Frey, Zwanziger -(1, 2)*-cosmoses and tagged linear logic*

Recall: An (elementary) topos is a category \mathcal{E} with finite limits such that all presheaves $\operatorname{Rel}_{\mathcal{E}}(-, A) : \mathcal{E}^{\operatorname{op}} \to \operatorname{Set}$ are representable.

Definition

A (1,2)-cosmos is a Pos-enriched category \mathcal{E} with finite limits, such that all $\operatorname{Prof}_{\mathcal{E}}(-, A) : \mathcal{E}^{\operatorname{coop}} \to \operatorname{Pos}$ and $\operatorname{Prof}_{\mathcal{E}}(A, -) : \mathcal{E}^{\operatorname{op}} \to \operatorname{Pos}$ are representable.

- representing objects are *lower* and *upper power objects* $P_{\downarrow}A$, $P_{\uparrow}A$
- monadicity fails $(P_{\downarrow} \circ P_{\uparrow})$ -algebras on **Pos** are *completely dist. lattices*

virtual double category $Prof(\mathcal{E})$ — tagged linear logic with substitutions

Thm: **Prof**(\mathcal{E}) is *closed* and has *compositions*; **Prof**_{\mathcal{E}}(A, 1) is Heyting alg.