Noncommutative Network Models

Joe Moeller
UC Riverside
National Institute of Standards and Technology
This work was produced in part on occupied Cahuilla and Tongva land.
\section*{ACT2021}
16 July

Outline

Noncommutative network models, Mathematical Structures in Computer Science, 2020. arXiv:1804.07402

- Network models
- Eckmann-Hilton for network models
- Kneser graphs
- Graph products of monoids
- Free undirected network models

Species

Definition

Let S denote the symmetric groupoid, the category consisting of sets $n=\{1, \ldots, n\}$ for objects $(0=\emptyset)$, and bijections for the morphisms.

Notice, all morphisms are automorphisms. This is a skeleton of FinBij, the maximal subgroupoid in FinSet.

Definition ([Joy81])

A combinatorial species is a functor $F: S \rightarrow$ Set.

Example

$S G: S \rightarrow$ Set by $S G(n)=$ the set of simple graphs with n nodes.

(4) (3)

Network models

Definition ([BFMP20])

A network model is a symmetric lax monoidal functor of the form

$$
(F, \sqcup):(\mathrm{S},+) \rightarrow(\text { Mon }, \times) .
$$

"overlay" $\cup_{n}: F(n) \times F(n) \rightarrow F(n)$

\cup

and "disjoint union"
$\sqcup_{m, n}: F(m) \times F(n) \rightarrow F(m+n)$

\sqcup

Example

- simple graphs
- directed edges
- multiple edges
- edge colors
- hypergraphs
- Petri nets

Nonexample

acyclic graphs

Operad from a network model

The original motivation for network models is to construct operads modeling network design:
$\operatorname{NetMod} \xrightarrow{\int} \mathrm{SMC} \xrightarrow{U}$ Oprd

Constructing network models

Construction

You can get a network model from any monoid. There's a functor Mon \rightarrow NetMod given by $M \mapsto\left(n \mapsto M\binom{n}{2}\right.$.

Example

- $M=(\mathbb{B},+)$ recovers the simple graphs network model.
- $M=(\mathbb{N},+)$ gives graphs with multiple (indistinguishable) edges.
- $M=\left(2^{X}, \cup\right)$ gives graphs with edges labeled in X.

But notice different edge components automatically commute with each other:
(1) $\frac{m_{1}}{-}(2)$
\cup

$$
\begin{equation*}
\text { (4) } \overline{m_{2}}(3) \tag{4}
\end{equation*}
$$

$$
=
$$

(4) (3)

\cup

$$
\begin{aligned}
& \left(m_{1}, 0,0,0,0,0\right) \cup\left(0, m_{2}, 0,0,0,0\right) \\
& \quad=\left(0, m_{2}, 0,0,0,0\right) \cup\left(m_{1}, 0,0,0,0,0\right)
\end{aligned}
$$

Can we define $\Gamma_{M}: S \rightarrow$ Set by
$\Gamma_{M}(n)=\coprod^{\binom{n}{2}} M$?

Eckmann-Hilton for network models

Disjoint components must commute with each other: Let $a \in F(m)$ and $b \in F(n)$. Then

$$
\begin{aligned}
(a \sqcup \emptyset) \cup(\emptyset \sqcup b) & =(a \cup \emptyset) \sqcup(\emptyset \cup b) \\
& =(\emptyset \cup a) \sqcup(b \cup \emptyset) \\
& =(\emptyset \sqcup b) \cup(a \sqcup \emptyset)
\end{aligned}
$$

So what this means is that we want to define Γ_{M} to be $n \mapsto \coprod_{\binom{n}{2}} M / \sim$ where \sim tells us to impose commutativity for edge components which are disjoint. Let's take a look at the first few levels to see how this relation looks.

$$
\begin{gathered}
0 \mapsto 1, \quad 1 \mapsto 1, \quad 2 \mapsto M, \quad 3 \mapsto \coprod^{3} M, \\
4 \mapsto \coprod^{6} M /\left\langle a_{1,2} b_{3,4}=b_{3,4} a_{1,2}, a_{1,3} b_{2,4}=b_{2,4} a_{1,3}, a_{1,4} b_{2,3}=b_{2,3} a_{1,4}\right\rangle \\
5 \mapsto \coprod^{10} M /\left\langle a_{1,2} b_{3,4}=b_{3,4} a_{1,2}, a_{1,2} b_{3,4}=b_{3,4} a_{1,2}, a_{1,2} b_{3,5}=b_{3,5} a_{1,2},\right. \\
a_{1,3} b_{2,4}=b_{2,4} a_{1,3}, a_{1,3} b_{2,5}=b_{2,5} a_{1,3}, a_{1,3} b_{4,5}=b_{4,5} a_{1,3}, \\
a_{1,4} b_{2,3}=b_{2,3} a_{1,4}, a_{1,4} b_{2,5}=b_{2,5} a_{1,4}, a_{1,4} b_{3,5}=b_{3,5} a_{1,4} \\
a_{1,5} b_{2,3}=b_{2,3} a_{1,5}, a_{1,5} b_{2,4}=b_{2,4} a_{1,5}, a_{1,5} b_{3,4}=b_{3,4} a_{1,5}, \\
\left.a_{2,3} b_{4,5}=b_{4,5} a_{2,3}, a_{2,4} b_{3,5}=b_{3,5} a_{2,4}, a_{2,5} b_{3,4}=b_{3,4} a_{2,5}\right\rangle
\end{gathered}
$$

 us to impose commutativity for edge components which are disjoint. Let's take a look at the first few levels to see how this relation looks.

$$
\begin{aligned}
& 3 \mapsto \coprod^{3} M \\
& 4 \mapsto \coprod^{6} M /\langle\odot \odot \odot \odot \odot \odot\rangle \\
& 5 \mapsto \coprod^{10} M /\langle\odot \odot \odot \odot \odot \\
& \bigcirc(-) \cdot() \cdot \\
& \odot \odot \odot \odot \ggg \gg
\end{aligned}
$$

Graph products of monoids

Definition ([Gre90, Vel01])

Let G be a graph with N nodes, and M_{i} a family of N monoids. The graph product is the monoid

$$
G\left(M_{i}\right)=\coprod M_{i} /\left\langle a_{k} b_{\ell}=b_{\ell} a_{k} \text { if }(k, \ell) \in G\right\rangle .
$$

Define IC: SimpleGrph \rightarrow Cat by

Let $D: I C(G) \rightarrow$ Mon be the diagram

Proposition (M.)

$$
G\left(M_{i}\right) \cong \operatorname{colim} D .
$$

Now for a given monoid M we define a network model $\Gamma_{M}:(S,+, 0) \rightarrow(M o n, \times, 1)$ by $n \mapsto K G_{n, 2}(M)$.

Theorem (M.)

Γ_{M} defined above is a network model. Moreover, we have an adjunction

where NetMod ${ }^{+}$is the subcategory of NetMod of network models with trivial involution (thanks to Mike Shulman for pointing out a mistake in the original).

Network models with trivial involution are essentially "undirected network models" (thanks Mike Shulman).

固 J．C．Baez，J．Foley，J．Moeller，and B．S．Pollard．
Network models．
Theory and Applications of Categories，35（20）：700－744， 2020.
Available at http：／／www．tac．mta．ca／tac／volumes／35／20／35－20abs．html．
围 Elisabeth R．Green．
Graph Products of Groups．
PhD thesis，University of Leeds， 1990.
嗇 André Joyal．
Une théorie combinatoire des séries formelles．
Advances in Mathematics，42：1－82， 1981.
固 Joe Moeller．
Noncommutative network models．
Mathematical Structures in Computer Science，30（1）：14－32， 2020.
围 Joe Moeller and Christina Vasilakopoulou．
Monoidal Grothendieck construction．
Theory and Applications of Categories，35（31）：1159－1207， 2020.

Available at http://www.tac.mta.ca/tac/volumes/35/31/35-31abs.html.
固 Antonio Veloso da Costa.
Graph products of monoids.
Semigroup Forum, 63:247-277, 2001.

