De Finetti's Theorem in Categorical Probability

Tobias Fritz joint work with Tomáš Gonda and Paolo Perrone

July 2021

References

▷ Kenta Cho and Bart Jacobs,

Disintegration and Bayesian inversion via string diagrams. *Math. Struct. Comp. Sci.* 29, 938–971 (2019). arXiv:1709.00322.

▷ Tobias Fritz,

A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics.

Adv. Math. 370, 107239 (2020). arXiv:1908.07021.

- Tobias Fritz and Eigil Fjeldgren Rischel, The zero-one laws of Kolmogorov and Hewitt–Savage in categorical probability. Compositionality 2, 3 (2020). arXiv:1912.02769.
- Tobias Fritz, Tomáš Gonda, Paolo Perrone, Eigil Fjeldgren Rischel, Representable Markov Categories and Comparison of Statistical Experiments in Categorical Probability. arXiv:2010.07416.
- Bart Jacobs, Sam Staton, De Finetti's construction as a categorical limit. Coalgebraic Methods in Computer Science 2020. arXiv:2003.01964.
- Tobias Fritz, Tomáš Gonda, Paolo Perrone, De Finetti's Theorem in Categorical Probability. arXiv:2105.02639

For a broader perspective, see the videos from the online workshop Categorical Probability and Statistics!

Overview

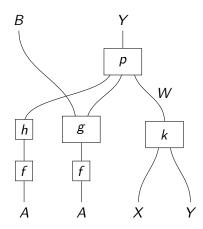
- ▷ Goal: state and prove a classical theorem of probability theory without talking about (numerical) probabilities.
- ▷ Based on a recent categorical approach to probability.
- ▷ The big picture:

Traditional probability theory	Categorical probability theory
Analytic: says what probabilities are	Synthetic: says how probabilities behave
Analogous to number systems	Analogous to abstract algebra

The basic primitives are morphisms in a symmetric monoidal category:

- ▷ **Intuitively**, a morphism is a probabilistic function: random output for any input.
- ▷ We impose axiom that (partly) formalize this intuition.

We can compose morphisms using string diagram calculus, like this:



This defines an overall morphism

$$A \otimes A \otimes X \otimes Y \longrightarrow B \otimes Y.$$

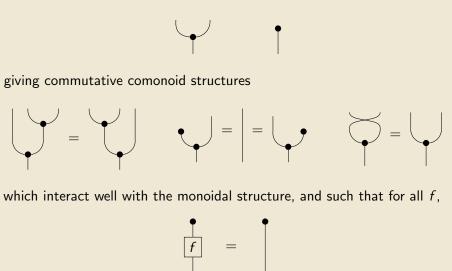
Postulate additional pieces of structure:

 \triangleright Every object X has a **copying function**:

▷ Every object *X* has a **deletion function**:

Definition

A **Markov category C** is a symmetric monoidal category supplied with **copying** and **deleting** operations on every object,



Semantics

BorelStoch is the category with:

- ▷ Standard Borel spaces as objects (finite sets, \mathbb{N} and [0, 1]).
- ▷ Measurable Markov kernels as morphisms.
- \triangleright Products of measurable spaces for \otimes .

BorelStoch satisfies all of the axioms that I will mention.

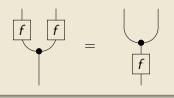
It is the Kleisli category of the Giry monad!

Determinism

Throughout, we're in a Markov category C.

Definition

A morphism $f: X \to Y$ is **deterministic** if it commutes with copying,



- ▷ **Intuition:** Applying f to copies of input = copying the output of f.
- $\triangleright~$ The deterministic morphisms form a cartesian monoidal subcategory $\bm{C}_{det}.$

Representability

Definition

A Markov category **C** is **representable** if for every $X \in \mathbf{C}$ there is $PX \in \mathbf{C}$ and a natural bijection

$$\mathbf{C}_{\mathrm{det}}(-, PX) \cong \mathbf{C}(-, X),$$

and **a.s.-compatibly representable** if this respects p-a.s. equality for every p.

- \triangleright **Intuition:** *PX* is space of probability measures on *X*.
- $\triangleright\,$ Under the bijection, the deterministic $\mathrm{id}: \textit{PX} \rightarrow \textit{PX}$ corresponds to

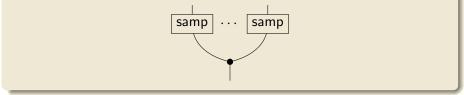
$$\operatorname{samp}_X : PX \to X,$$

the map that returns a random sample from a distribution.

BorelStoch is representable in a very particular way:

Theorem (De Finetti, abstract version)

PX is the equalizer of all the finite permutations on $X^{\mathbb{N}}$, with universal arrow given by



▷ Intuition:

probability distribution = prescription of how to sample from it

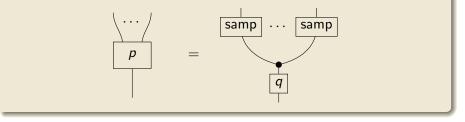
▷ Difficult to prove: existence part of universal property.

The de Finetti theorem

Theorem

Let ${\bf C}$ be an a.s.-compatibly representable Markov category with conditionals and countable Kolmogorov products.

Then for every $p: A \to X^{\mathbb{N}}$ invariant under finite permutations, there is $q: A \to PX$ such that



▷ **BorelStoch** satisfies these assumptions.

▷ Mystery: we know of no other nontrivial Markov category which does!

Detour: de Finetti and Bayesianism

- ▷ Suppose that I hand you a coin (which may be biased).
- $\,\triangleright\,$ How much would you bet on the outcome

heads, tails, tails

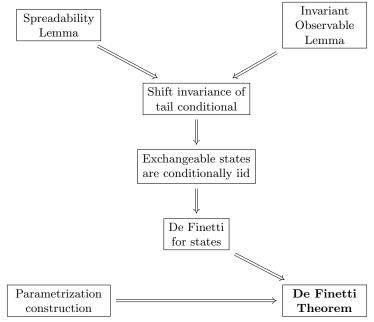
when the coin is flipped 3 times?

 \Rightarrow Surely the same as you would bet on

tails, tails, heads.

- ▷ Your bets satisfy **permutation invariance**. ⇒ They correspond to a measure on [0, 1], the space of biases.
- ▷ For a Bayesian, this is the **prior** over the biases.

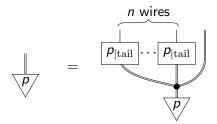
Structure of proof



Proof teaser

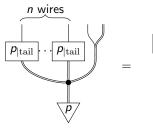
Suppose that *p* is a state.

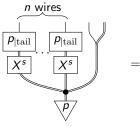
By universal property of Kolmogorov products, it is enough to show

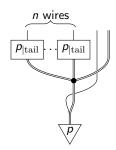


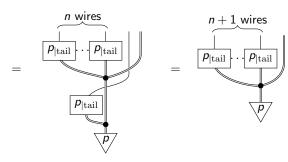
for every finite *n*.

Using induction on *n*,









Summary and Outlook

- Markov categories are an emerging framework for "synthetic" probability theory.
- We already have synthetic versions of several theorems of probability and statistics:
 - \triangleright 0/1-laws of Kolmogorov and Hewitt-Savage,
 - > Fisher factorization theorem on sufficient statistics,
 - Blackwell-Sherman-Stein theorem on informativeness of statistical experiments,
 - ▷ **De Finetti's theorem** on permutation-invariant distribution.

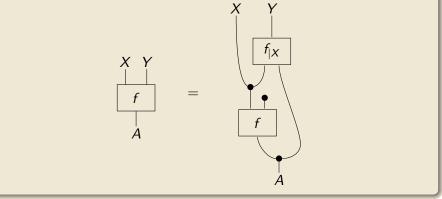
Summary and Outlook

- Sometimes such developments require turning theorems into definitions.
- ▷ **Next:** a synthetic treatment of the law of large numbers.
- ▷ This has further tantalizing connections with ergodic theory.
- \triangleright In parallel, we also aim at a better understanding of the semantics.
- Central question here: how common are Markov categories with conditionals?

Bonus slides: Conditionals

Definition

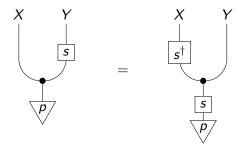
C has conditionals if for every $f : A \to X \otimes Y$ there is $f_{|X} : X \otimes A \to Y$ with



 \triangleright **Intuition:** The outputs of *f* can be generated one at a time.

Bayesian inversion

Every $s : X \to Y$ has a **Bayesian adjoint** $s^{\dagger} : Y \to X$ satisfying:



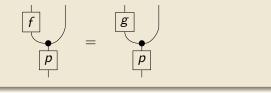
The Bayesian adjoint s^{\dagger} depends on p.

Almost sure equality

Definition

Let $p: A \to X$ and $f, g: X \to Y$.

f and g are equal p-almost surely, $f =_{p-a.s.} g$, if



 \triangleright Intuition: f and g behave the same on all inputs produced by p.

Other concepts (besides equality) also relativize with respect to *p*-almost surely. Let $(X_i)_{i \in I}$ be a family of objects.

For finite $F \subseteq F' \subseteq I$, we have projection morphisms

$$\bigotimes_{i\in F'} X_i \longrightarrow \bigotimes_{i\in F} X_i$$

given by composing with deletion for all $i \in F' \setminus F$.

Infinite tensor products

Definition

The infinite tensor product

$$X^{I} := \bigotimes_{i \in I} X_{i}$$

is the limit of the finite tensor products $X^F := \bigotimes_{i \in F} X_i$ if it exists and is preserved by every $- \otimes Y$.

Intuition: To map into an infinite tensor product, one needs to map consistently into its finite subproducts.

Kolmogorov products

Definition

An infinite tensor product X^{I} is a **Kolmogorov product** if the limit projections $\pi^{F} : X^{I} \to X^{F}$ are deterministic.

- \triangleright This additional condition fixes the comonoid structure on X'.
- We need countable Kolmogorov products already in order to state the de Finetti theorem.

Spreadability Lemma

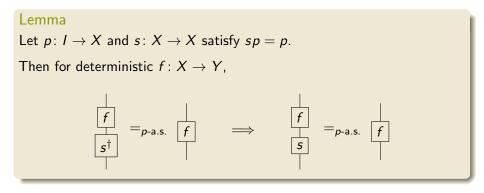
Lemma

If $p : A \to X^{\mathbb{N}}$ is exchangeable, then p is also invariant with respect to applying any injective map $\mathbb{N} \to \mathbb{N}$ to the tensor factors.

▷ **Intuition:** If random variables $X_1, X_2, ...$ are permutation-invariant, then they have the same distribution as $X_2, X_3, ...$

Proof sketch. On every finite $F \subseteq \mathbb{N}$, every injection $\mathbb{N} \to \mathbb{N}$ coincides with a suitable permutation.

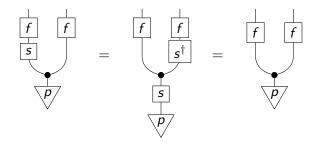
Invariant Observable Lemma



- ▷ Intuition: s and p make X into a measure-preserving dynamical system, f is an observable.
- \triangleright If f is invariant "backward in time", then it is also invariant "forward in time".

Invariant Observable Lemma

Proof sketch.



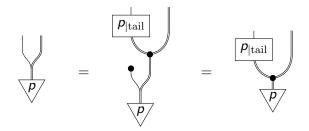
Like an equation between inner products in " $L^2(A, p)$ ".

 \Rightarrow The claim follows by "Cauchy-Schwarz".

The tail conditional

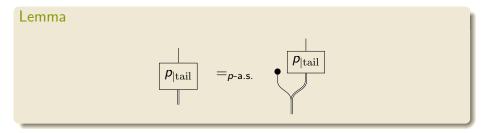
We use double wires to denote $X^{\mathbb{N}}$.

By the existence of conditionals, there is $p_{\rm |tail}$ such that



The second equation is by the Spreadability Lemma.

Shift invariance of the tail conditional



\triangleright Intuition: $p_{|tail}$ is independent of any finite initial segment.

Proof sketch. An application of the Invariant Observable Lemma. Its assumption holds by the Spreadability Lemma.

Kleisli categories are Markov categories

Proposition

Let

- $\triangleright~\mathbf{D}$ be a category with finite products,
- \triangleright *P* a commutative monad on **D** with $P(1) \cong 1$.

Then the Kleisli category Kl(P) is a Markov category in the obvious way.

Examples:

- Kleisli category of the Giry monad, other related monads for measure-theoretic probability.
- Kleisli category of the non-empty power set monad, which is (almost) Rel.

The proposition still holds when **D** is merely a Markov category itself!

Classical de Finetti theorem

A sequence $(x_n)_{n \in \mathbb{N}}$ of random variables on a space X is **exchangeable** if their distribution is invariant under finite permutations σ ,

$$\mathbb{P}[x_1 \in S_{\sigma(1)}, \dots, x_n \in S_{\sigma(n)}]$$
$$= \mathbb{P}[x_1 \in S_1, \dots, x_n \in S_n].$$

Theorem

If (x_n) is exchangeable, then there is a measure μ on PX such that

$$\mathbb{P}[x_1 \in S_1, \ldots, x_n \in S_n] = \int p(x_1 \in S_1) \cdots p(x_n \in S_n) \, \mu(dp).$$

Idea: sequence of tosses of a coin with unknown bias!

Categories of comonoids

Proposition

Let ${\boldsymbol{\mathsf{C}}}$ be any symmetric monoidal category. Then the category with:

- $\,\triangleright\,$ Commutative comonoids in ${\bm C}$ as objects,
- Counital maps as morphisms,
- > The specified comultiplications as copy maps,

is a Markov category.

A good example is **Vect**^{op}_k for a field k:

- ▷ The comonoids correspond to commutative *k*-algebras of *k*-valued random variables.
- ▷ We obtain algebraic probability theory with "random variable transformers" as morphisms (formal opposites of Markov kernels).

Diagram categories and ergodic theory

Proposition

Let ${\bf D}$ be any category and ${\bf C}$ a Markov category. The category in which

 $\,\triangleright\,$ Objects are functors $\boldsymbol{\mathsf{D}}\to\boldsymbol{\mathsf{C}}_{\mathrm{det}}$,

▷ Morphisms are natural transformations with components in C.

With the poset $\mathbf{D} = \mathbb{Z}$, we get a category of **discrete-time stochastic processes**.

This generalizes an observation going back to (Lawvere, 1962).

We can also take $\mathbf{D} = \mathbf{B}G$ for a group G, resulting in categories of dynamical systems with deterministic dynamics but stochastic morphisms.

Hyperstructures: categorical algebra in Markov categories

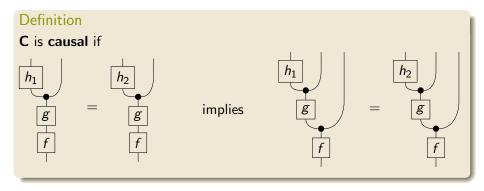
A group G is a monoid G together with $(-)^{-1}: G \to G$ such that

This equation can be interpreted in any Markov category! (Together with the bialgebra law.)

- More generally, one can consider models of any algebraic theory in any Markov category.
- In Kleisli categories of probability-like monads, these are known as hyperstructures.
- Peter Arndt's suggestion:

Develop categorical algebra for hyperstructures in terms of Markov categories!

The causality axiom

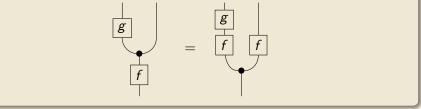


- ▷ **Intuition:** The choice between h_1 and h_2 in the "future" of g does not influence the "past" of g.
- ▷ Not every Markov category is causal.

The positivity axiom

Definition

 ${\bf C}$ is **positive** if whenever gf is deterministic for composable f and g, then also



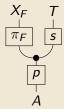
- Intuition: If a deterministic process has a random intermediate result, then that result can be computed independently from the process.
- ▷ Not every Markov category is positive.
- ▷ Dario Stein: every causal Markov category is positive!

Theorem (Kolmogorov zero–one law)

Let X_I be a Kolmogorov product of a family $(X_i)_{i \in I}$.

lf

- $\triangleright p: A \rightarrow X_I$ makes the X_i independent and identically distributed, and
- $\triangleright s: X_I \to T$ is such that



displays $X_F \perp T \parallel A$ for every finite $F \subseteq I$,

then *ps* is deterministic.

The classical Hewitt–Savage zero-one law

Theorem

Let $(x_n)_{n \in \mathbb{N}}$ be independent and identically distributed random variables, and S any event depending only on the x_n and invariant under finite permutations.

Then $P(S) \in \{0, 1\}$ *.*

The synthetic Hewitt-Savage zero-one law

Theorem

Let J be an infinite set and \mathbf{C} a causal Markov category. Suppose that:

- \triangleright The Kolmogorov power $X^{\otimes J} := \lim_{F \subseteq J \text{ finite }} X^{\otimes F}$ exists.
- $\triangleright \ p: A \to X^{\otimes J} \text{ displays the conditional independence } \bot_{i \in J} X_i \parallel A.$
- $\triangleright s: X^J \to T$ is deterministic.
- $\label{eq:statistic} \begin{array}{l} \triangleright \mbox{ For every finite permutation } \sigma: J \rightarrow J \mbox{, permuting the factors } \\ \tilde{\sigma}: X^{\otimes J} \rightarrow X^{\otimes J} \mbox{ satisfies } \end{array}$

$$\tilde{\sigma} p = p, \qquad s \tilde{\sigma} = s.$$

Then *sp* is deterministic.

Proof is by string diagrams, but far from trivial!

Why categorical probability?

In no particular order:

- > Applications to probabilistic programming.
- ▷ Prove theorems in greater generality and with more intuitive proofs.
- ▷ Reverse mathematics: sort out interdependencies between theorems.
- > Ultimately, prove theorems of higher complexity?
- ▷ Simpler teaching of probability theory. (String diagrams!)
- ▷ Different conceptual perspective on what probability is.

Discrete probability theory as a Markov category

One of the paradigmatic Markov categories is **FinStoch**, the category of finite sets and **stochastic matrices**: a morphism $f : X \to Y$ is

$$(f(y|x))_{x\in X,y\in Y}\in \mathbb{R}^{X\times Y}$$

with

$$f(y|x) \ge 0, \qquad \sum_y f(y|x) = 1.$$

Composition is the Chapman-Kolmogorov formula,

$$(gf)(z|x) := \sum_{y} g(z|y) f(y|x).$$

A morphism $p : 1 \rightarrow X$ is a **probability distribution**.

A general morphism $X \rightarrow Y$ has many names: **Markov kernel**, probabilistic mapping, communication channel, . . .

The monoidal structure implements stochastic independence,

$$(g \otimes f)(xy|ab) := g(x|a) f(y|b).$$

The copy maps are

$$\operatorname{copy}_X : X \longrightarrow X \times X, \quad \operatorname{copy}_X(x_1, x_2 | x) = \begin{cases} 1 & \text{if } x_1 = x_2 = x, \\ 0 & \text{otherwise.} \end{cases}$$

The deletion maps are the unique morphisms $X \rightarrow 1$.

- ▷ Works just the same with "probabilities" taking values in any semiring *R*.
- $\triangleright\;$ Taking R to be the Boolean semiring $\mathbb{B}=\{0,1\}$ with

1+1=1

results in the Kleisli category of the nonempty finite powerset monad.

 \Rightarrow We get a Markov category for non-determinism.

▷ Measure-theoretic probability: Kleisli category of the Giry monad.