Commutative Monads of Valuations

EM-algebras and Kegelspitzen

Semantics

Conclusion 00

Commutative Monads for Probabilistic Programming Languages

Xiaodong Jia, Bert Lindenhovius, Michael Mislove and Vladimir Zamdzhiev

Applied Category Theory 16 July 2021

Commutative Monads of Valuations

EM-algebras and Kegelspitzen

Semantics 00 Conclusion 00

Motivation

- Probability and recursion are important computational effects.
- Domain Theory staple of denotational study of recursion.
- Adding probability to domain-theoretic approach has been difficult.
- Canonical approach: Kleisli category of the valuations monad \mathcal{V} [1].
- Two major open problems unsolved since 1989.
- Many experts have considered other denotational approaches to combining probability and recursion: probabilistic coherence spaces, quasi-Borel spaces, measurable cones and others.
- We show domain theory can combine probability and recursion in an *elegant* way.

^[1] Jones and Plotkin. "A probabilistic powerdomain of evaluations." LICS 1989.

Background: Domain Theory (Dcpo's)

- Domain theory provides an order-theoretic view of computation and recursion.
- Two main classes of objects in domain theory: *dcpo's* and *domains*.
- A nonempty subset A of a *poset* D is *directed* if each pair of elements in A has an upper bound in A.
- A *directed-complete partial order* (dcpo) is a poset in which every directed subset *A* has a supremum sup *A*.
 - **Example:** the unit interval [0, 1] is a dcpo in the usual ordering.
 - Example: the open sets of a topological space in the inclusion order.
- A function *f* : *D* → *E* between two dcpo's is *Scott-continuous* if it is monotone and preserves suprema of directed subsets.
- The category **DCPO** of dcpo's and Scott-continuous functions is *cartesian closed*, complete and cocomplete.
- The category **DCPO** is very important for denotational semantics.

Background: Domain Theory (Domains)

- We say x is way-below y (x ≪ y) iff for every directed set A with y ≤ sup A, there is some a ∈ A, s.t. x ≤ a.
- We write $\downarrow y = \{x \in D \mid x \ll y\}.$
- A basis for a dcpo D is a subset B satisfying ↓ x ∩ B is directed and x = sup ↓ x ∩ B, for each x ∈ D.
- A dcpo *D* is *continuous* if it has a basis.
- Continuous dcpo's are also called *domains*. The category of domains and Scott-continuous maps is denoted by **DOM**.
- Domains may be thought of as very well-behaved dcpo's.
- **Problem:** The category **DOM** is *not* cartesian closed.

Commutative Monads of Valuations

Conclusion

Background: Domain Theory (Scott Topology)

- The order on a dcpo X induces a canonical topology σX, called the *Scott-topology*.
- The Scott topology σD on a dcpo D consists of the upper subsets
 U = ↑U = {x ∈ D | ∃u ∈ U. u ≤ x} that are *inaccessible by directed suprema*:
 i.e., if A ⊆ D is directed and sup A ∈ U, then A ∩ U ≠ Ø.
- The topological space $(D, \sigma D)$ is also written as ΣD .
- $f: X \to Y$ is Scott-continuous iff f is continuous w.r.t. ΣX and ΣY .

Conclusion

Background: Probability and Recursion

- How to talk about recursion and probability?
- Why not just take Meas(X), the set of subprobability measures on the Borel σ -algebra induced by the Scott-topology of a dcpo X?
- Because it is unclear how to extend the assignment Meas(-) to a monad over **DCPO**.
- A monadic semantics over **DCPO** seems very unlikely with this approach.

Commutative Monads of Valuations

EM-algebras and Kegelspitzen

Semantics

Conclusion 00

Background: Valuations

- The domain-theoretic approach to probability is based on valuations [1].
- A subprobability valuation on a dcpo X is a Scott-continuous map $\nu : \sigma X \to [0, 1]$, which is strict $(\nu(\emptyset) = 0)$ and modular $(\nu(U) + \nu(V) = \nu(U \cup V) + \nu(U \cap V))$.
 - Example: The always-zero valuation 0.
 - **Example:** For $x \in X$, δ_x is defined as $\delta_x(U) = 1$ if $x \in U$ and $\delta_x(U) = 0$ otherwise.
- The set of subprobability valuations on a dcpo X, denoted VX, is a *pointed dcpo* in the stochastic order: ν₁ ≤ ν₂ iff ∀U ∈ σX.ν₁(U) ≤ ν₂(U).
- Remark: Valuations are similar to Borel measures and in some cases coincide.

^[1] Jones and Plotkin. "A probabilistic powerdomain of evaluations." LICS 1989.

Commutative Monads of Valuations

Background: Valuations Monad

- The assignment $\mathcal{V}(-)$ can be equipped with the structure of a *strong monad*.
- Given $h: D \to E$, define $\mathcal{V}(h): \mathcal{V}D \to \mathcal{V}E :: \nu \mapsto \lambda U.\nu(h^{-1}(U)).$
- The unit of \mathcal{V} is given by $\eta_D \colon D \to \mathcal{V}D :: x \mapsto \delta_x$.
- A notion of integration can be defined. Given $\nu \in \mathcal{V}X$ and $f: X \to [0, 1]$ Scott-continuous, we can define the *integral of f against* ν by:

$$\int_{x\in X} f(x)d\nu \stackrel{\mathrm{def}}{=} \int_0^1 \nu(f^{-1}((t,1]))dt.$$

- The multiplication is given by $\mu_D \colon \mathcal{VVD} \to \mathcal{VD} :: \varpi \mapsto \lambda U. \int_{\nu \in \mathcal{VD}} \nu(U) d\varpi$.
- The strength is $\tau_{DE} \colon D \times \mathcal{V}E \to \mathcal{V}(D \times E) :: (x, \nu) \mapsto \lambda U. \int_{y \in E} \chi_U(x, y) d\nu.$

Conclusion 00

Background: Problems of the Valuations Monad

- The monad \mathcal{V} is *strong* on **DCPO** and *commutative* on **DOM** [2].
- Two major open problems since 1989:
 - Problem: Is \mathcal{V} a commutative monad on DCPO?
 - **Problem (Jung-Tix):** Find a cartesian closed category of *domains* on which \mathcal{V} is a commutative monad.
- Having a domain-theoretic model with a *commutative valuations monad* over a *cartesian closed category* is important for the semantics. Do they exist?

Jones. Probabilistic non-determinism. PhD Thesis, University of Edinburgh, 1990.

Commutative Monads of Valuations

Conclusion 00

Our approach

- How to construct a domain-theoretic model for probability and recursion:
 - such that we have a commutative monad of valuations; and
 - such that this monad is taken over a *cartesian closed category*?
- Our approach and our results:
 - we describe a commutative monad of valuations \mathcal{M} on **DCPO** (cartesian closed);
 - $\mathcal{M}X \subseteq \mathcal{V}X$ for every dcpo X; in fact, \mathcal{M} is a *submonad* of \mathcal{V} ;
 - \mathcal{M} coincides with \mathcal{V} on domains;
 - \mathcal{M} contains enough valuations for semantics: we show how to define a sound and (strongly) adequate interpretation of PFPC using \mathcal{M} ;
 - we characterise the Eilenberg-Moore algebras of *M* over **DOM** by showing **DOM**^{*M*} = **DOM**^{*V*} is isomorphic to the category of continuous Kegelspitzen [3];
 - our constructions use *topological methods* and we construct *two additional* such monads with all of the above properties.

^[3] Keimel and Plotkin. Mixed powerdomains for probability and nondeterminism. LMCS, 2017.

Commutative Monads of Valuations •0000 $\begin{array}{l} \mathsf{EM}\text{-}\mathsf{algebras} \ \mathsf{and} \ \mathsf{Kegelspitzen} \\ \texttt{000} \end{array}$

emantics 0 Conclusion

$$\mathsf{Fubini} \iff \mathsf{Commutativity} \text{ of } \mathcal{V}$$

 $\bullet\,$ Commutativity of the monad ${\cal V}$ is equivalent to showing the Fubini-style equation

$$\int_{x\in D}\int_{y\in E}\chi_U(x,y)d\xi d\nu = \int_{y\in E}\int_{x\in D}\chi_U(x,y)d\nu d\xi$$

for dcpo's D and E, for $U \in \sigma(D \times E)$ and for $\nu \in \mathcal{VD}, \xi \in \mathcal{VE}$.

• This equation is known to hold for *simple* valuations, directed suprema of simple valuations, directed suprema of directed suprema of simple valuations, etc.

Commutative Monads of Valuations

EM-algebras and Kegelspitzen

Semantics

Conclusion 00

Simple Valuations

- $\mathcal{V}X$ has a convex structure: if $\nu_i \in \mathcal{V}X$ and $r_i \ge 0$, with $\sum_{i=1}^n r_i \le 1$, then the convex sum $\sum_{i=1}^n r_i \nu_i \stackrel{\text{def}}{=} \lambda U$. $\sum_{i=1}^n r_i \nu_i(U)$ also is in $\mathcal{V}X$.
- The simple valuations on a dcpo X are those of the form $\sum_{i=1}^{n} r_i \delta_{x_i}$, where $r_i \ge 0$ and $\sum_{i=1}^{n} r_i \le 1$.
- The set of simple valuations on X is denoted by SX.
- $SX \subseteq VX$, but SX is not a dcpo in general.

Conclusion

A Commutative Monad of Valuations

- To interpret *discrete* probabilistic choice in programming, it suffices:
 - 1. to take a class of valuations that contains the simple valuations;
 - 2. this class of valuations should be closed under directed suprema (for recursion).
- **Definition:** For each dcpo *D*, we define *MD* to be the intersection of all sub-dcpo's of *VD* that contain *SD*.
- In other words, $\mathcal{M}D$ is the smallest sub-dcpo of $\mathcal{V}D$ that contains $\mathcal{S}D$.
- Theorem: \mathcal{M} is a commutative monad on DCPO. Its monad operations are (co)restrictions of those of \mathcal{V} .
- **Remark:** *MD* is *not* the dcpo-completion of *SD*, in general. It is a *topological completion* of *SD* within *VD*.

Conclusion

The Monad $\mathcal M$ as a Topological Completion

- Given a dcpo *D*, the *d-topology* on *D* is the topology whose closed subsets consist of sub-dcpo's of *D*.
- Given a subset $C \subseteq D$, the *d*-closure of C in D is the topological closure of C w.r.t the d-topology on D.
- $\mathcal{M}D$ is precisely the d-closure of $\mathcal{S}D$ in $\mathcal{V}D$.
- This view is a lot more useful for establishing the required proofs.
- We obtain *two additional* commutative monads by taking suitable completions of *SD* in *VD*.

Commutative Monads of Valuations

Conclusion 00

K-categories, Completions and Commutative Monads

- A K-category is a full subcategory of the category **T**₀ of *T*₀-spaces satisfying properties that imply it determines a *completion* of each of its objects.
- Example: The category D of *d-spaces* and continuous maps.
- **Example:** The category $SOB \subseteq D$ of *sober spaces* and continuous maps.
- **Example**: The category $WF \subseteq D$ of *well-filtered spaces* and continuous maps.
- Theorem: Any K-category K with $K \subseteq D$ determines a commutative valuations monad \mathcal{V}_K on DCPO.
- The monad \mathcal{M} is recovered as $\mathcal{M} = \mathcal{V}_{\mathbf{D}}$.
- Two additional commutative monads: $\mathcal{P}=\mathcal{V}_{\textbf{SOB}}$ and $\mathcal{W}=\mathcal{V}_{\textbf{WF}}.$
- $SD \subseteq MD \subseteq WD \subseteq PD \subseteq VD$ for each dcpo D.
- All subsequent results hold for all three monads $\mathcal{M},\,\mathcal{W}$ and $\mathcal{P}.$

Commutative Monads of Valuations

EM-algebras and Kegelspitzen $_{\odot \odot}$

Semantics

Conclusion

Definition of Kegelspitzen

The EM-algebras of ${\cal M}$ and ${\cal V}$ over domains may be characterised using Kegelspitzen. Definition

A barycentric algebra is a set A equipped with a binary operation a + r b for $r \in [0, 1]$ such that for all $a, b, c \in A$ and $r, p \in [0, 1]$, the following equations hold:

$$a +_1 b = a;$$
 $a +_r b = b +_{1-r} a;$ $a +_r a = a;$
 $(a +_p b) +_r c = a +_{pr} (b +_{\frac{r-pr}{1-pr}} c)$ provided $r, p < 1.$

Definition

A pointed barycentric algebra is a barycentric algebra A with a distinguished element \bot . For $a \in A$ and $r \in [0, 1]$, we define $r \cdot a \stackrel{\text{def}}{=} a +_r \bot$. A map $f : A \to B$ between pointed barycentric algebras is called *linear* if $f(\bot_A) = \bot_B$ and $f(a +_r b) = f(a) +_r f(b)$ for all $a, b \in A, r \in [0, 1]$.

Commutative Monads of Valuations

EM-algebras and Kegelspitzen $_{\odot \bullet \odot}$

Semantics

Conclusion

Definition of Kegelspitzen (Contd.)

Definition

A Kegelspitze is a pointed barycentric algebra K equipped with a directed-complete partial order such that, for every r in the unit interval, the functions determined by convex combination $(a, b) \mapsto a +_r b \colon K \times K \to K$ and scalar multiplication $(r, a) \mapsto r \cdot a \colon [0, 1] \times K \to K$ are Scott-continuous in both arguments. A continuous Kegelspitze is a Kegelspitze that is a domain in the equipped order.

- Kegelspitzen [3] are dcpo's equipped with a convex structure.
- Example: The real unit interval [0, 1] is a continuous Kegelspitze.
- **Example:** For every dcpo X, both $\mathcal{M}X$ and $\mathcal{V}X$ are Kegelspitzen. If X is a domain then $\mathcal{M}X = \mathcal{V}X$ is a continuous Kegelspitze.

^[3] Keimel and Plotkin. Mixed powerdomains for probability and nondeterminism. LMCS, 2017.

Commutative Monads of Valuations

Conclusion 00

Kegelspitzen and EM-algebras

- Theorem: The Eilenberg-Moore category DOM^M of M over DOM is isomorphic to the category of continuous Kegelspitzen and Scott-continuous linear maps.
- Remark: $DOM^{\mathcal{M}} = DOM^{\mathcal{V}}$ and this corrects an error in the thesis of Jones.
- In every Kegelspitze K, one can define the subconvex sum: for a_i ∈ K, r_i ∈ [0, 1], with ∑_{i=1}ⁿ r_i ≤ 1, then ∑_{i=1}ⁿ r_ia_i is also in K and this expression is Scott continuous in each r_i and a_i.
- A countable convex sum may also be defined: given $a_i \in K$ and $r_i \in [0, 1]$, for $i \in I$, with $\sum_{i \in I} r_i \leq 1$, let $\sum_{i \in I} r_i a_i \stackrel{\text{def}}{=} \sup\{\sum_{j \in J} r_j a_j \mid J \subseteq I \text{ and } J \text{ is finite}\}$.

Commutative Monads of Valuations

EM-algebras and Kegelspitzen

Semantics • O Conclusion

The Kleisli Category of ${\cal M}$

- The Kleisli category $DCPO_{\mathcal{M}}$ of \mathcal{M} over DCPO:
 - Inherits coproducts from **DCPO**.
 - Has a symmetric monoidal structure induced by the commutative monad \mathcal{M} .
 - Contains the structure of a Kleisli exponential, because DCPO is a CCC.
 - Is enriched over Kegelspitzen; the Kleisli adjunction is DCPO-enriched.
 - Has sufficient structure to solve recursive domain equations.
- This means $DCPO_M$ has sufficient structure for the semantics of probabilistic programming languages with discrete probabilistic choice.

Commutative Monads of Valuations

Conclusion 00

Denotational Semantics for PFPC

- PFPC is a type system with: function types, pair types, sum types, recursive types and (induced) term recursion, discrete probabilistic choice.
 - No restrictions on admissible logical polarities when forming recursive types.
- Judgements $\Gamma \vdash M : A$ are interpreted as Scott-continuous $\llbracket M \rrbracket : \llbracket \Gamma \rrbracket \to \mathcal{M}\llbracket A \rrbracket$.
- **Theorem:** The system PFPC may be interpreted in the Kleisli category **DCPO**_M. This interpretation is sound and strongly adequate:

$$\llbracket M \rrbracket = \sum_{M \xrightarrow{p} M'} p \llbracket M' \rrbracket \qquad \llbracket M \rrbracket = \sum_{V \in \operatorname{Val}(M)} P(M \to_* V) \llbracket V \rrbracket.$$

- Remark: The same results hold *verbatim* when \mathcal{M} is replaced by \mathcal{P} or \mathcal{W} .
- **Remark:** The interpretation of every closed term is a *discrete* valuation.

Commutative Monads of Valuations

Conclusion • O

Conclusion and Future Work

- Three commutative submonads of $\mathcal{V} : \mathbf{DCPO} \rightarrow \mathbf{DCPO}$.
- Characterised the EM-algebras of our monads (and $\mathcal{V})$ on domains as exactly the continuous Kegelspitzen.
- Sound and strongly adequate denotational semantics for PFPC.
- Future Work: Continuous probabilistic choice?
 - We recently discovered a fourth commutative submonad $\mathcal{Z} : \mathbf{DCPO} \rightarrow \mathbf{DCPO}$.
 - It is constructed using *algebraic* ideas, not topological ones.
 - $SD \subseteq MD \subseteq WD \subseteq PD \subseteq ZD \subseteq VD$ for each dcpo D.
 - $\mathcal{Z} = \mathcal{V}$ iff \mathcal{V} is commutative (open problem for 32 years).
 - We believe \mathcal{Z} could be suitable for continuous probabilistic choice (work-in-progress).

Introductio	n
00000000	0

Commutative Monads of Valuations

EM-algebras and Kegelspitzen

Semantics

Conclusion

Thank you for your attention!