norms on categories

Motivation

- categories with large class of morphisms,
- convenient and systematic metrization for equivalence classes of spaces,
- * Generalization of Cantor-Schröder-Bernstein theorem

Axioms

A seminorm on a category $\underline{C} = (\underline{C}_0, \underline{C}_1, ;)$ is a map $\|-\|: \underline{C}_1 \to [0, \infty]$ such that

- (ND $\| \operatorname{id}_X \| = 0$ for all $X \in \underline{C}_0$;
- (N2) $||f;g|| \leq ||f|| + ||g||$ (triangle inequality).

X, Y are norm isomorphic if

 $\exists f: X \to Y, g: Y \to X \text{ inverse to} \\ \text{each other with } ||f|| = ||g|| = 0 \\ \text{A norm is a seminorm such that for} \\ \text{all } X, Y \in \underline{C}_0$

(N3) if there are maps $f: X \to Y$ and $g: Y \to X$ with ||f|| =||g|| = 0, then X, Y are norm isomorphic;

Daniel Luckhardt Joint with Matt Insall

Principle

A seminorm becomes a norm on a full subcategory of "compact" objects.

Examples

 $\underbrace{\underline{\text{SET}}}_{\text{Where } f^*} \|f\|_{\text{set}} \coloneqq \log \sup_{X \in X} \#f^*(\{f(x)\}),$ where $f^*: \mathcal{P}(Y) \to \mathcal{P}(X)$ preimage,

GRAPH Seminorm as above. Becomes a norm when restricting to finite graphs.

<u>NVECT</u>^{*} The category of normed vector spaces over the reals and <u>linear maps</u>.

$$\begin{array}{l} A\|_{\mathsf{op}} \coloneqq \log \sup^1 \frac{\|v\|_V}{\|Av\|_W} \\ v \in V \end{array}$$

 $\begin{array}{l} \|A\| = 0, \mbox{ then } A \mbox{ is expansive.} \\ \mbox{We obtain a norm By restricting to} \\ \hline \mbox{Hilb}_{\underline{NVECT}_{R}}^{*}, \mbox{ the Banach spaces with} \\ \mbox{Hilbert space structure.} \end{array}$

- Top ||f||top := ||f||comp + ||f||_{dim} where ||f||comp, ||f||_{dim} resp. measures the number of components, the dimension resp. of preimages of subsets. Norm on compact metrizable spaces.

Outlook

Look at Wasserstein distance and Prokhorov metrics. Prove Theorems:

- * Freudenthal-Hurewicz thm.
- * Kantorovich-Rubinstein thm

Use ind-completion ind-C to treat "non-compact" objects: Fix a directed set $I = (I, \leq)$ and an order preserving function $F: I \rightarrow [0, 1]$, thought of as the distribution of a probability measure. Define

$$\begin{split} f(i) &:= \inf \left\{ \begin{array}{c} \|g\| & | \iota_{ij}(g) = \mathsf{pr}_i f, \\ g \in \underline{C}[X_i, Y_j] \end{array} \right\} \\ \text{for } (X_i)_{i \in I}, (Y_j)_{j \in J} \in (\underline{ind-C})_0 \text{ and} \\ f \in \operatorname{ind-C}[(X_i)_{i \in I}, (X_j)_{j \in J}] = \\ \lim \text{ coim } \underline{C}[X_i, Y_j] \\ i \in I \ j \in J \end{cases} \\ \\ \text{Finally, define the Chaquet integral} \\ \int f(i) d\dot{F} &= \int 1 - F(\sup\{i \mid f(i) \leq t\}) di \end{aligned}$$

Preprint

M. Insall and D. Luckhardt. Norms on Categories and Analogs of the Sokröder-Bernstein Theorem Version 2. Extended version 2.021 arXiv: 2105.06832 [math.CT]