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Introduction

The notion of definable automorphism occurs throughout algebra,
model theory, and computer science.

In first-order logic, an automorphism α of a model M of a first-order
theory is definable if there is a formula ϕ(x , y) such that α(a) = b iff
M |= ϕ(a, b) for all a, b ∈ M. E.g. if G is a group, then the inner
automorphism induced by g ∈ G is definable by the formula
y = gxg−1.

Definable automorphisms are polymorphic or uniform, and can provide
a generalized notion of inner automorphism.

Hofstra, Parker, Scott Polymorphic Automorphisms and the Picard Group



Motivation

To motivate this, we recall that George Bergman proved in [1] that
the definable group automorphisms, i.e. the inner automorphisms
given by conjugation, can be characterized purely categorically as the
automorphisms that extend naturally along any group homomorphism.

To see this, observe first that if α is an inner automorphism of a group
G (induced by s ∈ G ), then for each group morphism f : G → H with
domain G we can ‘push forward’ α to define an inner automorphism

αf : H
∼−→ H

by conjugation with f (s) ∈ H (so that αidG = α).
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Motivation

This family of automorphisms (αf )f is coherent, in the sense that it
satisfies the following naturality property: if f : G → G ′ and
f ′ : G ′ → G ′′ are group homomorphisms, then the following diagram
commutes:

G ′ G ′

G ′′ G ′′

αf

f ′ f ′

αf ′◦f
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Bergman’s Theorem

For a group G , let us call an arbitrary family of automorphisms(
αf : cod(f )

∼−→ cod(f )
)
dom(f )=G

with the above naturality property an extended inner automorphism of G .
Such a family is a natural automorphism of G/Group→ Group.

Theorem (Bergman [1])

Let G be a group and α : G
∼−→ G an automorphism of G . Then α is an

inner automorphism of G iff there is an extended inner automorphism
(αf )f of G with α = αidG .

This provides a completely categorical characterization of inner
automorphisms of groups: they are exactly those group automorphisms
that are ‘coherently extendible’ along morphisms out of their domain.
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Covariant Isotropy

We have a functor Z : Group→ Group that sends any group G to
its group of extended inner automorphisms Z(G ). We refer to Z as
the covariant isotropy group (functor) of the category Group.
(Bergman’s theorem actually entails that Z ∼= Id : Group→ Group.)

In fact, any category C has a covariant isotropy group (functor)

ZC : C→ Group

that sends each object C ∈ C to the group of extended inner
automorphisms of C , i.e. families of automorphisms(

αf : cod(f )
∼−→ cod(f )

)
dom(f )=C

in C with the same naturality property as before, i.e. natural
automorphisms of the projection functor C/C→ C.
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Covariant Isotropy

We can also turn Bergman’s characterization of inner automorphisms
in Group into a definition of inner automorphisms in an arbitrary
category C: if C ∈ C, we say that an automorphism α : C

∼−→ C is
inner if there is an extended inner automorphism (αf )f ∈ ZC(C ) with
αidC = α.

Notice that Group is the category of (set-based) models of an
algebraic theory, i.e. a set of equational axioms between terms,
namely the theory TGrp of groups. So Group = TGrpmod.

We will generalize ideas from the proof of Bergman’s Theorem to give
a ‘syntactic’ characterization of the (extended) inner automorphisms
of Tmod, i.e. of the covariant isotropy group of Tmod, for any
so-called quasi-equational theory T.
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Covariant Isotropy

We will then use this result to characterize the covariant isotropy
groups of the category StrMonCat of strict monoidal categories and
any presheaf category SetJ .

In particular, we will show that the covariant isotropy group of
StrMonCat sends any strict monoidal category to its Picard group,
i.e. its group of ⊗-invertible objects.
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Quasi-Equational Theories

What is a quasi-equational theory? (Also known as: partial Horn
theory, essentially algebraic theory, cartesian theory, finite limit
theory.)

First, we need the notion of a signature Σ, which consists of a
non-empty set ΣSort of sorts, and a set ΣFun of (typed)
function/operation symbols.

For example, the signature for groups has one sort X and three
function symbols · : X × X → X , −1 : X → X , and e : X . The
signature for categories has two sorts O,A and four function symbols
dom, cod : A→ O, id : O → A, and ◦ : A× A→ A.
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Quasi-Equational Theories

We can then form the set Term(Σ) of terms over Σ, constructed
from variables and function symbols, as well as the set Horn(Σ) of
Horn formulas over Σ, which are finite conjunctions of equations
between terms.

A quasi-equational theory over a signature Σ is then a set of
implications (the axioms of T) of the form ϕ⇒ ψ, with
ϕ,ψ ∈ Horn(Σ) (see [7]).

The operation symbols of a quasi-equational theory are only required
to be partially defined. If t is a term, we write t ↓ as an abbreviation
for t = t, meaning ‘t is defined’.
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Examples

Any algebraic theory, whose axioms all have the form > ⇒ ψ, where
> is the empty conjunction. E.g. the theories of sets, semigroups,
(commutative) monoids, (abelian) groups, (commutative) rings with
unit, etc.

The theories of categories and groupoids. E.g. two of the axioms of
the theory of categories are

g ◦ f ↓⇒ dom(g) = cod(f ),

dom(g) = cod(f )⇒ g ◦ f ↓ .

The theory of strict monoidal categories, and the theory of presheaves
J → Set on a small category J .
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Proof of Bergman’s Theorem

To motivate our characterization of covariant isotropy for categories
of models of quasi-equational theories, let us review a specific idea in
the proof of Bergman’s Theorem.

Consider the group G 〈x〉 obtained from a group G by freely adjoining
an indeterminate element x. Elements of G 〈x〉 are (reduced) group
words in x and elements of G .

The underlying set of G 〈x〉 can be endowed with a substitution
monoid structure: given w1,w2 ∈ G 〈x〉, we set w1 · w2 to be the
reduction of w1[w2/x], and the unit is x itself.

If w ∈ G 〈x〉, w commutes generically with the group operations if:

I In G 〈x1, x2〉, the reduction of w [x1/x]w [x2/x] is w [x1x2/x];
I In G 〈x〉, the reduction of w−1 is w

[
x−1/x

]
;

I In G 〈x〉, the reduction of w [e/x] in G 〈x〉 is e.
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Proof of Bergman’s Theorem

E.g. if g ∈ G , then the word gxg−1 ∈ G 〈x〉 commutes generically
with the group operations:

I gx1g−1gx2g−1 ∼ gx1x2g−1

I
(
gxg−1

)−1 ∼
(
g−1

)−1
x−1g−1 ∼ gx−1g−1,

I geg−1 ∼ gg−1 ∼ e.

Let Inv(G 〈x〉) be the subgroup of invertible elements of the
substitution monoid G 〈x〉. (E.g. gxg−1 is invertible, with inverse
g−1xg .)

Then the proof of Bergman’s Theorem shows that the group Z(G ) is
isomorphic to the subgroup of Inv(G 〈x〉) consisting of all words that
commute generically with the group operations.
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The Isotropy Group of a Quasi-Equational Theory

Fix a quasi-equational theory T over a signature Σ, and let Tmod be
the category of (set-based) models of T.

We will now give a logical/syntactic characterization of the covariant
isotropy group

ZT : Tmod→ Group

of Tmod.

Using the quasi-equational syntax of T, we can define a notion of
definable automorphism for a model M of T, and the definable
automorphisms of any M ∈ Tmod form a group DefInn(M).
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Definable Automorphisms

Given M ∈ Tmod and A ∈ ΣSort, one can form the T-model M〈xA〉
obtained from M by freely adjoining an indeterminate element xA of
sort A. For any sort B, elements of M〈xA〉B are congruence classes
[t] of Σ-terms t of sort B involving xA and constants from M, where
two such terms s, t are congruent if they are provably equal in the
diagram theory T(M, xA) of M extended by the axiom > ` xA ↓.

For any sort A, the set M〈xA〉A is a monoid under substitution: the
unit is [xA] and [s] · [t] = [s [t/xA]] for [s], [t] ∈ M〈xA〉A. We then
have the product monoid

∏
AM〈xA〉A.
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Definable Automorphisms

So an element ([sA])A ∈
∏

AM〈xA〉A is (substitutionally) invertible if
for each sort A, there is some

[
s−1A

]
∈ M〈xA〉A with

T(M, xA) ` sA
[
s−1A /xA

]
= xA = s−1A [sA/xA] .

If f : A1 × . . .× An → A is an operation symbol of Σ, then
([sA])A ∈

∏
AM〈xA〉A commutes generically with f if

T (M, xA1 , . . . , xAn) proves the sequent

f (xA1 , . . . , xAn) ↓ ` sA [f (xA1 , . . . , xAn) /xA] = f (sA1 , . . . , sAn) ,

and reflects definedness of f if T (M, xA1 , . . . , xAn) proves the sequent

sA [f (xA1 , . . . , xAn) /xA] ↓ ` f (xA1 , . . . , xAn) ↓ .
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Definable Automorphisms

We define DefInn(M) to be the subgroup of the product monoid∏
AM〈xA〉A consisting of the invertible elements that commute generically

with and reflect definedness of every f ∈ ΣFun.

Theorem ([4])

Let T be a quasi-equational theory. For any M ∈ Tmod, the covariant
isotropy group ZT(M), i.e. the group of extended inner automorphisms of
M, is isomorphic to the group DefInn(M) of definable automorphisms of
M.

In particular, an automorphism α : M
∼−→ M in Tmod is inner iff there is

some ([sA])A ∈ DefInn(M) that induces α, i.e. for each sort A

(m ∈ MA) αA(m) = sA [m/xA]M ∈ MA.
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Initial Examples ([3])

If T is the theory of sets, then T has trivial isotropy group, i.e.
ZT(S) ∼= DefInn(S) ∼= {[x]} for any set S , so the only inner
automorphism of a set is the identity function.

If T is the theory of groups, then Bergman proved
∀G ∈ Tmod = Group that

ZT(G ) ∼= DefInn(G ) ∼=
{[
gxg−1

]
∈ G 〈x〉 | g ∈ G

} ∼= G .

If T is the theory of monoids, then ∀M ∈ Tmod = Mon we have

ZT(M) ∼= DefInn(M) ∼=
{[
mxm−1

]
∈ M〈x〉 | m ∈ Inv(M)

} ∼= Inv(M).
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Initial Examples ([3])

If T is the theory of abelian groups, then ∀G ∈ Tmod = Ab we have

ZT(G ) ∼= DefInn(G ) ∼= {[x], [−x]} ∼= Z2.

If T is the theory of commutative monoids or unital rings, then T has
trivial isotropy group.

If T is the theory of (not necessarily commutative) unital rings, then
∀R ∈ Tmod = Ring we have

ZT(R) ∼= DefInn(R) ∼=
{[
rxr−1

]
∈ R〈x〉 | r ∈ Unit(R)

} ∼= Unit(R).

If T is the theory of categories or groupoids, then T has trivial
isotropy group.
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Strict Monoidal Categories

If T is the quasi-equational theory of strict monoidal categories, then
we proved in [4] that for any strict monoidal category C, the group
DefInn(C) consists (up to isomorphism) of exactly the monoidal
inner automorphisms, i.e. the automorphisms F : C→ C for which
there is some ⊗-invertible object c ∈ C such that F is given by
conjugation with c , i.e.

(a ∈ C) F (a) = c ⊗ a⊗ c−1.

We then deduced that

ZT(C) ∼= DefInn(C) ∼= Inv (Ob(C)) ,

the group of ⊗-invertible elements of the object monoid of C, also
known as the Picard group of C.
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Presheaf Categories

We can also characterize the covariant isotropy group of a presheaf
category SetJ for a small category J .

Given a small category J , we can define a quasi-equational theory
TJ whose models are functors J → Set, i.e.

TJmod ∼= SetJ .

The sorts are the objects of J , for any morphism f : i → j one
introduces a unary operation symbol f̂ : i → j , and one has axioms
expressing functoriality.
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Presheaf Categories

If F : J → Set is a presheaf, we showed in [4] that DefInn(F )
consists (up to isomorphism) of exactly the natural automorphisms
α : F

∼−→ F induced by some element ψ ∈ Aut (IdJ ), in the sense that

(k ∈ J ) αk = F (ψk) : F (k)
∼−→ F (k).

It then follows that the covariant isotropy group Z : SetJ → Group
is constant on the group Aut(IdJ ) of natural automorphisms of
IdJ : J → J .
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Presheaf Categories

if J is a rigid category (i.e. has no non-trivial automorphisms), then
the covariant isotropy group Z : SetJ → Group is constant on the
trivial group.

For any group G , the covariant isotropy group Z : SetG → Group of
the category of G -sets is constant on the centre Z (G ) of the group G .

More generally, for any monoid M, the covariant isotropy group
Z : SetM → Group of the category of M-sets is constant on the
group Inv(Z (M)) of invertible elements of the centre of M.
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Connections with Topos Theory

If T is a quasi-equational theory, then T has a classifying topos B(T),
which is a cocomplete topos that has a universal model of T and
classifies all topos-theoretic models of T ([5], [6]).

It has been shown that any Grothendieck topos E has a canonical
internal group object called the isotropy group of the topos, which
acts canonically on every object of the topos and formally generalizes
the notion of conjugation ([2]).

The covariant isotropy group ZT of a quasi-equational theory T is in
fact the isotropy group object of the classifying topos B(T) of T ([2],
[5]).
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Conclusions

Bergman’s element-free characterization of the inner automorphisms
of groups can be used to define inner automorphisms in arbitrary
categories.

We have extended Bergman’s logical characterization of the
(extended) inner automorphisms of groups, i.e. of the covariant
isotropy group of Group = TGrpmod, to the covariant isotropy group
of Tmod for any quasi-equational theory T: we have
ZT(M) ∼= DefInn(M) for any M ∈ Tmod.

Using this characterization, we have obtained logical descriptions of
the definable and (extended) inner automorphisms in StrMonCat
and presheaf categories (among other algebraic categories).

Hofstra, Parker, Scott Polymorphic Automorphisms and the Picard Group



Thank you!
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