hedges, and Rischel 2021
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Open games with agency



What is a game?

Game theory is the mathematical study of interaction

among independent, self-interested agents.

– Essentials of Game Theory, Leyton-Brown and Shoham 2008

A game factors in two parts:

1. An arena, which models the dynamics of the game.

2. Some players, which intervene in the arena by making decisions.

A strategy ω ∈ Ωp for a player 1 ≤ p ≤ N is a policy p uses to make their decisions

(e.g. a choice of move for each of p’s rounds).

A strategy profile is a strategy for each player Ω = Ω1 × · · · × ΩN .
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What is an arena?

An arena is an open system with three boundaries:

reward vectors
strategy
profiles

state
moves

utilitycoutility / f-Fa¥ R

This is a parametrised lens A : (X , S)
(Ω,

Ω

)−→ (Y ,R) specified by two maps

play : Ω×X → Y ,

coplay : Ω×X × R →

Ω

× S

8



What is an arena?

It can be ‘closed’ by specifying an initial state and a utility function:

¥÷÷E¥¥:*
Observe that Lens(1, 1)(X , S) ∼= X and Lens(Y ,R)(1, 1) ∼= Y → R.

9



What is an arena?

A closed arena amounts to an evaluation of strategies with rewards:

%i;a:f±r→sv
10



What are players?

Players are a distinct part of the game (seen as a system)

which expresses preferences by means of a selection function:

ε : (Ω→
Ω

) −→ PΩ

In a single-player game, typically Ω is ‘finite’,

Ω

= R and ε is argmax:

argmax(u : Ω→ R) = {ω ∈ Ω |ω maximises u} ⊆ Ω.

11



What is a Nash equilibrium?

A strategy profile is a Nash equilibrium

if no player has incentive to unilaterally change strategy.

Traditionally ‘the’ goal of game theory is determining Nash equilibria of games,

though this is not necessarily the case anymore (see: Fudenberg and Levine 1998).
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What is a Nash equilibrium?

The assignment S(Ω,

Ω

) := (Ω→

Ω

) −→ PΩ is functorial on Lens.

Crucially, S admits a lax monoidal structure we call Nash product:

− �− : S(Ω1,

Ω

1)× S(Ω2,

Ω

2) −→ S(Ω1 × Ω2,

Ω

1 ×

Ω

2)

(ε � η)(u) = {(ω1, ω2) |ω1 ∈ ε(u1(−, ω2)) and ω2 ∈ η(u2(ω1,−))}

= profiles s.t. ‘no agent wants to unilaterally deviate’

where u = (u1, u2) : Ω1 × Ω2 →

Ω

1 ×

Ω

2.

Hence if we have players P = {1, . . . ,N}, each with preferences εi ∈ S(Ωi ,

Ω

i ), we get:

ε1 � · · · � εN : (Ω1 × · · · × ΩN −→

Ω

1 × · · · ×

Ω

N) −→ P(Ω1 × · · · × ΩN)
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The definition

Definition
An open game with agency is a pair

G = ( A : (X ,S)
(Ω,

Ω

)−→ (Y ,R), ε : S(Ω,

Ω

) )

whose equilibria are given by

eqG(x , k) = ε(x #A # k).

In this way we recover the equilibrium predicate of open games (Ghani, Hedges,

Winschel, and Zahn 2018).

Definition
G has set of players P when

Ω =
∏
p∈P

Ωp ,

Ω

=
∏
p∈P

Ω

p , ε = �
p∈P

εp

in which case

eqG(x , k) = ( �
p∈P

εp)(x #A # k).
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Composing games

Sequential composition

µ µ
' a ra

Vix# friar.

¥☒±¥f¥=¥u¥
.

S R
S

Kief friar.
r
. ×¥a"ctz -2
="

v.µ far ,
y

2-

5. ✗ Sz R✗Rz

S ,

Parallel composition

µ µ
' a ra

Vix# friar.

¥☒±¥f¥=¥u¥
.

S R
S

Kief friar.
r
. ×¥a"ctz -2
="

v.µ far ,
y

2-

5. ✗ Sz R✗Rz

S ,

Notice: these operators can be extended to games:

(A1, ε) # (A2, η) := (A1 #A2, ε � η), (A1, ε)⊗ (A2, η) := (A1 ⊗A2, ε � η)

15



Composing arenas

External choice

I+2k¢ µR ,
✗R
z

✗,+Xz ¥+Yz

¥÷÷ & Éi¥÷÷ = IIs
,

"
S
, S
S z

Vr +µ µ
Rr +522

v. In for . H tr.
¥☒ ⑦
→
☒÷ = "-="

S , R
sa

s ,C-Sz R

The ‘environment’ chooses which game to play, agents are prepared to play both.

Internal choice

I+2k¢ µR ,
✗R
z

✗,+Xz ¥+Yz

¥÷÷ & Éi¥÷÷ = IIs
,

"
S
, S
S z

Vr +µ µ
Rr +522

v. In for . H tr.
¥☒ ⑦
→
☒÷ = "-="

S , R
sa

s ,C-Sz R

The ‘environment’ can play either game, agents choose which one.

Notice: these operators can’t be extended to selection functions in a canonical way!

(Actually ⊕ can if we refine our typing judgments)

16



Reparametrisation

Most importantly arenas form a (locally fibred) bicategory: one can reparametrise

along a lens α : (Ω′,

Ω′)→ (Ω,

Ω

).

ÉÉ:I¥÷=¥E÷I÷
This is crucial for introducing agency!

Lenses in the blue direction represent ‘players dynamics’,

e.g. voting, observational constraints (imperfect information),

rewards distribution (imputation), ...

17



Regrouping

If A has set of players P and r : P → Q is a function, we can turn A into an arena

with players Q by reparametrising along the permutation of
∏

p∈P ΩP induced by r :

regroupr : (
∏

q∈Q(r∗Ω)q ,
∏

q∈Q(r∗

Ω

)q) −→ (
∏

p∈PΩp ,
∏

p∈P

Ω

p)

Example

If A1 and A2 have the same players P = {1, 2}, A1 #A2 has players P + P.

Regrouping along ∇ : P + P → P restores the correct set of players.

player 1 player 2

player 1 player 2

player 1 player 2

player 1 player 2 player 1 player 2

player 1 player 2

tttt t.tw
I

Htt Htt Htt Htt

☒
tttt t.tw±i±i-±É±
Htt Htt

Tier
tttt t.tw±i±i± I
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Tying

By reparametrising along (∆, combine) (where combine = +, π2,max, . . .), we can

enforce the same strategies to be played at different points of a game.

Example

Repeated games: play the same strategies at every round

*

firm

r

fi÷÷÷F÷÷÷÷÷:¥÷-÷"↳F-

g
it ¥ U ¥ ¥

Notice: (∆, combine)∗(A1 #A2) lies outside the image of #/⊗/⊕/&, hence introduces

’non-compositional’ effects  ‘agency is non-local’.

19
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Extensive form games
& their translation



Extensive form

payoff on leaves

moves
as

branches

nodes
are states

labelled
by players:/

¥1m :A¥
(%) 112/140,2 ) q 2) (3-3)

("4 13,4 (0/0)←

Definition
A (perfect information) extensive-form tree is a term of

data PETree = Leaf RP | Node P (n : N+) ([n]→ PETree)

where P = set of players, R = type of rewards (usually R).

21
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Extensive form: strategies
I
•••

*
%) Ga) IN

(0-0) ¥440,2 ) 10,2 ) (3-3)

(" 2) 13,4 (0/0)

Definition

stratPET : PETree→ P → Set

stratPET (Leaf v) p = 1

stratPET (Node q n f ) p

= (if p ≡ q then [n] else 1)× (Πm ∈ [n]) stratPET (f m) p

22



Extensive form: moves
I
•••

*
Gz)

(0014/40,2) 10,2 ) (3-3)

(" 2) 13,4 (0/0)

Definition

pathPET : PETree→ Set

pathPET (Leaf v) = 1

pathPET (Node p n f ) =

(Σm ∈ [n]) pathPET (f m)

I
•••

*
Gz)

(0014/40,2) 10,2 ) (3-3)

(" 2) 13,4 (0/0)

Definition

payoffPET : (T : PETree)→ (pathPET T )→ RP

payoffPET (Leaf v) • = v

payoffPET (Node p n f ) (m, π)

= payoffPET (f m) π
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Translation

Finally, we can translate any PETree to an open game with agency:

Leatu → #-)
Rstrati-j.ir/T#fstratTpiNo&epnt

'→

gnpoionism ,
£r⇒RP|É mltptstratftmjp

In]÷¥¥÷☒÷÷÷*^t
Tr

and we equip this arena with �p∈P argmax(− # πp).
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Imperfect information

Sometimes players can’t access the whole state of the game (i.e. history of play)

25



Imperfect information

Access to information (or better, lack thereof) is represented by sets of

‘indistinguishable states’ called information sets:

information
sets*÷÷÷:*

(0/0)¥• 10,2 ) (3/3)

f- 2) 13,4 (0/0)

Limit case: all information sets are singletons ≡ perfect information.
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Imperfect information

Strategies need to respect information sets:

i.
*

-
- - -

:|:\
"÷gÉ÷• Hiiiii :[

10,2 ) (3/3)""" """ """ ¥/Ñ
y

114 13,4 (0/0) 114 13,4 (0/0)

✗

Players can’t distinguish between nodes in the same set, so they play in the same way.
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Adding imperfect information

Definition
An imperfect information extensive-form tree is a term of

data IETree = Leaf RP | Node (i : I ) ([n i ]→ IETree)

where

1. I : Set is a set of information labels,

2. n : I → N+ assigns moves to nodes of the same information set and

3. there is a (surjective) map belongs : I → P.
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Translation

Idea: information sets are instances of ’tying’:

1. Forget about information sets and recover a perfect information game:

IET-to-PET : IETree→ PETree

IET-to-PET (Leaf v) = Leaf v

IET-to-PET (Node i f ) = Node (belongs i) (n i) (λm . IET-to-PET (f m))

2. Translate it using PET-to-Arena.

3. Reparametrise along clone which ties strategies in the same information sets.

IET-to-Arena(T ) = clone∗(PET-to-Arena (IET-to-PET T ))
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Example: Prisoner’s Dilemma Its
Yogi :*

f- 1
,
- 1) 1-40) 14-4 (-3-2)

Yser }
*¢4K'D}

f) jnji
/ ¥÷¥¥ ,.÷-☒⇐-¥÷÷÷÷É

prisoner 1 prisoner 2

I.
. / . . . . /¥? . . . . . . . . . - - - - - .

. .
-
- - -

- - -
-• - - -

÷clone

i regroup

÷ ÷

/ / KID}

IR IR
- IRHR

:•-÷=¥É÷É
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Example: Prisoner’s Dilemma

prisoner 1 prisoner 2

% §
""

?⃝^ |
""

¥÷#¥
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Conclusions

In this work:

1. We have seen how games naturally decompose in arenas and selection functions,

with reparametrisations playing a key role

2. This allows to handle long-range correlations in players’ behaviour

3. Hence we can easily map extensive form trees to open games with agency
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Future directions

There remain some open questions related to the EF→OG translation:

1. Can we simplify the resulting game using topological moves?

e.g. translating IEF often yields OG which are ⊗-decomposable

2. Can we treat subgame-perfect equilibrium?

Can Escardó-Oliva product of selections3 be a lax monoidal structure on S?

Moreover, the framework of open games (with agency) is still incomplete.

1. Selection functions do not interact much with arenas

Is there a better way to equip arenas with equilibrium predicates?

2. What kind of assignment is ‘argmax : Arenas→ Games’?

An oplax Para coalgebra?

3Escardó and Oliva 2015
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Thanks for your attention!

Questions?
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