# Restricting Power: Pebble-relation comonad in finite model theory 



Nihil Shah
University of Oxford

$$
\text { July 12, } 2021
$$

Let $\sigma$ be a set of relational symbols with positive arities, we can define a category of $\sigma$-structures $\mathcal{R}(\sigma)$ :

- Objects are $\mathcal{A}=\left(A,\left\{R^{\mathcal{A}}\right\}_{R \in \sigma}\right)$ where $R^{\mathcal{A}} \subseteq A^{r}$ for $r$-ary relation symbol $R$.
- Morphisms $f: \mathcal{A} \rightarrow \mathcal{B}$ are relation preserving set functions $f: A \rightarrow B$

$$
R^{\mathcal{A}}\left(a_{1}, \ldots, a_{r}\right) \Rightarrow R^{\mathcal{B}}\left(f\left(a_{1}\right), \ldots, f\left(a_{r}\right)\right)
$$

- If there exists a morphism $f: \mathcal{A} \rightarrow \mathcal{B}$, we write $\mathcal{A} \rightarrow \mathcal{B}$

Category theorists look at structures "as they really are"; i.e. up to isomorphism $\mathcal{A} \cong \mathcal{B}$

Model theorists look at structures with "fuzzy glasses" imposed by a logic $\mathcal{L}$ :

$$
\begin{gathered}
\mathcal{A} \equiv{ }^{\mathcal{L}} \mathcal{B}:=\forall \phi \in \mathcal{L}, \mathcal{A} \vDash \phi \Leftrightarrow \mathcal{B} \vDash \phi \\
\mathcal{A} \cong \mathcal{B} \Rightarrow \mathcal{A} \equiv \mathcal{L} \mathcal{B}
\end{gathered}
$$

Used to study what properties are inexpressible in $\mathcal{L}$
To show $P$ inexpressible in $\mathcal{L}$, define $\mathcal{A}, \mathcal{B}$ where $P(\mathcal{A})$ and not $P(\mathcal{B})$. Must show that $\mathcal{A} \equiv{ }^{\mathcal{L}} \mathcal{B}$

Over finite structures, $\equiv{ }^{\text {FOL }}$ is the same as $\cong$
Finite model theorists look at structures with a "fuzzy phoropter" imposed by grading a logic:

- Quantifier rank $\leq n, Q R_{n}$
- Restrict number of variables be $\leq k, \mathcal{V}^{k}$

$$
\phi=\exists x_{1}\left(\exists x_{2}\left(E\left(x_{1}, x_{2}\right) \wedge \exists x_{3} E\left(x_{3}, x_{2}\right)\right) \wedge \forall x_{4} E\left(x_{1}, x_{4}\right)\right)
$$

$\phi \in Q R_{3}$ and $\phi \in \mathcal{V}^{4}$

To show $P$ inexpressible in $\mathcal{L}$ over the finite, define $\mathcal{A}_{k}, \mathcal{B}_{k}$ for every $k$ where $P\left(\mathcal{A}_{k}\right)$ and not $P\left(\mathcal{B}_{k}\right)$. Must show that $\mathcal{A}_{k} \equiv{ }^{\mathcal{L}_{k}} \mathcal{B}_{k}$

CSP: Find assignment of variables $\mathcal{A}$ to a domain of values $\mathcal{B}$ satisfying a set of constraints, which can be encoded as relations on $\mathcal{B}$

A CSP can be formulated in $\mathcal{R}(\sigma)$ as deciding if there exists a morphism $h: \mathcal{A} \rightarrow \mathcal{B}$

Non-uniform problem $\operatorname{CSP}(\mathcal{B})$ : fixing the set of values $\mathcal{B}$ and varying the variables $\mathcal{A}$.

In general, $\operatorname{CSP}(\mathcal{B})$ is NP-complete
Tractable cases of $\operatorname{CSP}(\mathcal{B})$ can be identified by considering approximations to homomorphism

## Approximating homomorphisms

Equivalence in a logic with parameter $k$ approximates isomorphism:

$$
\mathcal{A} \cong \mathcal{B} \Rightarrow \mathcal{A} \equiv^{\mathcal{L}_{k}} \mathcal{B}
$$

Preservation in the existential-positive fragment is an approximation to homomorphism:

$$
\begin{gathered}
\mathcal{A} \rightarrow \mathcal{B} \Rightarrow \mathcal{A} \Rightarrow^{\exists+\mathcal{L}_{k}} \mathcal{B} \\
\mathcal{A} \Rightarrow^{\exists+\mathcal{L}_{k}} \mathcal{B} \Leftrightarrow \forall \phi \in \exists^{+} \mathcal{L}_{k}, \mathcal{A} \vDash \phi \Rightarrow \mathcal{B} \vDash \phi
\end{gathered}
$$

We will consider the existential-positive fragment of $k$-variable $\operatorname{logic} \exists^{+} \mathcal{V}_{k}$

For all finite $\mathcal{A}$,

$$
\mathcal{A} \Rightarrow^{\exists^{+} \mathcal{V}^{k}} \mathcal{B} \rightarrow \mathcal{A} \rightarrow \mathcal{B}
$$

then $\mathcal{B}$ has $k$-treewidth duality
$\mathcal{B}$ has $k$-treewidth duality $\Rightarrow \operatorname{CSP}(\mathcal{B}) \in \mathbf{P T I M E}$
Proposition
The following are equivalent:

- $\mathcal{A} \Rightarrow \Rightarrow^{\exists+\mathcal{V}^{k}} \mathcal{B}$
- Duplicator has a winning strategy in a forth $k$-pebble game
- For all finite $\mathcal{C} w /$ treewidth $<k, \mathcal{C} \rightarrow \mathcal{A} \Rightarrow \mathcal{C} \rightarrow \mathcal{B}$
- Spoiler and Duplicator each have $k$ pebbles. On each round of $\exists^{+} \operatorname{Peb}_{k}(\mathcal{A}, \mathcal{B})$ :
- Spoiler places his pebble $p \in \mathbf{k}$ on an element $a_{i} \in \mathcal{A}$
- If $p$ was already placed, Spoiler moves the pebble.
- Duplicator places her corresponding pebble $p \in \mathbf{k}$ on $b_{i} \in \mathcal{B}$ Duplicator wins if

$$
\gamma=\{(a, b) \mid p \in \mathbf{k} \mathrm{w} / p \text { pebbling } a \in \mathcal{A}, b \in \mathcal{B}\}
$$

is a partial homomorphism
If Duplicator can always produce a winning move for any choice made Spoiler, than Duplicator has a winning strategy

Theorem ([KV90])
Duplicator has a winning strategy in $\exists^{+} \mathbf{P e b}_{k}(\mathcal{A}, \mathcal{B})$ iff $\mathcal{A} \Rightarrow{ }^{\exists+\mathcal{V}^{k}} \mathcal{B}$
Intuition:

$$
\mathcal{A} \vDash \exists x_{p} \phi\left(x_{p}, \bar{y}\right) \Rightarrow \mathcal{A} \vDash \phi\left(a / x_{p}, \bar{y}\right)
$$

Spoiler places $p$ on witness $a \in A$
Suppose Duplicator responds by putting $p$ on $b \in B$
Partial homomorphism in winning condition $\Rightarrow$

$$
\mathcal{B} \vDash \phi\left(b / x_{p}, \bar{y}\right) \Rightarrow \mathcal{B} \vDash \exists x_{p} \phi\left(x_{p}, \bar{y}\right)
$$

Intuitively, Spoiler is moving a $k$-sized window around the structure $\mathcal{A}$ during a play

Duplicator than has to choose a homomorphism from the $k$-sized window into $\mathcal{B}$

If Duplicator can't produce such a partial homomorphism than Spoiler wins

The $k$ sized window is local 'view' of the structure

We can 'internalize' $\exists^{+} \mathbf{P e b}_{k}$ game by encoding it as a comonad $\mathbb{P}_{k}$, for every $k$, over $\mathcal{R}(\sigma)$

Suprisingly: we are also able to define the combinatorial parameter treewidth using coalgebrs of $\mathbb{P}_{k}$

Given a $\sigma$-structure $\mathcal{A}$, we can create $\sigma$-structure on the set of Spoiler moves $\mathbb{P}_{k} A$ in $\exists^{+} \operatorname{Peb}_{k}(\mathcal{A}, \cdot)$, i.e. non-empty sequences of pairs $(p, a)$ where $p \in \mathbf{k}=\{1, \ldots, k\}$ and $a \in A$

Let $\varepsilon_{\mathcal{A}}: \mathbb{P}_{k} \mathcal{A} \rightarrow \mathcal{A}$ be $\left[\left(p_{1}, a_{1}\right), \ldots,\left(p_{n}, a_{n}\right)\right] \mapsto a_{n}$ and $\pi_{\mathcal{A}}: \mathbb{P}_{k} \mathcal{A} \rightarrow \mathbf{k}$ be $\left[\left(p_{1}, a_{1}\right), \ldots,\left(p_{n}, a_{n}\right)\right] \mapsto p_{n}$.

$$
\begin{aligned}
& R^{\mathbb{P}_{k} \mathcal{A}}\left(s_{1}, \ldots, s_{r}\right) \Leftrightarrow s_{i} \sqsubseteq s_{j} \text { or } s_{j} \sqsubseteq s_{i} \text { for } i, j \in \mathbf{r} \\
& \quad \text { and } \pi_{\mathcal{A}}\left(s_{i}\right) \text { does not appear in } \operatorname{suffix}\left(s_{i}, s\right) \\
& \quad \text { where } s=\max \left(s_{1}, \ldots, s_{r}\right) \\
& \quad \text { and } R^{\mathcal{A}}\left(\varepsilon_{\mathcal{A}}\left(s_{1}\right), \ldots, \varepsilon_{\mathcal{A}}\left(s_{r}\right)\right)
\end{aligned}
$$

For $f: \mathbb{P}_{k} \mathcal{A} \rightarrow \mathcal{B}$ define $f^{*}: \mathbb{P}_{k} \mathcal{A} \rightarrow \mathbb{P}_{k} \mathcal{B}$ recursively:

$$
f^{*}(s[(p, a)])=f^{*}(s)[f(s[(p, a)])]
$$

- Functions $f: \mathbb{P}_{k} A \rightarrow B$ are Duplicator's strategies in $\exists^{+} \operatorname{Peb}(\mathcal{A}, \mathcal{B})$
- Chose relations so that $\sigma$-morphisms $f: \mathbb{P}_{k} \mathcal{A} \rightarrow \mathcal{B}$ are Duplicator's winning strategies.
- Coextension $f^{*}: \mathbb{P}_{k} \mathcal{A} \rightarrow \mathbb{P}_{k} \mathcal{B}$ models history preservation of the game

Theorem ([ADW17])
The following are equivalent:

1. Duplicator has a winning strategy in $\exists^{+} \operatorname{Peb}(\mathcal{A}, \mathcal{B})$
2. There exists a coKleisli morphism $f: \mathbb{P}_{k} \mathcal{A} \rightarrow \mathcal{B}$

Can be strengthened to a bijective correspondence using relative comonads and explicit equality in signature

Another characterization of this ' k -approximate homomorphism relation'

## Proposition

The following are equivalent:

- $\mathcal{A} \Rightarrow{ }^{\exists+\mathcal{V}^{k}} \mathcal{B}$
- Duplicator has a winning strategy in $\exists^{+} \operatorname{Peb}_{k}(\mathcal{A}, \mathcal{B})$
- For all finite $\mathcal{C} w /$ treewidth $<k, \mathcal{C} \rightarrow \mathcal{A} \Rightarrow \mathcal{C} \rightarrow \mathcal{B}$
- There exists a Kleisli morphism $\mathbb{P}_{k} \mathcal{A} \rightarrow \mathcal{B}$

We want to use coalgebras of $\mathbb{P}_{k}$ to define treewidth
Coalgebras are morphisms $\alpha: \mathcal{A} \rightarrow \mathbb{P}_{k} \mathcal{A}$ satisfying the equations:

$$
\epsilon_{\mathcal{A}} \circ \alpha=\operatorname{id}_{\mathcal{A}} \quad \mathbb{C}_{k} \alpha \circ \alpha=\delta_{\mathcal{A}} \circ \alpha
$$

with $\delta_{\mathcal{A}}=\operatorname{id}_{\mathbb{P}_{k} \mathcal{A}}^{*}: \mathbb{P}_{k} \mathcal{A} \rightarrow \mathbb{P}_{k} \mathbb{P}_{k} \mathcal{A}$
We can define the Eilenberg-Moore category $\mathcal{E M}\left(\mathbb{P}_{k}\right)$ :

- Objects are coalgebras $\left(\mathcal{A}, \alpha: \mathcal{A} \rightarrow \mathbb{P}_{k} \mathcal{A}\right)$
- Morphisms are commuting squares:

$$
\begin{array}{cc}
\mathcal{A} \xrightarrow{\alpha} \\
f \mid & \mathbb{P}_{k} \mathcal{A} \\
\underset{\sim}{\mathcal{B}} \xrightarrow{\beta} \xrightarrow{\mid \mathbb{P}_{k} f} & \underset{\mathbb{P}_{k} \mathcal{B}}{ }
\end{array}
$$

For every structure $\mathcal{A}$, define the Gaifman graph $\mathcal{G}(\mathcal{A})$ w/ vertices $A$ and
$a \frown a^{\prime} \in \mathcal{G}(\mathcal{A}) \Leftrightarrow a=a^{\prime}$ or $a, a^{\prime}$ appear in some tuple of $R^{\mathcal{A}}$
Intuition: Treewidth $\operatorname{tw}(\mathcal{A})$ measures how far $\mathcal{G}(\mathcal{A})$ is from being a tree

Often implicit in dynamic programming algorithms, i.e $k$-consistency algorithms

Formally: Treewidth is the minimum width of a tree-decomposition of $\mathcal{G}(\mathcal{A})$

## Definition

A tree decomposition of $\mathcal{A}$ of width $k$ is a triple
$\left(T, \leq_{T}, \lambda: T \rightarrow \mathcal{P} A\right)$

- Every $a \in \mathcal{A}$ is in some node of $T$
- All the nodes containing $a \in \mathcal{A}$ form a subtree
- For every $a \frown a^{\prime} \in \mathcal{G}(\mathcal{A}),\left\{a, a^{\prime}\right\} \subseteq \lambda(x)$
- $k=\max \{|\lambda(x)|\}_{x \in T}-1$



Figure: Tree decomposition of width 3 for $\mathcal{G}(\mathcal{A})$



Figure: Tree decomposition of width 3 for $\mathcal{G}(\mathcal{A})$

We can define a category of $k$-pebble forest covers $\mathcal{F}(\sigma)^{k}$, where objects $(\mathcal{A}, \leq, p: \mathcal{A} \rightarrow \mathbf{k})$ satisfying:

- All elements below $a \in \mathcal{A}$ in $\leq$ form a chain
- If $a \frown a^{\prime} \in \mathcal{G}(\mathcal{A}), a \leq a^{\prime}$ or $a^{\prime} \leq a$
- If $a \frown a^{\prime}$ and $a \leq a^{\prime}$, then for all $b$ with $a<b \leq a^{\prime}$, $p(a) \neq p(b)$
Morphisms are functions that preserve immediate successors in the order $\leq$ and the pebbling function
$\mathbb{P}_{k}$ arises from the comonadic adjunction $U^{k} \dashv F^{k}$ where $U^{k}: \mathcal{F}(\sigma)^{k} \rightarrow \mathcal{R}(\sigma), F^{k} \mathcal{A}=\left(\mathbb{P}_{k} \mathcal{A}, \sqsubseteq, \pi_{\mathcal{A}}\right)$

Theorem ([AM20])
The category of coalgebras $\mathcal{E M}\left(\mathbb{P}_{k}\right)$ is isomorphic to $\mathcal{F}(\sigma)^{k}$

## Theorem ([ADW17, AS18])

The following are equivalent:

1. $\mathcal{A}$ has a tree decomposition of width $<k$
2. $\mathcal{A}$ has a $k$-pebble forest cover, i.e. coalgebra $\mathcal{A} \rightarrow \mathbb{P}_{k} \mathcal{A}$

Let $\kappa^{\mathbb{C}}(\mathcal{A})$ be the least $k$ such that there exists coalgebra $\mathcal{A} \rightarrow \mathbb{C}_{k} \mathcal{A}$

Corollary ([ADW17])
$\kappa^{\mathbb{P}}(\mathcal{A})=\operatorname{tw}(\mathcal{A})+1$

We say a tree decomposition $(T, \leq, \lambda)$ of $\mathcal{A}$ is a path decomposition if $\leq$ is a linear order

Pathwidth $\operatorname{pw}(\mathcal{A})$ is the minimum width of a path decomposition of $\mathcal{A}$

Closely linked to CSPs in NLOGSPACE analogous to treewidth's relationship to PTIME

Is there an analogous comonad to $\mathbb{P}_{k}$, but for pathwidth?

Given a $\sigma$-structure $\mathcal{A}$, we can create $\sigma$-structure $\mathbb{P R}_{k} \mathcal{A}$ on the set of pairs $\left(\left[\left(p_{1}, a_{1}\right), \ldots,\left(p_{n}, a_{n}\right)\right], i\right)$ with $i \in \mathbf{n}$

- $\varepsilon_{\mathcal{A}}: \mathbb{P R}_{k} \mathcal{A} \rightarrow \mathcal{A}$ be $\left(\left[\left(p_{1}, a_{1}\right), \ldots,\left(p_{n}, a_{n}\right)\right], i\right) \mapsto a_{i}$
- $\pi_{\mathcal{A}}: \mathbb{P R}_{k} \mathcal{A} \rightarrow \mathbf{k}$ be $\left(\left[\left(p_{1}, a_{1}\right), \ldots,\left(p_{n}, a_{n}\right)\right], i\right) \mapsto p_{i}$.
- For $i<j, s(i, j]$ is the subsequence of $s$ starting at $i+1$ and ending at $j$ (inclusive)
$R^{\mathbb{P}_{k} \mathcal{A}}\left(\left(s, i_{1}\right), \ldots,\left(s, i_{r}\right)\right) \Leftrightarrow \pi_{\mathcal{A}}\left(s, i_{j}\right)$ does not appear in $s\left(i_{j}, m\right]$ where $m=\max \left(i_{1}, \ldots, i_{j}\right)$ and $R^{\mathcal{A}}\left(\varepsilon_{\mathcal{A}}\left(s, i_{1}\right), \ldots, \varepsilon_{\mathcal{A}}\left(s, i_{r}\right)\right)$

Let $\left.s=\left[\left(p_{1}, a_{1}\right)\right], \ldots,\left(p_{n}, a_{n}\right)\right] \in \mathbb{P R}_{k} \mathcal{A}$ and $f: \mathbb{P R}_{k} \mathcal{A} \rightarrow \mathcal{B}$

$$
\left.f^{*}(s, i)=\left[\left(p_{1}, f(s, 1)\right), \ldots,\left(p_{n}, f(s, n)\right)\right], i\right)
$$

We can define a subcategory $\mathcal{L \mathcal { F }}(\sigma)^{k}$ of the $k$-pebble forest covers $\mathcal{F}(\sigma)^{k}$ where the forests are linear forests
$\mathbb{P R}_{k}$ arises from the comonadic adjunction $U^{k} \dashv L^{k}$ where $U^{k}: \mathcal{L} \mathcal{F}(\sigma)^{k} \rightarrow \mathcal{R}(\sigma), L^{k} \mathcal{A}=\left(\mathbb{P R}_{k} \mathcal{A}, \leq^{*}, \pi_{\mathcal{A}}\right)$

$$
(t, i) \leq^{*}\left(t^{\prime}, j\right) \Leftrightarrow t=t^{\prime} \text { and } i \leq j
$$

Theorem ([AM20])
The category of coalgebras $\mathcal{E} \mathcal{M}\left(\mathbb{P R}_{k}\right)$ is isomorphic to $\mathcal{L F}(\sigma)^{k}$

Theorem
The following are equivalent:

1. $\mathcal{A}$ has a path decomposition of width $<k$
2. $\mathcal{A}$ has a $k$-pebble linear forest cover, i.e. coalgebra $\mathcal{A} \rightarrow \mathbb{P R}_{k} \mathcal{A}$

Corollary
$\kappa^{\mathbb{P R}}(\mathcal{A})=p w(\mathcal{A})+1$

## Definition ([Dal05])

Restricted conjunction fragment $\exists^{+} \mathcal{N}_{k} \subseteq \exists^{+} \mathcal{V}_{k}$ where conjunctions $\bigwedge \Psi$ have that $\Psi$ :

- At most one formula in $\Psi$ containing quantifiers has a free variable.

Theorem ([Dal05])
The following are equivalent:

- $\mathcal{A} \Rightarrow \exists^{\exists+\mathcal{N}^{k}} \mathcal{B}$
- Duplicator has a winning strategy in a $k$ pebble relation game $\exists^{+} \mathbf{P e b R}_{k}(\mathcal{A}, \mathcal{B})$
- For all $\mathcal{C} w /$ pathwidth $<k, \mathcal{C} \rightarrow \mathcal{A} \Rightarrow \mathcal{C} \rightarrow \mathcal{B}$

The $k$ pebble-relation game is cumbersome to state formally

- Spoiler chooses a at most $k$ sized window on the structure $\mathcal{A}$ (as in the $k$-pebble game)
- Duplicator responds with a set of homomorphisms from that window into $\mathcal{B}$ (non-determinism)
- Response set must extend some of the partial homomorphisms of her previous move
- Spoiler wins if Duplicator can only respond with the empty set

We can interpret elements of $\mathbb{P R}_{k} \mathcal{A}$ as Spoiler plays, in some new game

This produces a simpler equivalent game: preannounced or all-in-one $k$-pebble game

The pre-announced $k$-pebble game $\exists^{+} \mathbf{P P e b}_{k}(\mathcal{A}, \mathcal{B})$ is played in one round:

- Spoiler chooses a list of $k$-pebble placements on $\mathcal{A}$ :

$$
s=\left[\left(p_{1}, a_{1}\right), \ldots,\left(p_{n}, a_{n}\right)\right]
$$

- Duplicator chooses a compatible list of $k$-pebble placements on $\mathcal{B}$ :

$$
t=\left[\left(p_{1}, b_{1}\right), \ldots,\left(p_{n}, b_{n}\right)\right]
$$

Duplicator wins if for every index $i \in \mathbf{n}$, the pairs of pebble placements in $s(0, i]$ and $t(0, i]$ form a partial homomorphism.

Stewart's all-in-one existential $k$-pebble game [Ste07]

## Proposition

The following are equivalent:

- $\mathcal{A} \Rightarrow{ }^{\exists+\mathcal{N}^{k}} \mathcal{B}$
- Duplicator has a winning strategy in $\exists^{+} \operatorname{PebR}_{k}(\mathcal{A}, \mathcal{B})$
- For all finite $\mathcal{C} w /$ pathwidth $<k, \mathcal{C} \rightarrow \mathcal{A} \Rightarrow \mathcal{C} \rightarrow \mathcal{B}$
- There exists $f: \mathbb{P R}_{k} \mathcal{A} \rightarrow \mathcal{B}$
- Duplicator has a winning strategy in $\exists^{+} \operatorname{PPeb}_{k}(\mathcal{A}, \mathcal{B})$

Definition
A structure $\mathcal{B}$ has the $\mathbb{C}_{k}$-lifting property if for every structure $\mathcal{A}$ :

$$
\mathbb{C}_{k} \mathcal{A} \rightarrow \mathcal{B} \Rightarrow \mathcal{A} \rightarrow \mathcal{B}
$$

$\mathcal{B}$ has $k$-treewidth duality iff $\mathcal{B}$ has the $\mathbb{P}_{k}$-lifting property.
$\mathcal{B}$ has $k$-pathwidth duality iff $\mathcal{B}$ has the $\mathbb{P}_{k}$-lifting property.
$\mathcal{B}$ has $k$-treewidth duality for some $k \Rightarrow \operatorname{CSP}(\mathcal{B}) \in \mathbf{P}[\mathrm{DKV} 02]$ (converse does not hold [Ats08])
$\mathcal{B}$ has $k$-pathwidth duality for some $k \Rightarrow \operatorname{CSP}(\mathcal{B}) \in \operatorname{NL}[D a 105]$ (converse open, but hard)

| $\mathbb{C}_{k}$ | Logic | $\kappa^{\mathbb{C}}$ | $\rightarrow_{k}^{\mathbb{C}}$ | $\leftrightarrow_{k}^{\mathbb{C}}$ | $\cong_{k}^{\mathbb{C}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbb{E}_{k}$ [AS18] | FOL w/ qr $\leq k$ | tree-depth | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $\mathbb{P}_{k}$ <br> $[$ ADW17] | $k$-variable logic | treewidth +1 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $\mathbb{M}_{k}$ [AS18] | ML w/ md $\leq k$ | sync. tree- <br> depth | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $\mathbb{G}_{k}^{\mathfrak{g}}$ [AM20] | $\mathfrak{g}$-guarded logic w/ <br> width $\leq k$ | guarded <br> treewidth | $\checkmark$ | $\checkmark$ | $?$ |
| $\mathbb{H}_{n, k}$ <br> $[\mathrm{CD} 20]$ | $k$-variable logic w/ Q <br> $n^{-}$ <br> quantifiers | $n$-ary general <br> treewidth | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $\mathbb{P R}_{k}$ | $k$-variable logic <br> restricted-^ | pathwidth +1 | $\checkmark$ | $?$ | $\checkmark$ |
| $\mathbb{L} \mathbb{G}_{k}$ | $k$-conjunct guarded <br> logic | hypertree-width | $\checkmark$ | $?$ | $?$ |

Theorem

1. $\mathcal{A} \rightarrow{ }_{k}^{\mathbb{C}} \mathcal{B} \Leftrightarrow \mathcal{A} \Rightarrow{ }^{\exists+} \mathcal{L}_{k} \mathcal{B} \Leftrightarrow$ Duplicator wins $\exists^{+} \mathbf{G}_{k}(\mathcal{A}, \mathcal{B})$
2. $\mathcal{A} \leftrightarrow{ }_{k}^{\mathbb{C}} \mathcal{B} \Leftrightarrow \mathcal{A} \equiv{ }^{\mathcal{L}_{k}} \mathcal{B} \Leftrightarrow$ Duplicator wins $\mathbf{G}_{k}(\mathcal{A}, \mathcal{B})$
3. $\mathcal{A} \cong{ }_{k}^{\mathbb{C}} \mathcal{B} \Leftrightarrow \mathcal{A} \equiv \mathcal{L}_{k}(\#) \mathcal{B} \Leftrightarrow$ Duplicator wins $\# \mathbf{G}_{k}(\mathcal{A}, \mathcal{B})$

The $\rightarrow{ }_{k}^{\mathbb{C}}$ and $\cong{ }_{k}^{\mathbb{C}}$ arise from $\mathcal{K}\left(\mathbb{C}_{k}\right)$
The $\leftrightarrow_{k}^{\mathbb{C}}$ arises from a notion of open map bisimulation in the category of coalgebras over $\mathbb{C}_{k}$

All structures finite
Theorem ([Lov67])
$\mathcal{A} \cong \mathcal{B} \Leftrightarrow \operatorname{Hom}(\mathcal{C}, \mathcal{A}) \cong \operatorname{Hom}(\mathcal{C}, \mathcal{B})$ for $\mathcal{C}$
Theorem ([Gro20])
$\mathcal{A} \equiv Q R_{n}(\#) \mathcal{B} \Leftrightarrow \operatorname{Hom}(\mathcal{C}, \mathcal{A}) \cong \operatorname{Hom}(\mathcal{C}, \mathcal{B})$ for $\mathcal{C} w / \operatorname{td}(C) \leq n$
Theorem ([Dvo09])
$\mathcal{A} \equiv \bar{\nu}^{k}(\#) \mathcal{B} \Leftrightarrow \operatorname{Hom}(\mathcal{C}, \mathcal{A}) \cong \operatorname{Hom}(\mathcal{C}, \mathcal{B})$ for $\mathcal{C} w / \operatorname{tw}(\mathcal{C})<k$,
Theorem ([DJR21])
$\mathcal{A} \equiv \mathcal{L}_{k}(\#) \mathcal{B} \Leftrightarrow \operatorname{Hom}(\mathcal{C}, \mathcal{A}) \cong \operatorname{Hom}(\mathcal{C}, \mathcal{B})$ for $\mathbb{C}_{k}$-coalgebras $\mathcal{C}$

Spoiler-Duplicator game comonads unify and generalize the use of resource measures in finite model theory

These comonads are robustly defined, i.e. via a model-comparison game or a forest cover/decomposition
$\mathbb{P R}_{k}$ extends this framework to link pathwidth and a restricted conjunction fragment of $k$-variable logic $\exists^{+} \mathcal{N}_{k}$

Provides interesting avenues towards applying category theory to complexity theory:
$\mathcal{B}$ has the $\mathbb{P R}_{k}$-lifting property for some $k \Rightarrow \operatorname{CSP}(\mathcal{B}) \in \mathbf{N L}$

目 Samson Abramsky，Anuj Dawar，and Pengming Wang． The pebbling comonad in finite model theory．
In Logic in Computer Science（LICS）， 2017 32nd Annual ACM／IEEE Symposium on，pages 1－12．IEEE， 2017.

囯 Samson Abramsky and Dan Marsden．
Comonadic semantics for guarded fragments， 2020.
Ramson Abramsky and Nihil Shah． Relating structure and power：Comonadic semantics for computational resources．
In 2＇7th EACSL Annual Conference on Computer Science Logic，CSL 2018，September 4－7，2018，Birmingham，UK， pages 2：1－2：17， 2018.

圊 Albert Atserias．
On digraph coloring problems and treewidth duality．
European Journal of Combinatorics，29：796－820， 52008.
围 Adam Ó Conghaile and Anuj Dawar．

Victor Dalmau.
Linear Datalog and Bounded Path Duality of Relational Structures.
Logical Methods in Computer Science, 1(1):5, April 2005. arXiv: cs/0504027.
© Anuj Dawar, Tomáš Jakl, and Luca Reggio.
Lovász-type theorems and game comonads, 2021.
目 Víctor Dalmau, Phokion G Kolaitis, and Moshe Y Vardi. Constraint satisfaction, bounded treewidth, and finite-variable logics.
In International Conference on Principles and Practice of Constraint Programming, pages 310-326. Springer, 2002.

圊 Zdeněk Dvořák.
On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory, 64(4):330-342, November 2009.
.
Martin Grohe.
Counting bounded tree depth homomorphisms.

In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, July 2020.

围 Phokion G Kolaitis and Moshe Y Vardi.
On the expressive power of Datalog: tools and a case study. In Proceedings of the ninth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pages 61-71. ACM, 1990.
嗇 László Lovász.
Operations with structures.
Acta Mathematica Academiae Scientiarum Hungarica, 18(3-4):321-328, 1967.
E Iain A Stewart.
Bounded pathwidth duality and uniform constraint satisfaction problems.
2007.

