Restricting Power: Pebble-relation comonad in finite model theory

Nihil Shah University of Oxford

July 12, 2021

Let σ be a set of relational symbols with positive arities, we can define a category of σ -structures $\mathcal{R}(\sigma)$:

- ▶ Objects are $\mathcal{A} = (A, \{R^{\mathcal{A}}\}_{R \in \sigma})$ where $R^{\mathcal{A}} \subseteq A^r$ for *r*-ary relation symbol *R*.
- Morphisms $f : \mathcal{A} \to \mathcal{B}$ are relation preserving set functions $f : \mathcal{A} \to \mathcal{B}$

$$R^{\mathcal{A}}(a_1,\ldots,a_r) \Rightarrow R^{\mathcal{B}}(f(a_1),\ldots,f(a_r))$$

• If there exists a morphism $f : \mathcal{A} \to \mathcal{B}$, we write $\mathcal{A} \to \mathcal{B}$

Category theorists look at structures "as they really are"; i.e. up to isomorphism $\mathcal{A} \cong \mathcal{B}$

Model theorists look at structures with "fuzzy glasses" imposed by a logic \mathcal{L} :

$$\mathcal{A} \equiv^{\mathcal{L}} \mathcal{B} := \forall \phi \in \mathcal{L}, \mathcal{A} \vDash \phi \Leftrightarrow \mathcal{B} \vDash \phi$$
$$\mathcal{A} \cong \mathcal{B} \Rightarrow \mathcal{A} \equiv^{\mathcal{L}} \mathcal{B}$$

Used to study what properties are inexpressible in \mathcal{L}

To show P inexpressible in \mathcal{L} , define \mathcal{A}, \mathcal{B} where $P(\mathcal{A})$ and not $P(\mathcal{B})$. Must show that $\mathcal{A} \equiv^{\mathcal{L}} \mathcal{B}$

Over finite structures, $\equiv^{\mathbf{FOL}}$ is the same as \cong

Finite model theorists look at structures with a "fuzzy phoropter" imposed by grading a logic:

- Quantifier rank $\leq n, QR_n$
- Restrict number of variables be $\leq k, \mathcal{V}^k$

$$\phi = \exists x_1 (\exists x_2 (E(x_1, x_2) \land \exists x_3 E(x_3, x_2)) \land \forall x_4 E(x_1, x_4))$$

 $\phi \in QR_3$ and $\phi \in \mathcal{V}^4$

To show P inexpressible in \mathcal{L} over the **finite**, define $\mathcal{A}_k, \mathcal{B}_k$ for every k where $P(\mathcal{A}_k)$ and not $P(\mathcal{B}_k)$. Must show that $\mathcal{A}_k \equiv^{\mathcal{L}_k} \mathcal{B}_k$

CSP: Find assignment of variables \mathcal{A} to a domain of values \mathcal{B} satisfying a set of constraints, which can be encoded as relations on \mathcal{B}

A CSP can be formulated in $\mathcal{R}(\sigma)$ as deciding if there exists a morphism $h: \mathcal{A} \to \mathcal{B}$

Non-uniform problem $\mathsf{CSP}(\mathcal{B})$: fixing the set of values \mathcal{B} and varying the variables \mathcal{A} .

In general, $\mathsf{CSP}(\mathcal{B})$ is NP-complete

Tractable cases of $\mathsf{CSP}(\mathcal{B})$ can be identified by considering approximations to homomorphism

Equivalence in a logic with parameter k approximates isomorphism:

$$\mathcal{A}\cong\mathcal{B}\Rightarrow\mathcal{A}\equiv^{\mathcal{L}_k}\mathcal{B}$$

Preservation in the existential-positive fragment is an approximation to homomorphism:

$$\mathcal{A} \to \mathcal{B} \Rightarrow \mathcal{A} \Rightarrow^{\exists^+ \mathcal{L}_k} \mathcal{B}$$
$$\mathcal{A} \Rightarrow^{\exists^+ \mathcal{L}_k} \mathcal{B} \Leftrightarrow \forall \phi \in \exists^+ \mathcal{L}_k, \mathcal{A} \vDash \phi \Rightarrow \mathcal{B} \vDash \phi$$

We will consider the existential-positive fragment of k-variable logic $\exists^+\mathcal{V}_k$

For all finite \mathcal{A} ,

$$\mathcal{A} \Rrightarrow^{\exists^+ \mathcal{V}^k} \mathcal{B}
ightarrow \mathcal{A}
ightarrow \mathcal{B}$$

then \mathcal{B} has k-treewidth duality

 $\mathcal B$ has k-treewidth duality $\Rightarrow \mathsf{CSP}(\mathcal B) \in \mathbf{PTIME}$

Proposition

The following are equivalent:

 $\blacktriangleright \mathcal{A} \Rrightarrow^{\exists^+ \mathcal{V}^k} \mathcal{B}$

 \blacktriangleright Duplicator has a winning strategy in a forth k -pebble game

• For all finite \mathcal{C} w/ treewidth $\langle k, \mathcal{C} \rightarrow \mathcal{A} \Rightarrow \mathcal{C} \rightarrow \mathcal{B}$

Forth k-pebble game

▶ Spoiler and Duplicator each have k pebbles. On each round of $\exists^+ \mathbf{Peb}_k(\mathcal{A}, \mathcal{B})$:

▶ Spoiler places his pebble $p \in \mathbf{k}$ on an element $a_i \in \mathcal{A}$

• If p was already placed, Spoiler moves the pebble.

► Duplicator places her corresponding pebble $p \in \mathbf{k}$ on $b_i \in \mathcal{B}$ Duplicator wins if

$$\gamma = \{(a, b) \mid p \in \mathbf{k} \le p \text{ pebbling } a \in \mathcal{A}, b \in \mathcal{B} \}$$

is a partial homomorphism

If Duplicator can always produce a winning move for any choice made Spoiler, than Duplicator has a winning strategy

Theorem ([KV90])

Duplicator has a winning strategy in $\exists^+ \mathbf{Peb}_k(\mathcal{A}, \mathcal{B})$ iff $\mathcal{A} \Rightarrow^{\exists^+ \mathcal{V}^k} \mathcal{B}$

Intuition:

$$\mathcal{A} \vDash \exists x_p \phi(x_p, \bar{y}) \Rightarrow \mathcal{A} \vDash \phi(a/x_p, \bar{y})$$

Spoiler places p on witness $a \in A$

Suppose Duplicator responds by putting p on $b \in B$

Partial homomorphism in winning condition \Rightarrow

$$\mathcal{B}\vDash \phi(b/x_p,\bar{y}) \Rightarrow \mathcal{B}\vDash \exists x_p \phi(x_p,\bar{y})$$

Intuitively, Spoiler is moving a k-sized window around the structure $\mathcal A$ during a play

Duplicator than has to choose a homomorphism from the k-sized window into $\mathcal B$

If Duplicator can't produce such a partial homomorphism than Spoiler wins

The k sized window is local 'view' of the structure

We can 'internalize' $\exists^+ \mathbf{Peb}_k$ game by encoding it as a comonad \mathbb{P}_k , for every k, over $\mathcal{R}(\sigma)$

Suprisingly: we are also able to define the combinatorial parameter treewidth using coalgebrs of \mathbb{P}_k

Given a σ -structure \mathcal{A} , we can create σ -structure on the set of Spoiler moves $\mathbb{P}_k A$ in $\exists^+ \mathbf{Peb}_k(\mathcal{A}, \cdot)$, i.e. non-empty sequences of pairs (p, a) where $p \in \mathbf{k} = \{1, \ldots, k\}$ and $a \in A$

Let
$$\varepsilon_{\mathcal{A}} : \mathbb{P}_k \mathcal{A} \to \mathcal{A}$$
 be $[(p_1, a_1), \dots, (p_n, a_n)] \mapsto a_n$ and
 $\pi_{\mathcal{A}} : \mathbb{P}_k \mathcal{A} \to \mathbf{k}$ be $[(p_1, a_1), \dots, (p_n, a_n)] \mapsto p_n$.

$$R^{\mathbb{P}_k\mathcal{A}}(s_1,\ldots,s_r) \Leftrightarrow s_i \sqsubseteq s_j \text{ or } s_j \sqsubseteq s_i \text{ for } i,j \in \mathbf{r}$$

and $\pi_{\mathcal{A}}(s_i)$ does not appear in $\mathsf{suffix}(s_i,s)$
where $s = \max(s_1,\ldots,s_r)$
and $R^{\mathcal{A}}(\varepsilon_{\mathcal{A}}(s_1),\ldots,\varepsilon_{\mathcal{A}}(s_r))$

For $f : \mathbb{P}_k \mathcal{A} \to \mathcal{B}$ define $f^* : \mathbb{P}_k \mathcal{A} \to \mathbb{P}_k \mathcal{B}$ recursively:

 $f^*(s[(p,a)]) = f^*(s)[f(s[(p,a)])]$

Pebbling comonad to game

- ► Functions $f : \mathbb{P}_k A \to B$ are Duplicator's strategies in $\exists^+ \mathbf{Peb}(\mathcal{A}, \mathcal{B})$
- Chose relations so that σ -morphisms $f : \mathbb{P}_k \mathcal{A} \to \mathcal{B}$ are Duplicator's winning strategies.
- Coextension $f^* : \mathbb{P}_k \mathcal{A} \to \mathbb{P}_k \mathcal{B}$ models history preservation of the game

Theorem ([ADW17])

The following are equivalent:

- 1. Duplicator has a winning strategy in $\exists^+ \mathbf{Peb}(\mathcal{A}, \mathcal{B})$
- 2. There exists a coKleisli morphism $f : \mathbb{P}_k \mathcal{A} \to \mathcal{B}$

Can be strengthened to a bijective correspondence using relative comonads and explicit equality in signature

Another characterization of this 'k-approximate homomorphism relation'

Proposition

The following are equivalent:

- $\blacktriangleright \mathcal{A} \Rrightarrow^{\exists^+ \mathcal{V}^k} \mathcal{B}$
- Duplicator has a winning strategy in $\exists^+ \mathbf{Peb}_k(\mathcal{A}, \mathcal{B})$
- ▶ For all finite C w/ treewidth < k, $C \to A \Rightarrow C \to B$
- There exists a Kleisli morphism $\mathbb{P}_k \mathcal{A} \to \mathcal{B}$

We want to use coalgebras of \mathbb{P}_k to define treewidth

Coalgebras are morphisms $\alpha : \mathcal{A} \to \mathbb{P}_k \mathcal{A}$ satisfying the equations:

$$\epsilon_{\mathcal{A}} \circ \alpha = \mathsf{id}_{\mathcal{A}} \qquad \mathbb{C}_k \alpha \circ \alpha = \delta_{\mathcal{A}} \circ \alpha$$

with $\delta_{\mathcal{A}} = \mathsf{id}_{\mathbb{P}_k \mathcal{A}}^* : \mathbb{P}_k \mathcal{A} \to \mathbb{P}_k \mathbb{P}_k \mathcal{A}$

We can define the Eilenberg-Moore category $\mathcal{EM}(\mathbb{P}_k)$:

- Objects are coalgebras $(\mathcal{A}, \alpha : \mathcal{A} \to \mathbb{P}_k \mathcal{A})$
- ► Morphisms are commuting squares:

$$egin{array}{ccc} \mathcal{A} & \stackrel{lpha}{\longrightarrow} \mathbb{P}_k \mathcal{A} \ f & & & & \downarrow \mathbb{P}_k f \ \mathcal{B} & \stackrel{eta}{\longrightarrow} \mathbb{P}_k \mathcal{B} \end{array}$$

For every structure \mathcal{A} , define the Gaifman graph $\mathcal{G}(\mathcal{A})$ w/vertices A and

 $a \frown a' \in \mathcal{G}(\mathcal{A}) \Leftrightarrow a = a' \text{ or } a, a' \text{ appear in some tuple of } R^{\mathcal{A}}$

Intuition: Treewidth $\mathsf{tw}(\mathcal{A})$ measures how far $\mathcal{G}(\mathcal{A})$ is from being a tree

Often implicit in dynamic programming algorithms, i.e $k\mbox{-}{\rm consistency}$ algorithms

Formally: Treewidth is the minimum width of a tree-decomposition of $\mathcal{G}(\mathcal{A})$

Definition

A tree decomposition of \mathcal{A} of width k is a triple $(T, \leq_T, \lambda : T \to \mathcal{P}A)$

- Every $a \in \mathcal{A}$ is in some node of T
- ▶ All the nodes containing $a \in \mathcal{A}$ form a subtree
- For every $a \frown a' \in \mathcal{G}(\mathcal{A}), \{a, a'\} \subseteq \lambda(x)$

$$\blacktriangleright k = \max\{|\lambda(x)|\}_{x \in T} - 1$$

Figure: Tree decomposition of width 3 for $\mathcal{G}(\mathcal{A})$

Figure: Tree decomposition of width 3 for $\mathcal{G}(\mathcal{A})$

We can define a category of k-pebble forest covers $\mathcal{F}(\sigma)^k$, where objects $(\mathcal{A}, \leq, p : \mathcal{A} \to \mathbf{k})$ satisfying:

▶ All elements below $a \in \mathcal{A}$ in \leq form a chain

• If
$$a \frown a' \in \mathcal{G}(\mathcal{A}), a \leq a' \text{ or } a' \leq a$$

• If $a \frown a'$ and $a \le a'$, then for all b with $a < b \le a'$, $p(a) \ne p(b)$

Morphisms are functions that preserve immediate successors in the order \leq and the pebbling function

 \mathbb{P}_k arises from the comonadic adjunction $U^k \dashv F^k$ where $U^k : \mathcal{F}(\sigma)^k \to \mathcal{R}(\sigma), \ F^k \mathcal{A} = (\mathbb{P}_k \mathcal{A}, \sqsubseteq, \pi_{\mathcal{A}})$

Theorem ([AM20]) The category of coalgebras $\mathcal{EM}(\mathbb{P}_k)$ is isomorphic to $\mathcal{F}(\sigma)^k$

Theorem ([ADW17, AS18]) The following are equivalent:

- 1. A has a tree decomposition of width < k
- 2. \mathcal{A} has a k-pebble forest cover, i.e. coalgebra $\mathcal{A} \to \mathbb{P}_k \mathcal{A}$

Let $\kappa^{\mathbb{C}}(\mathcal{A})$ be the least k such that there exists coalgebra $\mathcal{A} \to \mathbb{C}_k \mathcal{A}$

Corollary ([ADW17]) $\kappa^{\mathbb{P}}(\mathcal{A}) = tw(\mathcal{A}) + 1$

We say a tree decomposition (T, \leq, λ) of \mathcal{A} is a *path* decomposition if \leq is a linear order

Pathwidth $pw(\mathcal{A})$ is the minimum width of a path decomposition of \mathcal{A}

Closely linked to CSPs in **NLOGSPACE** analogous to treewidth's relationship to **PTIME**

Is there an analogous comonad to \mathbb{P}_k , but for pathwidth?

Given a σ -structure \mathcal{A} , we can create σ -structure $\mathbb{PR}_k\mathcal{A}$ on the set of pairs $([(p_1, a_1), \dots, (p_n, a_n)], i)$ with $i \in \mathbf{n}$

- $\blacktriangleright \ \varepsilon_{\mathcal{A}} : \mathbb{PR}_k \mathcal{A} \to \mathcal{A} \text{ be } ([(p_1, a_1), \dots, (p_n, a_n)], i) \mapsto a_i$
- $\blacktriangleright \ \pi_{\mathcal{A}} : \mathbb{PR}_k \mathcal{A} \to \mathbf{k} \text{ be } ([(p_1, a_1), \dots, (p_n, a_n)], i) \mapsto p_i.$
- For i < j, s(i, j] is the subsequence of s starting at i + 1and ending at j (inclusive)

$$R^{\mathbb{P}_k\mathcal{A}}((s,i_1),\ldots,(s,i_r)) \Leftrightarrow \pi_{\mathcal{A}}(s,i_j) \text{ does not appear in } s(i_j,m]$$

where $m = \max(i_1,\ldots,i_j)$
and $R^{\mathcal{A}}(\varepsilon_{\mathcal{A}}(s,i_1),\ldots,\varepsilon_{\mathcal{A}}(s,i_r))$

Let $s = [(p_1, a_1)], \dots, (p_n, a_n)] \in \mathbb{PR}_k \mathcal{A}$ and $f : \mathbb{PR}_k \mathcal{A} \to \mathcal{B}$

$$f^*(s,i) = [(p_1, f(s,1)), \dots, (p_n, f(s,n))], i)$$

We can define a subcategory $\mathcal{LF}(\sigma)^k$ of the k-pebble forest covers $\mathcal{F}(\sigma)^k$ where the forests are linear forests

$$\begin{split} \mathbb{P}\mathbb{R}_k \text{ arises from the comonadic adjunction } U^k \dashv L^k \text{ where } \\ U^k: \mathcal{LF}(\sigma)^k \to \mathcal{R}(\sigma), \ L^k \mathcal{A} = (\mathbb{P}\mathbb{R}_k \mathcal{A}, \leq^*, \pi_{\mathcal{A}}) \end{split}$$

$$(t,i) \leq^* (t',j) \Leftrightarrow t = t' \text{ and } i \leq j$$

Theorem ([AM20]) The category of coalgebras $\mathcal{EM}(\mathbb{PR}_k)$ is isomorphic to $\mathcal{LF}(\sigma)^k$

Theorem The following are equivalent:

1. A has a path decomposition of width < k

2. \mathcal{A} has a k-pebble linear forest cover, i.e. coalgebra $\mathcal{A} \to \mathbb{PR}_k \mathcal{A}$

Corollary $\kappa^{\mathbb{PR}}(\mathcal{A}) = pw(\mathcal{A}) + 1$

Definition ([Dal05])

Restricted conjunction fragment $\exists^+ \mathcal{N}_k \subseteq \exists^+ \mathcal{V}_k$ where conjunctions $\bigwedge \Psi$ have that Ψ :

• At most one formula in Ψ containing quantifiers has a free variable.

Theorem ([Dal05])

The following are equivalent:

 $\blacktriangleright \ \mathcal{A} \Rrightarrow^{\exists^+ \mathcal{N}^k} \mathcal{B}$

- ► Duplicator has a winning strategy in a k pebble relation game ∃⁺PebR_k(A, B)
- For all \mathcal{C} w/ pathwidth < k, $\mathcal{C} \rightarrow \mathcal{A} \Rightarrow \mathcal{C} \rightarrow \mathcal{B}$

The k pebble-relation game is cumbersome to state formally

- Spoiler chooses a at most k sized window on the structure A (as in the k-pebble game)
- ▶ Duplicator responds with a set of homomorphisms from that window into 𝔅 (non-determinism)
- Response set must extend some of the partial homomorphisms of her previous move
- Spoiler wins if Duplicator can only respond with the empty set

We can interpret elements of $\mathbb{PR}_k \mathcal{A}$ as Spoiler plays, in some new game

This produces a simpler equivalent game: preannounced or all-in-one k-pebble game

The pre-announced k-pebble game $\exists^+ \mathbf{PPeb}_k(\mathcal{A}, \mathcal{B})$ is played in one round:

• Spoiler chooses a list of k-pebble placements on \mathcal{A} :

$$s = [(p_1, a_1), \dots, (p_n, a_n)]$$

• Duplicator chooses a compatible list of k-pebble placements on \mathcal{B} :

$$t = [(p_1, b_1), \dots, (p_n, b_n)]$$

Duplicator wins if for every index $i \in \mathbf{n}$, the pairs of pebble placements in s(0, i] and t(0, i] form a partial homomorphism.

Stewart's all-in-one existential k-pebble game [Ste07]

Proposition

The following are equivalent:

- $\blacktriangleright \ \mathcal{A} \Rrightarrow^{\exists^+ \mathcal{N}^k} \mathcal{B}$
- Duplicator has a winning strategy in $\exists^+ \mathbf{PebR}_k(\mathcal{A}, \mathcal{B})$
- ▶ For all finite C w/ pathwidth < k, $C \to A \Rightarrow C \to B$
- There exists $f : \mathbb{PR}_k \mathcal{A} \to \mathcal{B}$
- Duplicator has a winning strategy in $\exists^+ \mathbf{PPeb}_k(\mathcal{A}, \mathcal{B})$

Definition

A structure \mathcal{B} has the \mathbb{C}_k -lifting property if for every structure \mathcal{A} :

$$\mathbb{C}_k\mathcal{A} o \mathcal{B} \Rightarrow \mathcal{A} o \mathcal{B}$$

 \mathcal{B} has k-treewidth duality iff \mathcal{B} has the \mathbb{P}_k -lifting property.

 \mathcal{B} has k-pathwidth duality iff \mathcal{B} has the \mathbb{PR}_k -lifting property.

 \mathcal{B} has k-treewidth duality for some $k \Rightarrow \mathsf{CSP}(\mathcal{B}) \in \mathbf{P}[\mathrm{DKV02}]$ (converse does not hold [Ats08])

 \mathcal{B} has k-pathwidth duality for some $k \Rightarrow \mathsf{CSP}(\mathcal{B}) \in \mathbf{NL}[\text{Dal05}]$ (converse open, but hard)

\mathbb{C}_k	Logic	$\kappa^{\mathbb{C}}$	$\rightarrow^{\mathbb{C}}_k$	$\leftrightarrow_k^{\mathbb{C}}$	$\cong_k^{\mathbb{C}}$
\mathbb{E}_k [AS18]	$\mathbf{FOL} \le k$	tree-depth	\checkmark	\checkmark	\checkmark
\mathbb{P}_k	k-variable logic	treewidth $+1$	\checkmark	\checkmark	\checkmark
[ADW17]					
\mathbb{M}_k [AS18]	$\mathbf{ML} \le k$ md $\leq k$	sync. tree-	\checkmark	\checkmark	\checkmark
		depth			
$\mathbb{G}_k^{\mathfrak{g}}$ [AM20]	\mathfrak{g} -guarded logic w/	guarded	\checkmark	\checkmark	?
	width $\leq k$	treewidth			
$\mathbb{H}_{n,k}$	k-variable logic w/ \mathbf{Q}_n -	<i>n</i> -ary general	\checkmark	\checkmark	\checkmark
[CD20]	quantifiers	treewidth			
\mathbb{PR}_k	<i>k</i> -variable logic	pathwidth $+1$	\checkmark	?	\checkmark
	restricted- \wedge				
\mathbb{LG}_k	k-conjunct guarded	hypertree-width	\checkmark	?	?
	logic				

Theorem

1. $\mathcal{A} \to_k^{\mathbb{C}} \mathcal{B} \Leftrightarrow \mathcal{A} \Rightarrow^{\exists^+ \mathcal{L}_k} \mathcal{B} \Leftrightarrow Duplicator wins \exists^+ \mathbf{G}_k(\mathcal{A}, \mathcal{B})$ 2. $\mathcal{A} \leftrightarrow_k^{\mathbb{C}} \mathcal{B} \Leftrightarrow \mathcal{A} \equiv^{\mathcal{L}_k} \mathcal{B} \Leftrightarrow Duplicator wins \mathbf{G}_k(\mathcal{A}, \mathcal{B})$ 3. $\mathcal{A} \cong_k^{\mathbb{C}} \mathcal{B} \Leftrightarrow \mathcal{A} \equiv^{\mathcal{L}_k(\#)} \mathcal{B} \Leftrightarrow Duplicator wins \# \mathbf{G}_k(\mathcal{A}, \mathcal{B})$ The $\to_k^{\mathbb{C}}$ and $\cong_k^{\mathbb{C}}$ arise from $\mathcal{K}(\mathbb{C}_k)$

The $\leftrightarrow_k^{\mathbb{C}}$ arises from a notion of open map bisimulation in the category of coalgebras over \mathbb{C}_k

All structures finite

Theorem ([Lov67]) $\mathcal{A} \cong \mathcal{B} \Leftrightarrow Hom(\mathcal{C}, \mathcal{A}) \cong Hom(\mathcal{C}, \mathcal{B}) \text{ for } \mathcal{C}$

Theorem ([Gro20]) $\mathcal{A} \equiv^{QR_n(\#)} \mathcal{B} \Leftrightarrow Hom(\mathcal{C}, \mathcal{A}) \cong Hom(\mathcal{C}, \mathcal{B}) \text{ for } \mathcal{C} w/td(C) \leq n$

Theorem ([Dv009]) $\mathcal{A} \equiv^{\mathcal{V}^{k}(\#)} \mathcal{B} \Leftrightarrow Hom(\mathcal{C}, \mathcal{A}) \cong Hom(\mathcal{C}, \mathcal{B}) \text{ for } \mathcal{C} w/tw(\mathcal{C}) < k,$ Theorem ([DJR21]) $\mathcal{A} = \int_{\mathcal{U}}^{\mathcal{U}(\#)} \mathcal{B} \oplus \mathcal{U} = \int_{\mathcal{U}}^{\mathcal{U}(\#)} \mathcal{U} = \int_{\mathcal{U}}^{\mathcal{U}(\#)} \mathcal{U} \oplus \mathcal{U} \oplus \mathcal{U} = \int_{\mathcal{U}}^{\mathcal{U}(\#)} \mathcal{U} \oplus \mathcal{U} \oplus \mathcal{U} = \int_{\mathcal{U}}^{\mathcal{U}(\#)} \mathcal{U} \oplus \mathcal{U} \oplus \mathcal{U} \oplus \mathcal{U} = \int_{\mathcal{U}}^{\mathcal{U}(\#)} \mathcal{U} \oplus \mathcal{U}$

 $\mathcal{A} \equiv^{\mathcal{L}_k(\#)} \mathcal{B} \Leftrightarrow \operatorname{Hom}(\mathcal{C}, \mathcal{A}) \cong \operatorname{Hom}(\mathcal{C}, \mathcal{B}) \text{ for } \mathbb{C}_k \text{-coalgebras } \mathcal{C}$

Spoiler-Duplicator game comonads unify and generalize the use of resource measures in finite model theory

These comonads are robustly defined, i.e. via a model-comparison game or a forest cover/decomposition

 \mathbb{PR}_k extends this framework to link pathwidth and a restricted conjunction fragment of k-variable logic $\exists^+ \mathcal{N}_k$

Provides interesting avenues towards applying category theory to complexity theory:

 \mathcal{B} has the \mathbb{PR}_k -lifting property for some $k \Rightarrow \mathsf{CSP}(\mathcal{B}) \in \mathbf{NL}$

 Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in finite model theory. In Logic in Computer Science (LICS), 2017 32nd Annual ACM/IEEE Symposium on, pages 1–12. IEEE, 2017.

- Samson Abramsky and Dan Marsden. Comonadic semantics for guarded fragments, 2020.
- Samson Abramsky and Nihil Shah. Relating structure and power: Comonadic semantics for computational resources.

In 27th EACSL Annual Conference on Computer Science Logic, CSL 2018, September 4-7, 2018, Birmingham, UK, pages 2:1–2:17, 2018.

- Albert Atserias.
 On digraph coloring problems and treewidth duality. European Journal of Combinatorics, 29:796–820, 5 2008.
- Adam Ó Conghaile and Anuj Dawar. <u>Game comonads & generalised quantifiers, 2020.</u>

Victor Dalmau.

Linear Datalog and Bounded Path Duality of Relational Structures.

Logical Methods in Computer Science, 1(1):5, April 2005. arXiv: cs/0504027.

- Anuj Dawar, Tomáš Jakl, and Luca Reggio. Lovász-type theorems and game comonads, 2021.
- Víctor Dalmau, Phokion G Kolaitis, and Moshe Y Vardi. Constraint satisfaction, bounded treewidth, and finite-variable logics.

In International Conference on Principles and Practice of Constraint Programming, pages 310–326. Springer, 2002.

Zdeněk Dvořák.

On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory, 64(4):330–342, November 2009.

Martin Grohe.

Counting bounded tree depth homomorphisms.

In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, July 2020.

Phokion G Kolaitis and Moshe Y Vardi. On the expressive power of Datalog: tools and a case study. In Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pages 61–71. ACM, 1990.

László Lovász.

Operations with structures.

Acta Mathematica Academiae Scientiarum Hungarica, 18(3-4):321–328, 1967.

Iain A Stewart.

Bounded pathwidth duality and uniform constraint satisfaction problems. 2007.

