Coequalisers under the lens

Matthew Di Meglio

Applied Category Theory 2021

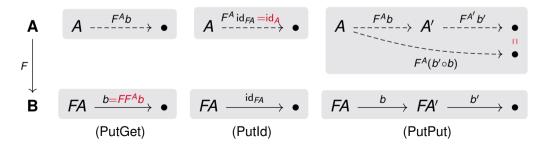
	Example	Model
system	database, view	category
state	records in each table	object
transition	insert record, update record, delete record	morphism
synchronisation protocol	solution to view-update problem	(delta) lens

What is a lens?

A lens $F : \mathbf{A} \to \mathbf{B}$ consists of

• a *get functor* $F : \mathbf{A} \to \mathbf{B}$, and

• for all A in A and b: $FA \rightarrow \bullet$ in B, a *lift* F^Ab : $A \rightarrow \bullet$ in A of b to A, such that



- Small categories and lenses form a category Lens
- Chollet et al. initiated a study of the categorical properties of Lens
- No reason to expect Lens would have nice properties but it does
- Functor $U: Lens \rightarrow Cat$ sending a lens to its get functor helpful
- Proved Chollet et al.'s conjectures about monos and epis
- Characterisation of epis enabled a start on studying coequalisers

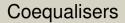
Epis in Lens are nicer than epis in Cat

e is *epic* if it is right cancellable ($h_1 e = h_2 e$ implies $h_1 = h_2$)

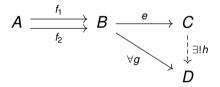
Remark

In Cat

Proposition In Lens epic \iff surjective on objects \iff surjective on morphisms

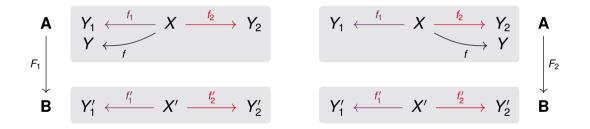


e coequalises f_1 and f_2 if it is their universal cofork



- Cat has all coequalisers, but they aren't usually nice to describe
- Lens doesn't have all coequalisers, but some are nicer to describe
- Coequalisers are always epic

Not all coequalisers in Lens exist



Coequalisers in Lens above coequalisers in Cat

Lemma

The get functor of every epic lens coequalises its kernel pair in **Cat**.

Theorem

Every epic lens coequalises its imported kernel pair in **Lens**.

Corollary

The lenses left orthogonal to all monic lenses are the epic lenses.

Lemma

A lens is monic if and only if it is injective on objects.

Theorem

U creates pushouts of monic lenses with discrete opfibrations.

Corollary

Every monic lens equalises its cokernel pair in **Lens**.

Conclusion

Summary

- Epis in Lens are nicer than those in Cat
- Epic lens characterisation enabled start studying coequalisers in Lens
- Lens doesn't have all coequalisers, nor does U reflect/preserve them
- There are classes of coequalisers which are preserved/created by U

Future work

- Completely characterise pullbacks and coequalisers in Lens
- Study category of symmetric lenses via properties of Lens
- General theory of categories of morphisms with extra structure?