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The setting 2
—

Let o be a set of relational symbols with positive arities, we can
define a category of o-structures R(o):

> Objects are A = (A, { R} pe,) where R4 C A" for r-ary
relation symbol R.

» Morphisms f : A — B are relation preserving set functions

f:A—B
RAay,...,a;) = RP(f(a),..., f(ar))

» If there exists a morphism f: A — B, we write A — B
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Category theory vs. model theory 3

Category theorists look at structures “as they really are”; i.e.
up to isomorphism A = B

Model theorists look at structures with “fuzzy glasses” imposed
by a logic L:

A=fB:=VopeLLAE = BE$
A2B= A=LB

Used to study what properties are inexpressible in £

To show P inexpressible in £, define A, B where P(A) and not
P(B). Must show that A =¢ B
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Finite model theory 4

—

—FOL

Over finite structures, is the same as =

Finite model theorists look at structures with a “fuzzy
phoropter” imposed by grading a logic:

» Quantifier rank < n, QR,

» Restrict number of variables be < k, V¥

¢ = Jz1(3x2(E(21, 22) A Jr3E (23, 72)) A Vs E(z1,24))
¢ € QR3 and ¢ € V*

To show P inexpressible in £ over the finite, define A, By, for
every k where P(Ay) and not P(Bj). Must show that
A =£+ By,
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Constraint satisfaction problems 5

—

CSP: Find assignment of variables A to a domain of values B
satisfying a set of constraints, which can be encoded as relations

on B

A CSP can be formulated in R(o) as deciding if there exists a
morphism h: A — B

Non-uniform problem CSP(B): fixing the set of values B and
varying the variables A.

In general, CSP(B) is NP-complete

Tractable cases of CSP(B) can be identified by considering
approximations to homomorphism
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Approximating homomorphisms 6

Equivalence in a logic with parameter k£ approximates
isomorphism:

A=B= A= B

Preservation in the existential-positive fragment is an
approximation to homomorphism:

AsB=A=274ep

A2 Bavee L, AE 6= BE ¢

We will consider the existential-positive fragment of k-variable
logic 3TV,
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Connection to complexity of CSP 7

—

For all finite A,
A=>TV"B A5 B

then B has k-treewidth duality

B has k-treewidth duality = CSP(B) € PTIME

Proposition

The following are equivalent:
> A=V B
» Duplicator has a winning strategy in a forth k -pebble game
» For all finite C w/ treewidth < k,C - A=C — B
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Forth k-pebble game 8

» Spoiler and Duplicator each have k pebbles. On each round
of 3T Peby(A, B):
» Spoiler places his pebble p € k on an element a; € A
» If p was already placed, Spoiler moves the pebble.
» Duplicator places her corresponding pebble p € k on b; € B

Duplicator wins if
v=A{(a,b) | p € k w/ p pebbling a € A,be B}

is a partial homomorphism

If Duplicator can always produce a winning move for any choice
made Spoiler, than Duplicator has a winning strategy
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Theorem ([KV90])
Duplicator has a winning strategy in 3" Peby (A, B) iff
A=V

Intuition:

AFE Jz,d(xp,9) = AE ¢(a/xp, 1)

Spoiler places p on witness a € A
Suppose Duplicator responds by putting pon b € B

Partial homomorphism in winning condition =

BE ¢(b/xyp,y) = BE 3xpo(zp, 9)
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Forth k-pebble game 10

Intuitively, Spoiler is moving a k-sized window around the
structure A during a play

Duplicator than has to choose a homomorphism from the
k-sized window into B

If Duplicator can’t produce such a partial homomorphism than
Spoiler wins

The k sized window is local ‘view’ of the structure
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We can ‘internalize’ 3t Peb;, game by encoding it as a comonad
Py, for every k, over R(o)

Suprisingly: we are also able to define the combinatorial
parameter treewidth using coalgebrs of Py
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Pebbling comonad [ADW17, AS18] 12
P———

Given a o-structure A, we can create o-structure on the set of
Spoiler moves PrA in 37 Peby (A, -), i.e. non-empty sequences
of pairs (p,a) wherepe k={1,...,k} andac A

Let €4 : Py A — Abe [(p1,a1), ..., (Pn,an)] — an and
A Py A — k be [(p1,a1),..., (Pn,an)] — Pn-

RP’“A(sl,...,sr) & s;Csjors; Csyfori,jer
and 74(s;) does not appear in suffix(s;, s)
where s = max(sq,...,s,)
and RA(c4(s1),...,c4(sr))

For f : Py A — B define f* : Py A — P recursively:

[ (s, a)]) = f*(s) [ (s[(p; a)])]
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Pebbling comonad to game 13

—

» Functions f : PyA — B are Duplicator’s strategies in
It Peb(A, B)

» Chose relations so that o-morphisms f : P A — B are
Duplicator’s winning strategies.

» Coextension f* : PrA — PrB models history preservation
of the game
Theorem ([ADW17])
The following are equivalent:
1. Duplicator has a winning strategy in 3" Peb(A, B)
2. There exists a coKleisli morphism f : Py A — B

Can be strengthened to a bijective correspondence using
relative comonads and explicit equality in signature
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Another characterization of this ‘k-approximate homomorphism
relation’
Proposition
The following are equivalent:
> A=V 5B
» Duplicator has a winning strategy in 3+ Peby (A, B)
» For all finite C w/ treewidth < k,C - A=C — B
» There exists a Kleisli morphism P A — B
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Eilenberg-Moore category of coalgebras 15

We want to use coalgebras of P, to define treewidth

Coalgebras are morphisms « : A — Pr.A satisfying the
equations:
eqoa=idy Craoa=0d040«

with 4 = idl?’kA P A — PLPLA

We can define the Eilenberg-Moore category EM (Py):
» Objects are coalgebras (A, a: A — PrA)
» Morphisms are commuting squares:
A2 PLA
f l lPkf
B

B%Pklg
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Treewidth 16
—

For every structure A, define the Gaifman graph G(A) w/
vertices A and

a—~a €G(A) < a=ad ora,a appear in some tuple of RA

Intuition: Treewidth tw(.A) measures how far G(.A) is from
being a tree

Often implicit in dynamic programming algorithms, i.e
k-consistency algorithms

Formally: Treewidth is the minimum width of a
tree-decomposition of G(A)

) UNIVERSITY OF




Tree decomposition 17

—

Definition
A tree decomposition of A of width k is a triple
(T, <, A:T — PA)
» Every a € A is in some node of T
» All the nodes containing a € A form a subtree
» For every a —~ d' € G(A), {a,d’} C \(z)
> ki = max{|A@)|}eer — 1
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Treewidth and P 19
—

We can define a category of k-pebble forest covers F(o)*, where
objects (A, <,p: A — k) satisfying:
» All elements below a € A in < form a chain
> Ifa~d e€G(A),a<d ord <a
» If a ~a and a < d/, then for all b with a < b < d/,
p(a) # p(b)

Morphisms are functions that preserve immediate successors in
the order < and the pebbling function
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PP}, arises from the comonadic adjunction U* 4 F* where
Uk F(o)* = R(o), FFA = (PyA,C,ma)

Theorem ([AM20])
The category of coalgebras EM(Py,) is isomorphic to F(o)*
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Theorem ([ADW17, AS18])
The following are equivalent:

1. A has a tree decomposition of width < k

2. A has a k-pebble forest cover, i.e. coalgebra A — PpA
Let k°(A) be the least k such that there exists coalgebra
A — (Ck.A
Corollary ([ADW17])
KP(A) = tw(A) + 1
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What about pathwidth? 22
——

We say a tree decomposition (7, <, \) of A is a path
decomposition if < is a linear order

Pathwidth pw(.A) is the minimum width of a path
decomposition of A

Closely linked to CSPs in NLOGSPACE analogous to
treewidth’s relationship to PTIME

Is there an analogous comonad to P, but for pathwidth?
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Pebble-relation comonad 23

—

Given a o-structure A, we can create o-structure PR;.A on the
set of pairs ([(p1,a1),. .., (Pn,an)], i) with i € n

» e : PRy A — Abe ([(p1,a1), .-, (Pn,an)], i) — a;
» 74 : PRy A — k be ([(p1,a1),..., (Pn,an)], i) — p;.

» For i < j, s(i,j] is the subsequence of s starting at i + 1
and ending at j (inclusive)

RIPkA((S, i1),...,(8,ir)) © mA(s,1;) does not appear in s(i;, m|
where m = max(iy,...,1%;)
and R ea(s,i1), ... e4(s,ir))

Let s = [(p1,a1)],.. ., (Pn,an)] € PR A and f: PRiA — B

f*(S,i) = [(pla f(Sa 1))’ ) (pna f(Svn))]7Z)
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Pathwidth and PR, 24
ll......---——_-

We can define a subcategory LF(c)* of the k-pebble forest
covers F(o)* where the forests are linear forests

PR, arises from the comonadic adjunction U 4 L* where
Uk LF(o)F — R(0), LFA = (PRyA, <*,74)

(t,i) <" (,j) e t=t andi<j

Theorem ([AM20])
The category of coalgebras EM(PRy,) is isomorphic to LF(o)F
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Theorem
The following are equivalent:

1. A has a path decomposition of width < k

2. A has a k-pebble linear forest cover, i.e. coalgebra
/l—)PRhA

Corollary
KPR(A) = pw(A) + 1
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What about the logic? 26
——

Definition ([Dal05])

Restricted conjunction fragment 3TN}, C 37V, where
conjunctions A ¥ have that ¥:

» At most one formula in ¥ containing quantifiers has a free
variable.

Theorem ([Dal05])
The following are equivalent:
> A=V B

» Duplicator has a winning strategy in a k pebble relation

game It PebRy (A, B)
» For all C w/ pathwidth <k ,C - A=C— B

) UNIVERSITY OF




Forth k£ pebble-relation game 27
—

The k pebble-relation game is cumbersome to state formally

» Spoiler chooses a at most k sized window on the structure
A (as in the k-pebble game)

» Duplicator responds with a set of homomorphisms from
that window into B (non-determinism)

» Response set must extend some of the partial
homomorphisms of her previous move

» Spoiler wins if Duplicator can only respond with the empty
set
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An easier game 28

—

We can interpret elements of PRy A4 as Spoiler plays, in some
new game

This produces a simpler equivalent game: preannounced or
all-in-one k-pebble game
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Pre-announced existential k-pebble game 29

—

The pre-announced k-pebble game 37 PPeby (A, B) is played in
one round:

» Spoiler chooses a list of k-pebble placements on A:

s =[(p1,a1),---, (Pn,an)]

» Duplicator chooses a compatible list of k-pebble
placements on B:

t=1[(p1,01),- - (Pn>bn)]

Duplicator wins if for every index 7 € n, the pairs of pebble
placements in s(0, 4] and ¢(0, 7] form a partial homomorphism.

Stewart’s all-in-one existential k-pebble game [Ste07]
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PR, power theorem 30

Proposition
The following are equivalent:

> ATV B
Duplicator has a winning strategy in 3" PebRy (A, B)
For all finite C w/ pathwidth < k, C - A= C — B
There exists f : PRy A — B

>
>
>
» Duplicator has a winning strategy in 3 PPeby (A, B)
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Bounded parameter duality 31

—

Definition
A structure B has the Cy-lifting property if for every structure
A:

CcA—-B=A—B

B has k-treewidth duality iff B has the Pg-lifting property.
B has k-pathwidth duality iff B has the PRg-lifting property.

B has k-treewidth duality for some k = CSP(B) € P[DKV02]
(converse does not hold [Ats08])

B has k-pathwidth duality for some k& = CSP(B) € NL[Dal05]
(converse open, but hard)
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Summary table 32

S
Cyg Logic xC —>(,§ <—>% %(k:
Ex [AS18] | FOL w/ qr <k tree-depth v v v
Py, k-variable logic treewidth +1 v v v
[ADW17]

My, [AS18] | ML w/ md < k sync. tree- | v/ v v

depth

G [AM20] | g-guarded logic w/ | guarded v v
width < k treewidth

H,, k-variable logic w/ Q,,- | n-ary  general | v/ v v

[CD20] quantifiers treewidth

PRy, k-variable logic | pathwidth +1 v ? v
restricted-A

LGy k-conjunct guarded | hypertree-width | v/ ? ?
logic
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Morphism power theorems 33

Theorem
L. A=t Be A =3"Lr B < Duplicator wins 37 G (A, B)
2. A H% B A= B & Duplicator wins G (A, B)
3. A B o A =L#) B o Duplicator wins #Gy (A, B)

The —% and = arise from K(Cy,)

The <—>(,S arises from a notion of open map bisimulation in the
category of coalgebras over Cy,
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Restricted class Lovasz result 34

—

All structures finite
Theorem ([Lov67])
A= B < Hom(C, A) = Hom(C, B) for C

Theorem ([Gro20])

A =Q#) B o Hom(C, A) = Hom(C,B) for C w/ td(C) <n
Theorem ([Dvo09])

A=Y"# B o Hom(C, A) = Hom(C,B) for C w/ tw(C) < k,

(
Theorem ([DJR21])
A =Le#) B o Hom(C, A) = Hom(C, B) for Cy-coalgebras C
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Conclusion 35

—

Spoiler-Duplicator game comonads unify and generalize the use
of resource measures in finite model theory

These comonads are robustly defined, i.e. via a
model-comparison game or a forest cover/decomposition

PR;. extends this framework to link pathwidth and a restricted
conjunction fragment of k-variable logic 3TN},

Provides interesting avenues towards applying category theory
to complexity theory:

B has the PRy-lifting property for some k = CSP(B) € NL
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