
Native Type Theory

Christian Williams cwill041@ucr.edu

Mike Stay stay@pyrofex.net

ACT 2021

Christian Williams, Mike Stay Native Type Theory ACT 2021 1 / 13

Background

I came to grad school wanting to apply category theory to blockchain, or
the movement toward a distributed internet.

John Baez connected me with Statebox, which is developing languages
and software based on category theory.

This led to a collaboration with Mike Stay, and Greg Meredith at RChain.
They had been looking for ways to generate logics for languages.

I talked with them and struggled with this question for a long time. In
retrospect, the solution was much simpler than we thought.

Now this topic is my thesis direction. I am happy that the idea is simple,
because I think its application can have a real impact.

Christian Williams, Mike Stay Native Type Theory ACT 2021 2 / 13

Background

I came to grad school wanting to apply category theory to blockchain, or
the movement toward a distributed internet.

John Baez connected me with Statebox, which is developing languages
and software based on category theory.

This led to a collaboration with Mike Stay, and Greg Meredith at RChain.
They had been looking for ways to generate logics for languages.

I talked with them and struggled with this question for a long time. In
retrospect, the solution was much simpler than we thought.

Now this topic is my thesis direction. I am happy that the idea is simple,
because I think its application can have a real impact.

Christian Williams, Mike Stay Native Type Theory ACT 2021 2 / 13

Background

I came to grad school wanting to apply category theory to blockchain, or
the movement toward a distributed internet.

John Baez connected me with Statebox, which is developing languages
and software based on category theory.

This led to a collaboration with Mike Stay, and Greg Meredith at RChain.
They had been looking for ways to generate logics for languages.

I talked with them and struggled with this question for a long time. In
retrospect, the solution was much simpler than we thought.

Now this topic is my thesis direction. I am happy that the idea is simple,
because I think its application can have a real impact.

Christian Williams, Mike Stay Native Type Theory ACT 2021 2 / 13

Background

I came to grad school wanting to apply category theory to blockchain, or
the movement toward a distributed internet.

John Baez connected me with Statebox, which is developing languages
and software based on category theory.

This led to a collaboration with Mike Stay, and Greg Meredith at RChain.
They had been looking for ways to generate logics for languages.

I talked with them and struggled with this question for a long time. In
retrospect, the solution was much simpler than we thought.

Now this topic is my thesis direction. I am happy that the idea is simple,
because I think its application can have a real impact.

Christian Williams, Mike Stay Native Type Theory ACT 2021 2 / 13

Background

I came to grad school wanting to apply category theory to blockchain, or
the movement toward a distributed internet.

John Baez connected me with Statebox, which is developing languages
and software based on category theory.

This led to a collaboration with Mike Stay, and Greg Meredith at RChain.
They had been looking for ways to generate logics for languages.

I talked with them and struggled with this question for a long time. In
retrospect, the solution was much simpler than we thought.

Now this topic is my thesis direction. I am happy that the idea is simple,
because I think its application can have a real impact.

Christian Williams, Mike Stay Native Type Theory ACT 2021 2 / 13

Native Type Theory

The whole idea: two basic facts of category theory compose.

Every category embeds into a topos.

Every topos has a rich internal language.

Native Type Theory simply gives a name to the language of presheaves,
and advocates for real-world application of internal logic.

These facts are well-known, but some aspects have less public awareness.

The embedding is continuous and monoidal closed.

The language of a topos is more than just a syntax; it is a structured
fibration, and this construction is 2-functorial.

Christian Williams, Mike Stay Native Type Theory ACT 2021 3 / 13

Native Type Theory

The whole idea: two basic facts of category theory compose.

Every category embeds into a topos.

Every topos has a rich internal language.

Native Type Theory simply gives a name to the language of presheaves,
and advocates for real-world application of internal logic.

These facts are well-known, but some aspects have less public awareness.

The embedding is continuous and monoidal closed.

The language of a topos is more than just a syntax; it is a structured
fibration, and this construction is 2-functorial.

Christian Williams, Mike Stay Native Type Theory ACT 2021 3 / 13

Native Type Theory

The whole idea: two basic facts of category theory compose.

Every category embeds into a topos.

Every topos has a rich internal language.

Native Type Theory simply gives a name to the language of presheaves,
and advocates for real-world application of internal logic.

These facts are well-known, but some aspects have less public awareness.

The embedding is continuous and monoidal closed.

The language of a topos is more than just a syntax; it is a structured
fibration, and this construction is 2-functorial.

Christian Williams, Mike Stay Native Type Theory ACT 2021 3 / 13

Native Type Theory

The whole idea: two basic facts of category theory compose.

Every category embeds into a topos.

Every topos has a rich internal language.

Native Type Theory simply gives a name to the language of presheaves,
and advocates for real-world application of internal logic.

These facts are well-known, but some aspects have less public awareness.

The embedding is continuous and monoidal closed.

The language of a topos is more than just a syntax; it is a structured
fibration, and this construction is 2-functorial.

Christian Williams, Mike Stay Native Type Theory ACT 2021 3 / 13

Native Type Theory

The whole idea: two basic facts of category theory compose.

Every category embeds into a topos.

Every topos has a rich internal language.

Native Type Theory simply gives a name to the language of presheaves,
and advocates for real-world application of internal logic.

These facts are well-known, but some aspects have less public awareness.

The embedding is continuous and monoidal closed.

The language of a topos is more than just a syntax; it is a structured
fibration, and this construction is 2-functorial.

Christian Williams, Mike Stay Native Type Theory ACT 2021 3 / 13

Native Type Theory

The whole idea: two basic facts of category theory compose.

Every category embeds into a topos.

Every topos has a rich internal language.

Native Type Theory simply gives a name to the language of presheaves,
and advocates for real-world application of internal logic.

These facts are well-known, but some aspects have less public awareness.

The embedding is continuous and monoidal closed.

The language of a topos is more than just a syntax; it is a structured
fibration, and this construction is 2-functorial.

Christian Williams, Mike Stay Native Type Theory ACT 2021 3 / 13

Motivation: Programming Languages

Type theory is growing as a guiding philosophy in the design of
programming languages. But in practice, many popular languages do not
have well-structured type systems.

Ideally, there ought to be a way for a language to generate a type system.
Categorical logic provides a method to generate a native type system for
reasoning about the structure and behavior of programs.

Theorem (W., Stay)

There is a 2-functor

λThyop
=

P−→ Topos
L−→ HDTΣ

Hence, translations of languages induce translations of native type
systems. If implemented well, this could provide a unified framework of
reasoning for everyday programming.

Christian Williams, Mike Stay Native Type Theory ACT 2021 4 / 13

Motivation: Programming Languages

Type theory is growing as a guiding philosophy in the design of
programming languages. But in practice, many popular languages do not
have well-structured type systems.

Ideally, there ought to be a way for a language to generate a type system.
Categorical logic provides a method to generate a native type system for
reasoning about the structure and behavior of programs.

Theorem (W., Stay)

There is a 2-functor

λThyop
=

P−→ Topos
L−→ HDTΣ

Hence, translations of languages induce translations of native type
systems. If implemented well, this could provide a unified framework of
reasoning for everyday programming.

Christian Williams, Mike Stay Native Type Theory ACT 2021 4 / 13

Motivation: Programming Languages

Type theory is growing as a guiding philosophy in the design of
programming languages. But in practice, many popular languages do not
have well-structured type systems.

Ideally, there ought to be a way for a language to generate a type system.
Categorical logic provides a method to generate a native type system for
reasoning about the structure and behavior of programs.

Theorem (W., Stay)

There is a 2-functor

λThyop
=

P−→ Topos
L−→ HDTΣ

Hence, translations of languages induce translations of native type
systems. If implemented well, this could provide a unified framework of
reasoning for everyday programming.

Christian Williams, Mike Stay Native Type Theory ACT 2021 4 / 13

λ-theories

The language of cartesian closed categories is simply-typed λ-calculus.

Γ, x :S ` t : T
abstraction

Γ ` λx .t : [S→ T]

Γ ` λx .t : [S→ T], u : S
application

Γ ` t[u/x] : T

Definition

A λ-theory with equality is a cartesian closed category with pullbacks.
The 2-category of λ-theories with equality, finitely continuous closed
functors, and cartesian natural transformations is λThy=.

We interpret the language as simply-typed λ-calculus combined with the
syntax of generalized algebraic theories, which provide indexed sorts.

Γ ` x1 : S1, . . . , xn : Sn

Γ, ~xi : ~Si ` A(x1, . . . , xn) sort

Christian Williams, Mike Stay Native Type Theory ACT 2021 5 / 13

λ-theories

The language of cartesian closed categories is simply-typed λ-calculus.

Γ, x :S ` t : T
abstraction

Γ ` λx .t : [S→ T]

Γ ` λx .t : [S→ T], u : S
application

Γ ` t[u/x] : T

Definition

A λ-theory with equality is a cartesian closed category with pullbacks.
The 2-category of λ-theories with equality, finitely continuous closed
functors, and cartesian natural transformations is λThy=.

We interpret the language as simply-typed λ-calculus combined with the
syntax of generalized algebraic theories, which provide indexed sorts.

Γ ` x1 : S1, . . . , xn : Sn

Γ, ~xi : ~Si ` A(x1, . . . , xn) sort

Christian Williams, Mike Stay Native Type Theory ACT 2021 5 / 13

ρ-calculus

The ρ-calculus or reflective higher-order π-calculus is a concurrent
language which refines the π-calculus. It is the language of the blockchain
platform RChain.

The language is represented by the free λ-theory with equality on the
following presentation.

ρ-calculus

0 : 1→ P −|− : P, P→ P (P,−|−, 0) c. monoid
@ : P→ N out : N, P→ P run : P→ E

∗ : N→ P in : N, [N→ P]→ P comm : N, P, [N→ P]→ E

comm(n, q, λx .p) : out(n, q)|in(n, λx .p) p[@q/x]
run(p) : ∗(@p) p

Christian Williams, Mike Stay Native Type Theory ACT 2021 6 / 13

ρ-calculus

The ρ-calculus or reflective higher-order π-calculus is a concurrent
language which refines the π-calculus. It is the language of the blockchain
platform RChain.

The language is represented by the free λ-theory with equality on the
following presentation.

ρ-calculus

0 : 1→ P −|− : P, P→ P (P,−|−, 0) c. monoid
@ : P→ N out : N, P→ P run : P→ E

∗ : N→ P in : N, [N→ P]→ P comm : N, P, [N→ P]→ E

comm(n, q, λx .p) : out(n, q)|in(n, λx .p) p[@q/x]
run(p) : ∗(@p) p

Christian Williams, Mike Stay Native Type Theory ACT 2021 6 / 13

Language of a topos

The Yoneda embedding y : T→ [Top,Set] sends S to T(−, S). This
preserves limits and homs, and embeds T into a presheaf topos.

Definition

A topos is a λ-theory with equality E with E(−,Ω) ' Sub(−).

For presheaves, the subobject classifier is defined Ω(S) = {ϕ� y(S)}. It
is an internal complete Heyting algebra.

Definition

The predicate functor of a topos E defined [−,Ω] : Eop → CHA gives a
higher-order fibration πΩ : ΩE→ E. This means for each f : A→ B, the
functor Ωf : ΩB → ΩA has adjoints ∃f a Ωf a ∀f (satisfying BC).

These can be understood as direct image, preimage, and secure image.

Christian Williams, Mike Stay Native Type Theory ACT 2021 7 / 13

Language of a topos

The Yoneda embedding y : T→ [Top,Set] sends S to T(−, S). This
preserves limits and homs, and embeds T into a presheaf topos.

Definition

A topos is a λ-theory with equality E with E(−,Ω) ' Sub(−).

For presheaves, the subobject classifier is defined Ω(S) = {ϕ� y(S)}. It
is an internal complete Heyting algebra.

Definition

The predicate functor of a topos E defined [−,Ω] : Eop → CHA gives a
higher-order fibration πΩ : ΩE→ E. This means for each f : A→ B, the
functor Ωf : ΩB → ΩA has adjoints ∃f a Ωf a ∀f (satisfying BC).

These can be understood as direct image, preimage, and secure image.

Christian Williams, Mike Stay Native Type Theory ACT 2021 7 / 13

Language of a topos

Using these operations, we can construct highly expressive predicates on
the structure of terms in a language T.

Example

single.thread := ¬[0] ∧ ¬[¬[0] | ¬[0]]

Example

For a ρ-calculus predicate ϕ : y(P)→ Ω, preimage by input is the query
“inputting on what name-context pairs yield property ϕ?”

ϕ[in] := [y(in),Ω](ϕ) : y(N× [N→ P])→ Ω

ϕ[in](S)(n, λx .p) = ϕ(S)(in(n, λx .p))

Example

direct-step ∃tΩs and secure-step ∀tΩs

Christian Williams, Mike Stay Native Type Theory ACT 2021 8 / 13

Language of a topos

Using these operations, we can construct highly expressive predicates on
the structure of terms in a language T.

Example

single.thread := ¬[0] ∧ ¬[¬[0] | ¬[0]]

Example

For a ρ-calculus predicate ϕ : y(P)→ Ω, preimage by input is the query
“inputting on what name-context pairs yield property ϕ?”

ϕ[in] := [y(in),Ω](ϕ) : y(N× [N→ P])→ Ω

ϕ[in](S)(n, λx .p) = ϕ(S)(in(n, λx .p))

Example

direct-step ∃tΩs and secure-step ∀tΩs

Christian Williams, Mike Stay Native Type Theory ACT 2021 8 / 13

Language of a topos

Using these operations, we can construct highly expressive predicates on
the structure of terms in a language T.

Example

single.thread := ¬[0] ∧ ¬[¬[0] | ¬[0]]

Example

For a ρ-calculus predicate ϕ : y(P)→ Ω, preimage by input is the query
“inputting on what name-context pairs yield property ϕ?”

ϕ[in] := [y(in),Ω](ϕ) : y(N× [N→ P])→ Ω

ϕ[in](S)(n, λx .p) = ϕ(S)(in(n, λx .p))

Example

direct-step ∃tΩs and secure-step ∀tΩs

Christian Williams, Mike Stay Native Type Theory ACT 2021 8 / 13

Functoriality

Predicates ϕ : A→ Ω correspond to subobjects c(ϕ)� A. More generally,
any p : P → A can be understood as a dependent type. The predicate
fibration πΩ embeds into the codomain fibration π∆.

The two fibrations are connected by the image-comprehension adjunction.
All together, this forms a higher-order dependent type theory.

Theorem (W., Stay)

The construction which sends a topos to its internal language
L(E) = 〈πΩE, π∆E, iE, cE〉 defines a 2-functor L : Topos→ HDTΣ.

There are many questions about this functoriality of both theoretical and
practical importance.

Christian Williams, Mike Stay Native Type Theory ACT 2021 9 / 13

Functoriality

Predicates ϕ : A→ Ω correspond to subobjects c(ϕ)� A. More generally,
any p : P → A can be understood as a dependent type. The predicate
fibration πΩ embeds into the codomain fibration π∆.

The two fibrations are connected by the image-comprehension adjunction.
All together, this forms a higher-order dependent type theory.

Theorem (W., Stay)

The construction which sends a topos to its internal language
L(E) = 〈πΩE, π∆E, iE, cE〉 defines a 2-functor L : Topos→ HDTΣ.

There are many questions about this functoriality of both theoretical and
practical importance.

Christian Williams, Mike Stay Native Type Theory ACT 2021 9 / 13

Applications: behavior

In a concurrent language like the ρ-calculus, the basic rule is
communication.

comm(n, q, λx .p) : out(n, q)|in(n, λx .p) p[@q/x]

The graph of rewrites is the space of all computations.

g(S)(p1, p2) = {e | S ` e : p1 p2}

We can filter to subspaces: the type of communications on channels in α,
sending data in ψ, and continuing in contexts λx .c : [N, P] such that
χ(n)⇒ F (χ)(c[n/x]) can be constructed as a native type.

Σe:comm(α,ϕ, χ.F).g

We can then construct modalities relative to these subspaces, as well as
behavioral equivalences.

Christian Williams, Mike Stay Native Type Theory ACT 2021 10 / 13

Applications: behavior

In a concurrent language like the ρ-calculus, the basic rule is
communication.

comm(n, q, λx .p) : out(n, q)|in(n, λx .p) p[@q/x]

The graph of rewrites is the space of all computations.

g(S)(p1, p2) = {e | S ` e : p1 p2}

We can filter to subspaces: the type of communications on channels in α,
sending data in ψ, and continuing in contexts λx .c : [N, P] such that
χ(n)⇒ F (χ)(c[n/x]) can be constructed as a native type.

Σe:comm(α,ϕ, χ.F).g

We can then construct modalities relative to these subspaces, as well as
behavioral equivalences.

Christian Williams, Mike Stay Native Type Theory ACT 2021 10 / 13

Applications: refined binding

In the ρ-calculus, in(n, λx .c) receives whatever is sent on the name n. We
can refine input to receive only data which satisfies a predicate.

commα(n, p, λx .c) : outα(n, p)|inα(n, λx .c) c[@p/x]

The refinement of the ρ-calculus is the subtheory in which the only
rewrite constructors are commα for each namespace.

Then in(n, λx :α.p) can be understood as a query for α: a predicate on
structured data, a set of trusted addresses. In the refined language, we can
search by both structure and behavior.

Christian Williams, Mike Stay Native Type Theory ACT 2021 11 / 13

Applications: predicate hom

Given ϕ : A→ Prop and ψ : B → Prop, the predicate hom is defined

[ϕ,ψ] : [A,B]→ Prop

[ϕ,ψ](f) = ∀a:A ϕ(a)⇒ ψ(f (a))

Example

We can detect security leaks: given a trusted channel a : N and an
untrusted n : N, then the following program will not preserve safety on a.

(− | out(a, in(n, λx .c))) : safe(a)B ¬[safe](a)

We can also detect if a program may not remain single-threaded:

out(a, (− | q)) : single.threadBact ¬[s.thread]

where Bact is the arrow relative to the observational transition system.

Christian Williams, Mike Stay Native Type Theory ACT 2021 12 / 13

Going forward: join us!

Two main kinds of application:

Debug, condition, and query existing codebases.

Expand software capability with native types.

The tools necessary for implementation already exist.
Contact us: cwill041@ucr.edu, stay@pyrofex.net.

Thank you!

C. Williams and M. Stay, Native Type Theory. arXiv:2102.04672

Christian Williams, Mike Stay Native Type Theory ACT 2021 13 / 13

