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Overview

. Goal: state and prove a classical theorem of probability theory
without talking about (numerical) probabilities.

. Based on a recent categorical approach to probability.

. The big picture:

Traditional probability theory Categorical probability theory

Analytic: Synthetic:
says what probabilities are says how probabilities behave

Analogous to number systems Analogous to abstract algebra



The basic primitives are morphisms in a symmetric monoidal category:

f

Y

X

. Intuitively, a morphism is a probabilistic function: random output
for any input.

. We impose axiom that (partly) formalize this intuition.



We can compose morphisms using string diagram calculus, like this:

X Y

k

W

p

Y

g

f

h

f

A A

B

This defines an overall morphism

A⊗ A⊗ X ⊗ Y −→ B ⊗ Y .



Postulate additional pieces of structure:

. Every object X has a copying function:

X

X X

. Every object X has a deletion function:

X



Definition

A Markov category C is a symmetric monoidal category supplied with
copying and deleting operations on every object,

giving commutative comonoid structures

==
= =

which interact well with the monoidal structure, and such that for all f ,

=f



Semantics

BorelStoch is the category with:

. Standard Borel spaces as objects (finite sets, N and [0, 1]).

. Measurable Markov kernels as morphisms.

. Products of measurable spaces for ⊗.

BorelStoch satisfies all of the axioms that I will mention.

It is the Kleisli category of the Giry monad!



Determinism

Throughout, we’re in a Markov category C.

Definition

A morphism f : X → Y is deterministic if it commutes with copying,

f f
=

f

. Intuition: Applying f to copies of input = copying the output of f .

. The deterministic morphisms form a cartesian monoidal subcategory
Cdet.



Representability

Definition

A Markov category C is representable if for every X ∈ C there is
PX ∈ C and a natural bijection

Cdet(−,PX ) ∼= C(−,X ),

and a.s.-compatibly representable if this respects p-a.s. equality for
every p.

. Intuition: PX is space of probability measures on X .

. Under the bijection, the deterministic id : PX → PX corresponds to

sampX : PX → X ,

the map that returns a random sample from a distribution.



BorelStoch is representable in a very particular way:

Theorem (De Finetti, abstract version)

PX is the equalizer of all the finite permutations on XN, with universal
arrow given by

sampsamp · · ·

. Intuition:

probability distribution = prescription of how to sample from it

. Difficult to prove: existence part of universal property.



The de Finetti theorem

Theorem

Let C be an a.s.-compatibly representable Markov category with
conditionals and countable Kolmogorov products.

Then for every p : A→ XN invariant under finite permutations, there is
q : A→ PX such that

sampsamp · · ·

q

p =

· · ·

. BorelStoch satisfies these assumptions.

. Mystery: we know of no other nontrivial Markov category which does!



Detour: de Finetti and Bayesianism

. Suppose that I hand you a coin (which may be biased).

. How much would you bet on the outcome

heads, tails, tails

when the coin is flipped 3 times?

⇒ Surely the same as you would bet on

tails, tails, heads.

. Your bets satisfy permutation invariance.
⇒ They correspond to a measure on [0, 1], the space of biases.

. For a Bayesian, this is the prior over the biases.



Structure of proof

Spreadability
Lemma

Invariant
Observable
Lemma

Shift invariance of
tail conditional

Exchangeable states
are conditionally iid

De Finetti
for states

Parametrization
construction

De Finetti
Theorem



Proof teaser

Suppose that p is a state.

By universal property of Kolmogorov products, it is enough to show

p
=

p

· · ·p|tail p|tail

n wires

for every finite n.



Using induction on n,

p

· · ·p|tail p|tail

=

p

· · ·
p|tail p|tail

X s X s

p

· · ·p|tail p|tail

=

= =

p

· · ·p|tail p|tail

p

· · ·p|tail p|tail

p|tail

n wires n wires n wires

n wires n + 1 wires



Summary and Outlook

. Markov categories are an emerging framework for “synthetic”
probability theory.

. We already have synthetic versions of several theorems of probability
and statistics:

. 0/1-laws of Kolmogorov and Hewitt-Savage,

. Fisher factorization theorem on sufficient statistics,

. Blackwell-Sherman-Stein theorem on informativeness of statistical
experiments,

. De Finetti’s theorem on permutation-invariant distribution.



Summary and Outlook

. Sometimes such developments require turning theorems into
definitions.

. Next: a synthetic treatment of the law of large numbers.

. This has further tantalizing connections with ergodic theory.

. In parallel, we also aim at a better understanding of the semantics.

. Central question here: how common are Markov categories with
conditionals?



Bonus slides: Conditionals

Definition

C has conditionals if for every f : A→ X ⊗ Y there is f|X : X ⊗ A→ Y
with

X

f|X

=f

f
A

X Y

Y

A

. Intuition: The outputs of f can be generated one at a time.



Bayesian inversion

Every s : X → Y has a Bayesian adjoint s† : Y → X satisfying:

p

p

=

s s†

X Y X Y

s

The Bayesian adjoint s† depends on p.



Almost sure equality

Definition

Let p : A→ X and f , g : X → Y .

f and g are equal p-almost surely, f =p-a.s. g , if

p

f

=
p

g

. Intuition: f and g behave the same on all inputs produced by p.

. Other concepts (besides equality) also relativize with respect to
p-almost surely.



Infinite tensor products

Let (Xi )i∈I be a family of objects.

For finite F ⊆ F ′ ⊆ I , we have projection morphisms⊗
i∈F ′

Xi −→
⊗
i∈F

Xi

given by composing with deletion for all i ∈ F ′ \ F .



Infinite tensor products

Definition

The infinite tensor product

X I :=
⊗
i∈I

Xi

is the limit of the finite tensor products X F :=
⊗

i∈F Xi if it exists and is
preserved by every −⊗ Y .

. Intuition: To map into an infinite tensor product, one needs to map
consistently into its finite subproducts.



Kolmogorov products

Definition

An infinite tensor product X I is a Kolmogorov product if the limit
projections πF : X I → X F are deterministic.

. This additional condition fixes the comonoid structure on X I .

. We need countable Kolmogorov products already in order to state the
de Finetti theorem.



Spreadability Lemma

Lemma

If p : A→ XN is exchangeable, then p is also invariant with respect to
applying any injective map N→ N to the tensor factors.

. Intuition: If random variables X1,X2, . . . are permutation-invariant,
then they have the same distribution as X2,X3, . . .

Proof sketch. On every finite F ⊆ N, every injection N→ N coincides
with a suitable permutation.



Invariant Observable Lemma

Lemma

Let p : I → X and s : X → X satisfy sp = p.

Then for deterministic f : X → Y ,

f

s†
f

f

s
f=p-a.s. =p-a.s.=⇒

. Intuition: s and p make X into a measure-preserving dynamical
system, f is an observable.

. If f is invariant “backward in time”, then it is also invariant “forward
in time”.



Invariant Observable Lemma

Proof sketch.

f

s

p

f

=

f

p

f

s†

s

=

f

p

f

Like an equation between inner products in “L2(A, p)”.

⇒ The claim follows by “Cauchy-Schwarz”.



The tail conditional

We use double wires to denote XN.

By the existence of conditionals, there is p|tail such that

=

p|tail

=

p|tail

p
p

p

The second equation is by the Spreadability Lemma.



Shift invariance of the tail conditional

Lemma

p|tail =p-a.s.

p|tail

. Intuition: p|tail is independent of any finite initial segment.

Proof sketch. An application of the Invariant Observable Lemma. Its
assumption holds by the Spreadability Lemma.



Kleisli categories are Markov categories

Proposition

Let

. D be a category with finite products,

. P a commutative monad on D with P(1) ∼= 1.

Then the Kleisli category Kl(P) is a Markov category in the obvious way.

Examples:

. Kleisli category of the Giry monad, other related monads for
measure-theoretic probability.

. Kleisli category of the non-empty power set monad, which is (almost)
Rel.

The proposition still holds when D is merely a Markov category itself!



Classical de Finetti theorem

A sequence (xn)n∈N of random variables on a space X is exchangeable if
their distribution is invariant under finite permutations σ,

P
[
x1 ∈ Sσ(1), . . . , xn ∈ Sσ(n)

]
= P[x1 ∈ S1, . . . , xn ∈ Sn] .

Theorem

If (xn) is exchangeable, then there is a measure µ on PX such that

P[x1 ∈ S1, . . . , xn ∈ Sn] =

∫
p(x1 ∈ S1) · · · p(xn ∈ Sn)µ(dp).

Idea: sequence of tosses of a coin with unknown bias!



Categories of comonoids

Proposition

Let C be any symmetric monoidal category. Then the category with:

. Commutative comonoids in C as objects,

. Counital maps as morphisms,

. The specified comultiplications as copy maps,

is a Markov category.

A good example is Vectop
k for a field k :

. The comonoids correspond to commutative k-algebras of k-valued
random variables.

. We obtain algebraic probability theory with “random variable
transformers” as morphisms (formal opposites of Markov kernels).



Diagram categories and ergodic theory

Proposition

Let D be any category and C a Markov category. The category in which

. Objects are functors D→ Cdet,

. Morphisms are natural transformations with components in C.

With the poset D = Z, we get a category of discrete-time stochastic
processes.

This generalizes an observation going back to (Lawvere, 1962).

We can also take D = BG for a group G , resulting in categories of
dynamical systems with deterministic dynamics but stochastic morphisms.



Hyperstructures: categorical algebra in Markov categories

A group G is a monoid G together with (−)−1 : G → G such that

(−)−1 = (−)−1=

This equation can be interpreted in any Markov category! (Together with
the bialgebra law.)



. More generally, one can consider models of any algebraic theory in
any Markov category.

. In Kleisli categories of probability-like monads, these are known as
hyperstructures.

. Peter Arndt’s suggestion:

Develop categorical algebra for hyperstructures in terms of Markov
categories!



The causality axiom

Definition

C is causal if

f

h1

=g

f

h2

g implies

f

h1

=g

f

h2

g

. Intuition: The choice between h1 and h2 in the “future” of g does
not influence the “past” of g .

. Not every Markov category is causal.



The positivity axiom

Definition

C is positive if whenever gf is deterministic for composable f and g , then
also

g

f

g

=

f

f

. Intuition: If a deterministic process has a random intermediate result,
then that result can be computed independently from the process.

. Not every Markov category is positive.

. Dario Stein: every causal Markov category is positive!



Theorem (Kolmogorov zero–one law)

Let XI be a Kolmogorov product of a family (Xi )i∈I .

If

. p : A→ XI makes the Xi independent and identically distributed, and

. s : XI → T is such that

πF

p

s

A

XF T

displays XF ⊥ T ||A for every finite F ⊆ I ,

then ps is deterministic.



The classical Hewitt–Savage zero-one law

Theorem

Let (xn)n∈N be independent and identically distributed random variables,
and S any event depending only on the xn and invariant under finite
permutations.

Then P(S) ∈ {0, 1}.



The synthetic Hewitt–Savage zero-one law

Theorem

Let J be an infinite set and C a causal Markov category. Suppose that:

. The Kolmogorov power X⊗J := limF⊆J finite X
⊗F exists.

. p : A→ X⊗J displays the conditional independence ⊥i∈J Xi ‖A.

. s : X J → T is deterministic.

. For every finite permutation σ : J → J, permuting the factors
σ̃ : X⊗J → X⊗J satisfies

σ̃p = p, sσ̃ = s.

Then sp is deterministic.

Proof is by string diagrams, but far from trivial!



Why categorical probability?

In no particular order:

. Applications to probabilistic programming.

. Prove theorems in greater generality and with more intuitive proofs.

. Reverse mathematics: sort out interdependencies between theorems.

. Ultimately, prove theorems of higher complexity?

. Simpler teaching of probability theory. (String diagrams!)

. Different conceptual perspective on what probability is.



Discrete probability theory as a Markov category

One of the paradigmatic Markov categories is FinStoch, the category of
finite sets and stochastic matrices: a morphism f : X → Y is

(f (y |x))x∈X ,y∈Y ∈ RX×Y

with
f (y |x) ≥ 0,

∑
y

f (y |x) = 1.

Composition is the Chapman-Kolmogorov formula,

(gf )(z |x) :=
∑
y

g(z |y) f (y |x).

A morphism p : 1→ X is a probability distribution.

A general morphism X → Y has many names: Markov kernel,
probabilistic mapping, communication channel, . . .



The monoidal structure implements stochastic independence,

(g ⊗ f )(xy |ab) := g(x |a) f (y |b).

The copy maps are

copyX : X −→ X × X , copyX (x1, x2|x) =

{
1 if x1 = x2 = x ,

0 otherwise.

The deletion maps are the unique morphisms X → 1.



. Works just the same with “probabilities” taking values in any
semiring R.

. Taking R to be the Boolean semiring B = {0, 1} with

1 + 1 = 1

results in the Kleisli category of the nonempty finite powerset monad.

⇒ We get a Markov category for non-determinism.

. Measure-theoretic probability: Kleisli category of the Giry monad.


