Norms on categories

Motivation

* categories with large class of morphisms,
* convenient and systematic metrization for equivalence classes of spaces,
* Generalization of Cantor-Schröder-Bernstein theorem

Axioms

A seminorm on a catecory $\underline{C}=\left(\underline{C}_{0}, \underline{C}_{1}, ;\right)$ is a map $\|-\|: \underline{C}_{1} \rightarrow[0, \infty]$ such that
(N) $\|$ id $X \|=0$ for all $X \in \underline{C}_{0}$;
(N2) $\|f ; g\| \leq\|f\|+\|g\|$ (triancle inequality).
X, Y are norm isomorphic if
$\exists f: X \rightarrow Y, g: Y \rightarrow X$ inverse to each other with $\|f\|=\|g\|=0$
A norm is a seminorm such that for all $X, Y \in \underline{C}_{0}$
(N3) if there are maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ with $\|f\|=$ $\|g\|=0$, then X, Y are norm isomorphic;
(N4) if for all $\varepsilon>0$,
$\exists f \in \underline{C}_{1}: X \xrightarrow{f,\|f\| \leq \varepsilon} Y$, then
$\exists f \in \underline{C}_{1}: X \xrightarrow{f,\|f\|=0} Y$.

Principle

A seminorm Becomes a norm on a full subcategory of "compact" objects.

Examples

SET $\|f\|_{\text {set }}:=\log \sup _{x \in X} \# f^{*}(\{f(x)\})$, where $f^{*}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ preimace,

Graph Seminorm as above. Becomes a norm when restricting to finite Graphs.

NVECT* The cateciory of normed vector spaces over the reals and linear maps.

$$
\|A\|_{\text {op }}:=\log \sup _{v \in V}{ }^{1} \frac{\|v\|_{V}}{\|A v\|_{W}}
$$

If $\|A\|=0$, then A is expansive.
We OBtain a norm By restricting to Hilb $_{\mathrm{NVECT}_{\mathbb{R}}}^{*}$, the Banach spaces with
Hilbert space structure.
Top $\|f\|_{\text {top }}:=\|f\|_{\text {comp }}+\|f\|_{\text {dim }}$ where
$\|f\|$ comp, $\|f\|_{\text {dim }}$ resp., measures the number of components, the dimension resp., of preimages of subsets. Norm on compact metrizable spaces.

MeTr Metric spaces and multivalued maps. Seminorm $\|f\|_{\text {dil }}:=\sup \{|x y|-$ $|f(x) f(y)| \mid x, y \in M\} \cup\{0\}$. Norm for compact spaces.
Relation to Gromov-Hausdorff dist:
$\left(\left(\underline{\mathrm{MET}}_{\mathrm{cpt}}\right)_{0} / \sim, \mathrm{d}_{\mathrm{GH}}\right) \xrightarrow[\text { inv. Cauchy cont. }]{\text { 2-Lipschitz }}$
$\left(\left(\underline{\mathrm{MET}_{\mathrm{cpt}}}\right)_{0} / \sim \mathrm{d}_{\mathrm{dil}}^{+}\right)$

Outlook
Look at Wasserstein distance and Prokhorov metrics.
Prove Theorems:

* Freudenthal-Hurewicz thm.
* Kantorovich-Rusinstein thm.

Use ind-completion ind- C to treat "non-compact" objects: Fix a directed set $I=(I, \leq)$ and an order
preserving function $F: I \rightarrow[0,1]$, thought of as the distribution of a probability measure. Define
$f(i):=\inf \left\{\begin{array}{l|l}\|g\| & \begin{array}{l}\iota_{i j}(g)=\mathrm{pr}_{i} f, \\ g \in \underline{C}\left[X_{i}, Y_{j}\right]\end{array}\end{array}\right\}$
for $\left(X_{i}\right)_{i \in I},\left(Y_{j}\right)_{j \in I} \in(\text { ind-C) })_{0}$ and
$f \in$ ind $-C\left[\left(X_{i}\right)_{i \in I},\left(X_{j}\right)_{j \in J}\right]=$
$\lim \operatorname{colim} \underline{C}\left[X_{i}, Y_{j}\right]$.
$i \in I \quad j \in J$
Finally, define the Choquet integral
$\int f(i) \mathrm{d} \dot{F}:=\int 1-F(\sup \{i \mid f(i) \leq t\}) \mathrm{d} t$.

Preprint

M. Insall and D. Luckhardt. Norms on

Categories and Analogs of the
Schröder-Bernstein Theorem.
Version 2 Extended version 2021.
arXiv: 2105.06832 [math.CT]

