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The setting 2

Let σ be a set of relational symbols with positive arities, we can
define a category of σ-structures R(σ):

I Objects are A = (A, {RA}R∈σ) where RA ⊆ Ar for r-ary
relation symbol R.

I Morphisms f : A → B are relation preserving set functions
f : A→ B

RA(a1, . . . , ar)⇒ RB(f(a1), . . . , f(ar))

I If there exists a morphism f : A → B, we write A → B



Category theory vs. model theory 3

Category theorists look at structures “as they really are”; i.e.
up to isomorphism A ∼= B

Model theorists look at structures with “fuzzy glasses” imposed
by a logic L:

A ≡L B := ∀φ ∈ L,A � φ⇔ B � φ

A ∼= B ⇒ A ≡L B

Used to study what properties are inexpressible in L

To show P inexpressible in L, define A,B where P (A) and not
P (B). Must show that A ≡L B



Finite model theory 4

Over finite structures, ≡FOL is the same as ∼=

Finite model theorists look at structures with a “fuzzy
phoropter” imposed by grading a logic:

I Quantifier rank ≤ n, QRn

I Restrict number of variables be ≤ k, Vk

φ = ∃x1(∃x2(E(x1, x2) ∧ ∃x3E(x3, x2)) ∧ ∀x4E(x1, x4))

φ ∈ QR3 and φ ∈ V4

To show P inexpressible in L over the finite, define Ak,Bk for
every k where P (Ak) and not P (Bk). Must show that
Ak ≡Lk Bk



Constraint satisfaction problems 5

CSP: Find assignment of variables A to a domain of values B
satisfying a set of constraints, which can be encoded as relations
on B

A CSP can be formulated in R(σ) as deciding if there exists a
morphism h : A → B

Non-uniform problem CSP(B): fixing the set of values B and
varying the variables A.

In general, CSP(B) is NP-complete

Tractable cases of CSP(B) can be identified by considering
approximations to homomorphism



Approximating homomorphisms 6

Equivalence in a logic with parameter k approximates
isomorphism:

A ∼= B ⇒ A ≡Lk B

Preservation in the existential-positive fragment is an
approximation to homomorphism:

A → B ⇒ AV∃+Lk B

AV∃+Lk B ⇔ ∀φ ∈ ∃+Lk,A � φ⇒ B � φ

We will consider the existential-positive fragment of k-variable
logic ∃+Vk



Connection to complexity of CSP 7

For all finite A,

AV∃+Vk B → A → B

then B has k-treewidth duality

B has k-treewidth duality ⇒ CSP(B) ∈ PTIME

Proposition

The following are equivalent:

I AV∃+Vk B
I Duplicator has a winning strategy in a forth k -pebble game

I For all finite C w/ treewidth < k, C → A ⇒ C → B



Forth k-pebble game 8

I Spoiler and Duplicator each have k pebbles. On each round
of ∃+Pebk(A,B):
I Spoiler places his pebble p ∈ k on an element ai ∈ A

I If p was already placed, Spoiler moves the pebble.

I Duplicator places her corresponding pebble p ∈ k on bi ∈ B
Duplicator wins if

γ = {(a, b) | p ∈ k w/ p pebbling a ∈ A, b ∈ B }

is a partial homomorphism

If Duplicator can always produce a winning move for any choice
made Spoiler, than Duplicator has a winning strategy



Theorem ([KV90])

Duplicator has a winning strategy in ∃+Pebk(A,B) iff

AV∃+Vk B
Intuition:

A � ∃xpφ(xp, ȳ)⇒ A � φ(a/xp, ȳ)

Spoiler places p on witness a ∈ A

Suppose Duplicator responds by putting p on b ∈ B

Partial homomorphism in winning condition ⇒

B � φ(b/xp, ȳ)⇒ B � ∃xpφ(xp, ȳ)



Forth k-pebble game 10

Intuitively, Spoiler is moving a k-sized window around the
structure A during a play

Duplicator than has to choose a homomorphism from the
k-sized window into B

If Duplicator can’t produce such a partial homomorphism than
Spoiler wins

The k sized window is local ‘view’ of the structure



We can ‘internalize’ ∃+Pebk game by encoding it as a comonad
Pk, for every k, over R(σ)

Suprisingly: we are also able to define the combinatorial
parameter treewidth using coalgebrs of Pk



Pebbling comonad [ADW17, AS18] 12

Given a σ-structure A, we can create σ-structure on the set of
Spoiler moves PkA in ∃+Pebk(A, ·), i.e. non-empty sequences
of pairs (p, a) where p ∈ k = {1, . . . , k} and a ∈ A

Let εA : PkA → A be [(p1, a1), . . . , (pn, an)] 7→ an and
πA : PkA → k be [(p1, a1), . . . , (pn, an)] 7→ pn.

RPkA(s1, . . . , sr)⇔ si v sj or sj v si for i, j ∈ r

and πA(si) does not appear in suffix(si, s)

where s = max(s1, . . . , sr)

and RA(εA(s1), . . . , εA(sr))

For f : PkA → B define f∗ : PkA → PkB recursively:

f∗(s[(p, a)]) = f∗(s)[f(s[(p, a)])]



Pebbling comonad to game 13

I Functions f : PkA→ B are Duplicator’s strategies in
∃+Peb(A,B)

I Chose relations so that σ-morphisms f : PkA → B are
Duplicator’s winning strategies.

I Coextension f∗ : PkA → PkB models history preservation
of the game

Theorem ([ADW17])

The following are equivalent:

1. Duplicator has a winning strategy in ∃+Peb(A,B)

2. There exists a coKleisli morphism f : PkA → B

Can be strengthened to a bijective correspondence using
relative comonads and explicit equality in signature



Another characterization of this ‘k-approximate homomorphism
relation’

Proposition

The following are equivalent:

I AV∃+Vk B
I Duplicator has a winning strategy in ∃+Pebk(A,B)

I For all finite C w/ treewidth < k, C → A ⇒ C → B
I There exists a Kleisli morphism PkA → B



Eilenberg-Moore category of coalgebras 15

We want to use coalgebras of Pk to define treewidth

Coalgebras are morphisms α : A → PkA satisfying the
equations:

εA ◦ α = idA Ckα ◦ α = δA ◦ α

with δA = id∗PkA : PkA → PkPkA

We can define the Eilenberg-Moore category EM(Pk):
I Objects are coalgebras (A, α : A → PkA)

I Morphisms are commuting squares:

A PkA

B PkB

α

f Pkf

β



Treewidth 16

For every structure A, define the Gaifman graph G(A) w/
vertices A and

a _ a′ ∈ G(A)⇔ a = a′ or a, a′ appear in some tuple of RA

Intuition: Treewidth tw(A) measures how far G(A) is from
being a tree

Often implicit in dynamic programming algorithms, i.e
k-consistency algorithms

Formally: Treewidth is the minimum width of a
tree-decomposition of G(A)



Tree decomposition 17

Definition
A tree decomposition of A of width k is a triple
(T,≤T , λ : T → PA)

I Every a ∈ A is in some node of T

I All the nodes containing a ∈ A form a subtree

I For every a _ a′ ∈ G(A), {a, a′} ⊆ λ(x)

I k = max{|λ(x)|}x∈T − 1
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Treewidth and Pk 19

We can define a category of k-pebble forest covers F(σ)k, where
objects (A,≤, p : A → k) satisfying:

I All elements below a ∈ A in ≤ form a chain

I If a _ a′ ∈ G(A), a ≤ a′ or a′ ≤ a
I If a _ a′ and a ≤ a′, then for all b with a < b ≤ a′,
p(a) 6= p(b)

Morphisms are functions that preserve immediate successors in
the order ≤ and the pebbling function



Pk arises from the comonadic adjunction Uk a F k where
Uk : F(σ)k → R(σ), F kA = (PkA,v, πA)

Theorem ([AM20])

The category of coalgebras EM(Pk) is isomorphic to F(σ)k



Theorem ([ADW17, AS18])

The following are equivalent:

1. A has a tree decomposition of width < k

2. A has a k-pebble forest cover, i.e. coalgebra A → PkA

Let κC(A) be the least k such that there exists coalgebra
A → CkA

Corollary ([ADW17])

κP(A) = tw(A) + 1



What about pathwidth? 22

We say a tree decomposition (T,≤, λ) of A is a path
decomposition if ≤ is a linear order

Pathwidth pw(A) is the minimum width of a path
decomposition of A

Closely linked to CSPs in NLOGSPACE analogous to
treewidth’s relationship to PTIME

Is there an analogous comonad to Pk, but for pathwidth?



Pebble-relation comonad 23

Given a σ-structure A, we can create σ-structure PRkA on the
set of pairs ([(p1, a1), . . . , (pn, an)], i) with i ∈ n

I εA : PRkA → A be ([(p1, a1), . . . , (pn, an)], i) 7→ ai

I πA : PRkA → k be ([(p1, a1), . . . , (pn, an)], i) 7→ pi.

I For i < j, s(i, j] is the subsequence of s starting at i+ 1
and ending at j (inclusive)

RPkA((s, i1), . . . , (s, ir))⇔ πA(s, ij) does not appear in s(ij ,m]

where m = max(i1, . . . , ij)

and RA(εA(s, i1), . . . , εA(s, ir))

Let s = [(p1, a1)], . . . , (pn, an)] ∈ PRkA and f : PRkA → B

f∗(s, i) = [(p1, f(s, 1)), . . . , (pn, f(s, n))], i)



Pathwidth and PRk 24

We can define a subcategory LF(σ)k of the k-pebble forest
covers F(σ)k where the forests are linear forests

PRk arises from the comonadic adjunction Uk a Lk where
Uk : LF(σ)k → R(σ), LkA = (PRkA,≤∗, πA)

(t, i) ≤∗ (t′, j)⇔ t = t′ and i ≤ j

Theorem ([AM20])

The category of coalgebras EM(PRk) is isomorphic to LF(σ)k



Theorem
The following are equivalent:

1. A has a path decomposition of width < k

2. A has a k-pebble linear forest cover, i.e. coalgebra
A → PRkA

Corollary

κPR(A) = pw(A) + 1



What about the logic? 26

Definition ([Dal05])

Restricted conjunction fragment ∃+Nk ⊆ ∃+Vk where
conjunctions

∧
Ψ have that Ψ:

I At most one formula in Ψ containing quantifiers has a free
variable.

Theorem ([Dal05])

The following are equivalent:

I AV∃+N k B
I Duplicator has a winning strategy in a k pebble relation

game ∃+PebRk(A,B)

I For all C w/ pathwidth < k , C → A ⇒ C → B



Forth k pebble-relation game 27

The k pebble-relation game is cumbersome to state formally

I Spoiler chooses a at most k sized window on the structure
A (as in the k-pebble game)

I Duplicator responds with a set of homomorphisms from
that window into B (non-determinism)

I Response set must extend some of the partial
homomorphisms of her previous move

I Spoiler wins if Duplicator can only respond with the empty
set



An easier game 28

We can interpret elements of PRkA as Spoiler plays, in some
new game

This produces a simpler equivalent game: preannounced or
all-in-one k-pebble game



Pre-announced existential k-pebble game 29

The pre-announced k-pebble game ∃+PPebk(A,B) is played in
one round:

I Spoiler chooses a list of k-pebble placements on A:

s = [(p1, a1), . . . , (pn, an)]

I Duplicator chooses a compatible list of k-pebble
placements on B:

t = [(p1, b1), . . . , (pn, bn)]

Duplicator wins if for every index i ∈ n, the pairs of pebble
placements in s(0, i] and t(0, i] form a partial homomorphism.

Stewart’s all-in-one existential k-pebble game [Ste07]



PRk power theorem 30

Proposition

The following are equivalent:

I AV∃+N k B
I Duplicator has a winning strategy in ∃+PebRk(A,B)

I For all finite C w/ pathwidth < k, C → A ⇒ C → B
I There exists f : PRkA → B
I Duplicator has a winning strategy in ∃+PPebk(A,B)



Bounded parameter duality 31

Definition
A structure B has the Ck-lifting property if for every structure
A:

CkA → B ⇒ A → B

B has k-treewidth duality iff B has the Pk-lifting property.

B has k-pathwidth duality iff B has the PRk-lifting property.

B has k-treewidth duality for some k ⇒ CSP(B) ∈ P[DKV02]
(converse does not hold [Ats08])

B has k-pathwidth duality for some k ⇒ CSP(B) ∈ NL[Dal05]
(converse open, but hard)



Summary table 32

Ck Logic κC →C
k ↔C

k
∼=C
k

Ek [AS18] FOL w/ qr ≤ k tree-depth X X X
Pk
[ADW17]

k-variable logic treewidth +1 X X X

Mk [AS18] ML w/ md ≤ k sync. tree-
depth

X X X

Gg
k [AM20] g-guarded logic w/

width ≤ k
guarded
treewidth

X X ?

Hn,k

[CD20]
k-variable logic w/ Qn-
quantifiers

n-ary general
treewidth

X X X

PRk k-variable logic
restricted-∧

pathwidth +1 X ? X

LGk k-conjunct guarded
logic

hypertree-width X ? ?



Morphism power theorems 33

Theorem

1. A →C
k B ⇔ AV∃

+Lk B ⇔ Duplicator wins ∃+Gk(A,B)

2. A ↔C
k B ⇔ A ≡Lk B ⇔ Duplicator wins Gk(A,B)

3. A ∼=C
k B ⇔ A ≡Lk(#) B ⇔ Duplicator wins #Gk(A,B)

The →C
k and ∼=C

k arise from K(Ck)

The ↔C
k arises from a notion of open map bisimulation in the

category of coalgebras over Ck



Restricted class Lovász result 34

All structures finite

Theorem ([Lov67])

A ∼= B ⇔ Hom(C,A) ∼= Hom(C,B) for C

Theorem ([Gro20])

A ≡QRn(#) B ⇔ Hom(C,A) ∼= Hom(C,B) for C w/ td(C) ≤ n

Theorem ([Dvo09])

A ≡Vk(#) B ⇔ Hom(C,A) ∼= Hom(C,B) for C w/ tw(C) < k,

Theorem ([DJR21])

A ≡Lk(#) B ⇔ Hom(C,A) ∼= Hom(C,B) for Ck-coalgebras C



Conclusion 35

Spoiler-Duplicator game comonads unify and generalize the use
of resource measures in finite model theory

These comonads are robustly defined, i.e. via a
model-comparison game or a forest cover/decomposition

PRk extends this framework to link pathwidth and a restricted
conjunction fragment of k-variable logic ∃+Nk

Provides interesting avenues towards applying category theory
to complexity theory:

B has the PRk-lifting property for some k ⇒ CSP(B) ∈ NL
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