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Species

Definition

Let S denote the symmetric groupoid,
the category consisting of sets
n = {1, . . . , n} for objects (0 = ∅), and
bijections for the morphisms.

0 1 2 3 . . .

Notice, all morphisms are automorphisms.
This is a skeleton of FinBij, the maximal
subgroupoid in FinSet.

Definition ([Joy81])

A combinatorial species is a functor
F : S→ Set.

Example

SG : S→ Set by SG (n) = the set of simple
graphs with n nodes.
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Network models

Definition ([BFMP20])

A network model is a symmetric lax
monoidal functor of the form
(F ,t) : (S,+)→ (Mon,×).

“overlay” ∪n : F (n)× F (n)→ F (n)

∪ =
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and “disjoint union”
tm,n : F (m)× F (n)→ F (m + n)

t =
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Example

I simple graphs

I directed edges

I multiple edges

I edge colors

I hypergraphs

I Petri nets

Nonexample

acyclic graphs



Operad from a network model

The original motivation for network models is to construct operads modeling network
design:

NetMod

∫
−→ SMC

U−→ Oprd
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Constructing network models

Construction

You can get a network model from any
monoid. There’s a functor Mon→ NetMod
given by M 7→ (n 7→ M(n2)).

Example

I M = (B,+) recovers the simple
graphs network model.

I M = (N,+) gives graphs with multiple
(indistinguishable) edges.

I M = (2X ,∪) gives graphs with edges
labeled in X .

But notice different edge components
automatically commute with each other:

∪ =
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(m1,0, 0, 0, 0, 0) ∪ (0,m2, 0, 0, 0, 0)

= (0,m2, 0, 0, 0, 0) ∪ (m1, 0, 0, 0, 0, 0)

Can we define ΓM : S→ Set by

ΓM(n) =
∐(n2) M?



Eckmann–Hilton for network models

Disjoint components must commute with each other: Let a ∈ F (m) and b ∈ F (n).
Then

(a t ∅) ∪ (∅ t b) = (a ∪ ∅) t (∅ ∪ b)

= (∅ ∪ a) t (b ∪ ∅)
= (∅ t b) ∪ (a t ∅)
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So what this means is that we want to define ΓM to be n 7→
∐

(n2)
M/ ∼ where ∼ tells

us to impose commutativity for edge components which are disjoint. Let’s take a look
at the first few levels to see how this relation looks.

0 7→ 1, 1 7→ 1, 2 7→ M, 3 7→
3∐
M,

4 7→
6∐
M/〈a1,2b3,4 = b3,4a1,2, a1,3b2,4 = b2,4a1,3, a1,4b2,3 = b2,3a1,4〉

5 7→
10∐

M/〈a1,2b3,4 = b3,4a1,2, a1,2b3,4 = b3,4a1,2, a1,2b3,5 = b3,5a1,2,

a1,3b2,4 = b2,4a1,3, a1,3b2,5 = b2,5a1,3, a1,3b4,5 = b4,5a1,3,

a1,4b2,3 = b2,3a1,4, a1,4b2,5 = b2,5a1,4, a1,4b3,5 = b3,5a1,4,

a1,5b2,3 = b2,3a1,5, a1,5b2,4 = b2,4a1,5, a1,5b3,4 = b3,4a1,5,

a2,3b4,5 = b4,5a2,3, a2,4b3,5 = b3,5a2,4, a2,5b3,4 = b3,4a2,5〉



So what this means is that we want to define ΓM to be n 7→
∐

(n2)
M/ ∼ where ∼ tells

us to impose commutativity for edge components which are disjoint. Let’s take a look
at the first few levels to see how this relation looks.

3 7→
3∐
M

4 7→
6∐
M/〈,,,,,,〉

5 7→
10∐

M/〈,,,,,

,,,,,

,,,,,〉
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Graph products of monoids

Definition ([Gre90, Vel01])

Let G be a graph with N nodes, and Mi a
family of N monoids. The graph product
is the monoid

G (Mi ) =
∐

Mi/〈akb` = b`ak if (k , `) ∈ G 〉.

Define IC : SimpleGrph→ Cat by

7→

• • •

• • •

• •

Let D : IC (G )→ Mon be the diagram

M1 M1 ×M2 M2

M1 ×M4 M1 ×M3 M2 ×M3

M4 M3

Proposition (M.)

G (Mi ) ∼= colimD.



Now for a given monoid M we define a network model ΓM : (S,+, 0)→ (Mon,×, 1) by
n 7→ KGn,2(M).

Theorem (M.)

ΓM defined above is a network model. Moreover, we have an adjunction

Mon NetMod+

Γ

⊥
ev2

where NetMod+ is the subcategory of NetMod of network models with trivial
involution (thanks to Mike Shulman for pointing out a mistake in the original).

Network models with trivial involution are essentially “undirected network models”
(thanks Mike Shulman).
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