Profunctors between posets and preserving cuts

Gunnar Fløystad University of Bergen, Norway

July 16, 2021

Overview

- Posets and profunctors
- Examples
- Main statement
- Applications

Posets and cuts

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Distributive lattices

• Order-preserving maps: 1:
$$P \rightarrow Q$$
 Ham (P, Q)
• $\hat{P} = Ham (P_1^{\bullet} \circ c_1), P^{\circ \nu} is apposite post$
• $\hat{P} has < \frac{t > p element}{b ottom element} (Q, P) = \infty$
• $\underline{P} has < \frac{t > p element}{b ottom element} (Q, P) = \infty$
• $\underline{Examples} + A set, \hat{A} = subsets of A = Boulean poset on A$
 $* P = [n] = [1 - 2 - \dots - n], [n] = [n] \cup [\infty]$
where $\infty = n + 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Profunctors

• Profunctor
$$P \rightarrow Q$$
 is order-preserving map $P \rightarrow \widehat{Q}$.
• Hampro $(P_{i}(e) = Han (P_{i}(\widehat{e}) = Han (P_{i} Hom (Q^{op}_{i} Sold)))$
 $= Han (P \times Q^{op}_{i} Sold)$
 $= Ham ((P^{op} \times Q^{op}_{i} Sold))$
 $= Ham ((P^{op} \times Q^{op}_{i} Sold))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Profunctors for sets and categories

•
$$C, D$$
 categories: $C \rightarrow D$ projunctor
is a functor $C \rightarrow Ham(D^{co}, \underline{Set})$
 \widehat{L} presheaves on D .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

 $f: [6] \longrightarrow [4].$

• Same as order-preserving:

$$f: [6] \to \widehat{[4]} = [4] \cup \{\infty\}.$$

 $f: [6] \longrightarrow [4].$

• Same as order-preserving:

$$f: [6] \to \widehat{[4]} = [4] \cup \{\infty\}.$$

• Same as cut in:

 $[6]^{op}\times [4].$

Graph Profunctor $f : [6] \longrightarrow [4]$

Red circles: Graph Γf

Gunnar Fløystad University of Bergen, Norway

Profunctors between posets and preserving cuts

Ascent Profunctor $f : [6] \rightarrow [4]$

Blue circles: Ascent Λf

Ascent Profunctor $f : [6] \rightarrow [4]$

Blue circles: Ascent Λf

Graph \cup ascent is *boundary* of cut in [6]^{op} × [4]

Gunnar Fløystad University of Bergen, Norway

Profunctors between posets and preserving cuts

$$\hat{P} \rightarrow \hat{Q}$$

 $p \mapsto (f(p), f(p)^c)$

$$: P \rightarrow \hat{Q}$$

 $p \mapsto (f(p), f(p)^c)$

UP underlying set of P

$$: P \rightarrow \hat{Q}$$

 $p \mapsto (f(p), f(p)^c)$

UP underlying set of P

Graph $\Gamma f = \{(p,q) \mid q \text{ minimal in } f(p)^c\}$ Ascent $\Lambda f = \{(p,q) \mid q \in f(p) \text{ but } q \notin f(p'), p' < p\}$

$$\begin{array}{cccc} P &
ightarrow \hat{Q} \\ p &
ightarrow (f(p), f(p)^c) \end{array}$$

UP underlying set of P

Graph $\Gamma f = \{(p,q) \mid q \text{ minimal in } f(p)^c\}$ Ascent $\Lambda f = \{(p,q) \mid q \in f(p) \text{ but } q \notin f(p'), p' < p\}$

- Subsets of $UP^{op} \times UQ$.
- $\Gamma f \cup \Lambda f$ is the boundary of the cut of $P^{op} \times Q$ defined by f.

Gunnar Fløystad University of Bergen, Norway

Profunctors between posets and preserving cuts

Graph and ascent maps

 $\Lambda: U \operatorname{Hom}_{pro}(P, Q) \to (UP^{\operatorname{op}} \times UQ), \quad f \mapsto (\Lambda f, -)$

 $\Gamma: U \operatorname{Hom}_{pro}(P, Q) \to (UP^{\operatorname{op}} \times UQ), \quad f \mapsto (-, \Gamma f).$

Extending to cuts

 $(\mathcal{I}, \mathcal{F})$ cut for Hom_{pro}(P, Q).

Extending to cuts

 $(\mathcal{I}, \mathcal{F})$ cut for Hom_{pro}(P, Q).

$$\Lambda^{\mathsf{i}}: \mathsf{Hom}_{\textit{pro}}(P, Q) \widehat{} \to (\textit{UP}^{\mathsf{op}} \times \textit{UQ}) \widehat{\widehat{}}, \quad (\mathcal{I}, \mathcal{F}) \mapsto (-, \Lambda(\mathcal{F})^{\uparrow}).$$

 $\Lambda(\mathcal{F})^{\uparrow}$ is poset filter generated by the cuts $(\Lambda f, -)$ for $f \in \mathcal{F}$.

Extending to cuts

 $(\mathcal{I}, \mathcal{F})$ cut for Hom_{pro}(P, Q).

$$\Lambda^{\mathfrak{i}}: \operatorname{\mathsf{Hom}}_{pro}(P, Q) \widehat{} o (UP^{\mathsf{op}} imes UQ) \widehat{\widehat{}}, \quad (\mathcal{I}, \mathcal{F}) \mapsto (-, \Lambda(\mathcal{F})^{\uparrow}).$$

 $\Lambda(\mathcal{F})^{\uparrow}$ is poset filter generated by the cuts $(\Lambda f, -)$ for $f \in \mathcal{F}$.

$$\Gamma^{!}: \operatorname{Hom}_{\operatorname{\textit{pro}}}(P, Q) \widehat{} \to (UP^{\operatorname{op}} \times UQ) \widehat{\widehat{}}, \quad (\mathcal{I}, \mathcal{F}) \mapsto (\Gamma(\mathcal{I})^{\downarrow}, -).$$

 $\Gamma(\mathcal{I})^{\downarrow}$ is poset ideal generated by the cuts $(-, \Gamma f)$ for $f \in \mathcal{I}$.

P and Q are well-founded posets

Theorem (Preserving the cut)

Let $(\mathcal{I}, \mathcal{F})$ a cut for $Hom_{pro}(P, Q)$. Then $(\Gamma(\mathcal{I})^{\downarrow}, \Lambda(\mathcal{F})^{\uparrow})$ is a cut for $(UP^{op} \times UQ)^{\widehat{}}$.

P and Q are well-founded posets

Theorem (Preserving the cut)

Let $(\mathcal{I}, \mathcal{F})$ a cut for $Hom_{pro}(P, Q)$. Then $(\Gamma(\mathcal{I})^{\downarrow}, \Lambda(\mathcal{F})^{\uparrow})$ is a cut for $(UP^{op} \times UQ)^{\widehat{}}$.

 $(UP^{op} \times UQ) \cong \operatorname{Hom}_{pro}(UP, UQ).$

Cut $(\mathcal{I}, \mathcal{F})$ for Hom_{pro}([6], [4])

Cut $(\mathcal{I}, \mathcal{F})$ for Hom_{pro}([6], [4])

Cut $(\mathcal{I}, \mathcal{F})$ for Hom_{pro}([6], [4])

 $\infty \quad \infty$

 ∞

Graphs of $f \in \mathcal{I}$

• Any subset S of [6] $^{\rm op} \times$ [4] either contains a blue path "from ${\cal F}$ ", or

Cut $(\mathcal{I}, \mathcal{F})$ for Hom_{pro}([6], [4])

Ascents of $f \in \mathcal{F}$

- Any subset S of [6] $^{\rm op} \times$ [4] either contains a blue path "from ${\cal F}$ ", or
- The complement S^c contains a red path "from \mathcal{I} ".

Cut $(\mathcal{I}, \mathcal{F})$ for Hom_{pro}([6], [4])

Ascents of $f \in \mathcal{F}$

- Any subset S of [6] $^{\rm op} \times$ [4] either contains a blue path "from ${\cal F}$ ", or
- The complement S^c contains a red path "from \mathcal{I} ".
- These two cases are mutually exclusive.

Gunnar Fløystad University of Bergen, Norway Profunctors bet

Profunctors between posets and preserving cuts

 ∞

Open problem

Natural inclusions $UP \rightarrow P$ and $UQ \rightarrow Q$.

Can you get functorially from:

Cut $(\mathcal{I}, \mathcal{F})$ for Hom_{pro}(P, Q), to

Cut $(\Gamma(\mathcal{I})^{\downarrow}, \Lambda(\mathcal{F})^{\uparrow})$ for Hom_{pro}(UP, UQ)?

Open problem

Natural inclusions $UP \rightarrow P$ and $UQ \rightarrow Q$.

Can you get functorially from:

Cut $(\mathcal{I},\mathcal{F})$ for Hom_{pro}(P,Q), to

Cut $(\Gamma(\mathcal{I})^{\downarrow}, \Lambda(\mathcal{F})^{\uparrow})$ for Hom_{pro}(UP, UQ)?

Gunnar Fløystad University of Bergen, Norway Profunctors betv

Profunctors between posets and preserving cuts

Application I Lots of spheres

Let Q = [n] so $\hat{Q} = [n + 1]$. Cut $(\mathcal{I}, \mathcal{F})$ in Hom(P, [n + 1]) \rightsquigarrow cut $(\Gamma(\mathcal{I})^{\downarrow}, \Lambda(\mathcal{F})^{\uparrow})$ in Boolean poset $(UP^{op} \times U[n])$.

Gunnar Fløystad University of Bergen, Norway

Profunctors between posets and preserving cuts

Application 1 Lots of spheres

Let Q = [n] so $\widehat{Q} = [n + 1]$. Cut $(\mathcal{I}, \mathcal{F})$ in Hom(P, [n + 1]) \rightsquigarrow cut $(\Gamma(\mathcal{I})^{\downarrow}, \Lambda(\mathcal{F})^{\uparrow})$ in Boolean poset $(UP^{op} \times U[n])$.

Theorem

This corresponding simplicial complex is a triangulated ball. Its boundary has a simple compact description and is a simplicial sphere.

Application 1 Lots of spheres

Let Q = [n] so $\widehat{Q} = [n + 1]$. Cut $(\mathcal{I}, \mathcal{F})$ in Hom(P, [n + 1]) \rightsquigarrow cut $(\Gamma(\mathcal{I})^{\downarrow}, \Lambda(\mathcal{F})^{\uparrow})$ in Boolean poset $(UP^{op} \times U[n])$.

Theorem

This corresponding simplicial complex is a triangulated ball. Its boundary has a simple compact description and is a simplicial sphere.

Two previously studied cases:

- When P is antichain and n = 1: Bier spheres (A.Björner, G.Ziegler et.al.)
- When P is a chain [m]: Squeezed spheres (G.Kalai)

Gunnar Fløystad University of Bergen, Norway

Profunctors between posets and preserving cuts

Application || Ideals in polynomial rings: Strongly stable ideals

$$\mathsf{Hom}_{\mathit{pro}}(\mathbb{N},\mathbb{N})=\mathsf{Hom}(\mathbb{N},\widehat{\mathbb{N}})=\mathsf{Hom}(\mathbb{N},\mathbb{N}\cup\infty).$$

- Self-dual poset (another advantage of profuntors!)
- May be given a topology

Application II Ideals in polynomial rings: Strongly stable ideals

 $\operatorname{Hom}_{pro}(\mathbb{N},\mathbb{N}) = \operatorname{Hom}(\mathbb{N},\widehat{\mathbb{N}}) = \operatorname{Hom}(\mathbb{N},\mathbb{N}\cup\infty).$

- Self-dual poset (another advantage of profuntors!)
- May be given a topology

One-to-one correspondence (must use Γ or Λ):

- Open poset ideals $\mathcal I$ in $\mathsf{Hom}_{\textit{pro}}(\mathbb N,\mathbb N)$
- Strongly stable ideals in infinite dimensional polynomial ring k[x₁, x₂, ..., x_n, ···]

Application II Ideals in polynomial rings: Strongly stable ideals

 $\mathsf{Hom}_{\textit{pro}}(\mathbb{N},\mathbb{N})=\mathsf{Hom}(\mathbb{N},\widehat{\mathbb{N}})=\mathsf{Hom}(\mathbb{N},\mathbb{N}\cup\infty).$

- Self-dual poset (another advantage of profuntors!)
- May be given a topology

One-to-one correspondence (must use Γ or Λ):

- Open poset ideals $\mathcal I$ in $\mathsf{Hom}_{\textit{pro}}(\mathbb N,\mathbb N)$
- Strongly stable ideals in infinite dimensional polynomial ring k[x₁, x₂, ..., x_n, ···]

One-to-one correspondence:

- "Dedekind cuts" $(\mathcal{I}, \mathcal{F})$ in Hom $_{pro}(\mathbb{N}, \mathbb{N})$,
- Dualizable strongly stable ideals in k[x₁,...,x_n,...].

Is there a functorial setting?

Natural inclusions $UP \rightarrow P$ and $UQ \rightarrow Q$.

Is there a functorial setting?

Natural inclusions $UP \rightarrow P$ and $UQ \rightarrow Q$.

Is there a functorial setting?

Natural inclusions $UP \rightarrow P$ and $UQ \rightarrow Q$.

Thank you!

Gunnar Fløystad University of Bergen, Norway

Profunctors between posets and preserving cuts