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The formal definition of monads

The formal definition of monads due to Benábou (1967).

A monad in a 2-category K is a monoid object (A, s, µ, η) = (A, s)
in the category K(A,A), for some A ∈ K.

Equivalently: A monad in a 2-category K is a lax functor 1 −→ K
from the terminal 2-category 1 to K.

For each 2-category K, this defines a 2-category

Mnd(K) = LaxFun(1,K)



EM-objects

Eilenberg-Moore objects (Street, 1972)
For each monad (A, s) in a 2-category K, there is a 2-functor

Kop −→ Cat : X 7−→ K(X ,A)K(X ,s)

If this 2-functor is representable, As is the representing object, and
is called the Eilenberg–Moore (EM) object of the monad (A, s).

That is,

K(X ,As) ∼= K(X ,A)K(X ,s)

2-naturally in the arguments.

Example: in 2-category Cat, EM-objects are usual
Eilenberg-Moore categories for the monad.



The construction of EM-algebras

A 2-category K admits the construction of EM-algebras when the
obvious inclusion 2-functor

K −→ Mnd(K) : X 7−→ (X , 1)

has a right adjoint EM : Mnd(K) −→ K.

Fact: For a monad (A, s) in K

Mnd
(
K
)(

(X , 1), (A, s)
) ∼= K(X ,A)K(X ,s)

Therefore,

Theorem
K admits the construction of EM-algebras if and only if K has all
EM-objects.



Free completion under EM-objects

EM objects are weighted limits (Street, 1976) =⇒ free completion
under EM objects.

Theorem (Lack & Street, 2002)
For a 2-category K, there is a 2-category EM(K) having
EM-objects and fully faithful Z : K −→ EM(K) with

K EM(K)

L

Z //

�� ��

;C



Free completion, cont.

The Eilenberg-Moore completion can also be given an explicit
description (Lack & Street, 2002). EM(K) has:

objects as monads (A, s) of K
1-cells as morphisms of monads (u, φ) : (A, s) −→ (B, t)
2-cells ρ : (u, φ) −→ (v , ψ) as 2-cells ρ in K suitably
commuting with a “Kleisli composition”.

In general, EM(K) 6≈ Mnd(K)

But: E : Mnd(K) −→ EM(K), which is identity on 0- and 1-cells



Frobenius monads

A monad (X , t, µ, η) in a 2-category K is a Frobenius monad if
there is a comonad (X , t, δ, ε) such that the Frobenius law is
satisfied:

tµ · δt = δ · µ = µt · tδ

Example: One-object 2-category Σ(Vectk) = the suspension and
strictification of Vectk . A Frobenius monad in Σ(Vectk) is just
usual notion of a Frobenius algebra; that is, a k-algebra A with a
nondegenerate bilinear form σ : A× A −→ k that satisfies:

σ(ab, c) = σ(a, bc)



Frobenius monads, cont.

Theorem (Lauda, 2006)
For 1-cells f : A −→ B and u : B −→ A in a 2-category K, if
f a u a f is an ambidextrous adjunction, then the monad uf
generated by the adjunction is a Frobenius monad.

Corollary (Lauda, 2006)
Given a Frobenius monad (X , t) in a 2-category K, in EM(K) the
left adjoint f t : X −→ X t to the forgetful 1-cell ut : X t −→ X is
also right adjoint to ut . Hence, the Frobenius monad (X , t) is
generated by an ambidextrous adjunction in EM(K).

In particular, every Frobenius algebra (and hence every 2D TQFT)
is generated by an ambidextrous adjunction in EM(Σ(Vectk)).



Characterising Frobenius algebras

Question: Under appropriate conditions, can we more directly
characterize Frobenius objects in a monoidal category? That is, via
construction?

Given a Frobenius monad, can we define an appropriate
notion of a “Frobenius-Eilenberg-Moore object”?
Can we describe FEM-objects as some kind of limit as well as
the completion of a 2-category under such FEM-objects like is
done for the EM construction?
Is there an explicit description of this FEM-completion similar
to the EM-completion?



Frobenius categories

Theory of accessible categories: A category C is accessible if it
is equivalent to Ind(S) for some category S.

Theory of locally connected categories: A category C is locally
connected if it is equivalent to Fam(S) for some category S.

Question: Can we develop the theory of Frobenius categories, i.e.
A category C is Frobenius if it is equivalent to FEM(S) for some
category S.



Wreaths

A wreath
(
(A, t), (s, λ), σ, ν

)
is an object of EM(EM(K)).

Examples: The crossed product of Hopf algebras, factorization
systems on categories.

EM is an endo-2-functor 2-Cat −→ 2-Cat, the universal property of
the EM construction determines a 2-functor

wrK : EM(EM(K)) −→ EM(K)

called the wreath product, and there is the embedding 2-functor

idK : K −→ EM(K)

sending objects in K to the identity monad on them. In total
(EM,wr, id) is a 2-monad.



Frobenius wreaths

A wreath
(
(A, t), (s, λ), σ, ν

)
in a 2-category K is called Frobenius

when, considered as a monad in EM(K), it is a Frobenius monad.

Theorem (Street, 2004)
The wreath product of a Frobenius wreath on a Frobenius monad
is Frobenius.

For our proposed FEM construction and its universal property, this
result is immediate since:

wrD : FEM(FEM(D)) −→ FEM(D)



Dagger categories
A dagger category D is a category with an involutive functor
† : Dop −→ D which is the identity on objects.

A dagger functor between dagger categories is a functor which
preserves daggers.

A monoidal dagger category is a dagger category that is also a
monoidal category, satisfying (f ⊗ g)† = f † ⊗ g† and, whose
coherence morphisms are unitary.

Examples:
Any groupoid, with f † = f −1.
The category Hilb of complex Hilbert spaces and bounded
linear maps, taking the dagger of f : A −→ B to be its
adjoint, i.e. the unique linear map f † : B −→ A satisfying
〈f (a), b〉 = 〈a, f †(b)〉 for all a ∈ A and b ∈ B.



Dagger 2-categories

A 2-category D is a dagger 2-category when the hom-categories
D(A,B) are dagger categories, and horizontal and vertical
composition commute with daggers.

Example: The dagger 2-category DagCat of dagger categories,
dagger functors and natural transformations.

A 2-functor is a dagger 2-functor when each of its component
functors are dagger functors.



Dagger Frobenius monads

A monad (D, t, µ, η) in a dagger 2-category D is a dagger
Frobenius monad (Heunen and Karvonen, 2016) if the Frobenius
law is satisfied:

tµ · µ†t = µ† · µ = µt · tµ†

Example: A dagger Frobenius monoid in a monoidal dagger
category D is a monoid which satisfies the Frobenius law. In fact:

B dagger Frobenius monoid ⇐⇒ −⊗ B dagger Frobenius monad



FEM-algebras

Frobenius-Eilenberg-Moore algebras (Heunen & Karvonen, 2016)
A Frobenius-Eilenberg-Moore algebra for a dagger Frobenius
monad (T , µ, η) is an Eilenberg-Moore algebra (D, δ) for T , such
that:

µD · T (δ)† = T (δ) · µ†D

Example: Free algebras for a dagger Frobenius monad are
FEM-algebras.

FEM(D,T ) ⊆ DT is the “largest” subcategory of DT having a
dagger.



Quantum measurements

Example (Heunen & Karvonen, 2016): If B is a dagger Frobenius
monoid in FHilb, a FEM-algebra (D, δ) for the dagger Frobenius
monad

T = −⊗ B : FHilb −→ FHilb

corresponds precisely to quantum measurements on D: orthogonal
projections on D that sum to the identity.



FEM-algebras

Lemma
Let T be a dagger Frobenius monad. An EM-algebra (D, δ) is a
FEM-algebra if and only if

δ† : D −→ T (D)

is a homomorphism of EM-algebras (D, δ) −→ (T (D), µD).

Proof (one direction): A morphism f is self-adjoint if f † = f .

T (D) T 2(D)

D T (D)

=⇒ µD · T (δ†) = δ† · δ = T (δ) · µ†D

T (δ†) //

δ

��

µD

��

δ†
//



Dagger Frobenius monads

The dagger 2-category DFMnd(D) should obey a “daggerfied”
universal property: for a dagger Frobenius monad (D, t, µ, η) in D

DFMnd(D)
(
(X , 1), (D, t)

) ∼= FEM(D(X ,D),D(X , t))

That is, (f : X −→ D, σ : tf −→ f ) is a FEM-algebra for D(X , t)
iff:

tf f

ttf

tf f

σ //

tσ
;;

µf ##
σ

//

tf f

f

σ //

ηf

bb



Dagger Frobenius monads, cont.

But also by previous lemma

σ† : (f , σ) −→
(
D(X , t)(f ),D(X , µ)(f )

)
= (tf , µf )

is a homomorphism of Eilenberg-Moore algebras for the monad
D(X , t).

σ† · σ = µf · tσ† ⇐⇒

f f

tf

ttf tf

σ
;;

tσ† ##

σ†

��

µf
//



Dagger lax functors
A dagger lax functor F : D −→ C between dagger 2-categories is a
lax functor satisfying an additional Frobenius axiom...

Equivalently: A dagger Frobenius monad in a dagger 2-category
D is a dagger lax functor 1 −→ D from the terminal 2-category 1
to D. So

DFMnd(D) = DagLaxFun(1,D)
Dagger lax-natural transformations, dagger lax modifications,
dagger lax limits,...

FEM(D, t) FEM(D, t)

D D

A A

ut

��

t
//

ut

��

u

''

u

ww

n
%%

ξ 5=

σ 5=



FEM-objects

Frobenius-Eilenberg-Moore objects
For each dagger Frobenius monad (D, t) in a dagger 2-category D,
there is a dagger 2-functor

Dop −→ DagCat
X 7−→ FEM(D(X ,D),D(X , t))

If this dagger 2-functor is representable, FEM(D, t) is the
representing object, and is called the Frobenius-Eilenberg–Moore
(FEM) object of (D, t).

That is,

D(X ,FEM(D, t)) ∼= FEM(D(X ,D),D(X , t))

dagger 2-naturally in the arguments.



Important properties

Theorem
FEM(D,T ) is FEM-object for a dagger Frobenius monad (D,T )
in DagCat.

Theorem
Suppose (D, t) in D generated by the adjunction f a u : D −→ A
has a FEM-object. Then, there exists a unique 1-cell
n : A −→ FEM(D, t) – called the right comparison 1-cell – such
that utn = u and nf = f t .

D

A FEM(D, t)!∃n //

f

__

u
��

f t

??

ut

��



FK objects

Frobenius-Kleisli objects
A Frobenius-Kleisli object for a dagger Frobenius monad (D, t) in
D is dual to FEM(D, t). Denoted FK(D, t). In particular

D
(
FK(D, t),X

) ∼= FEM
(
D(D,X ),D(t,X )

)
2-natural in each of the arguments.

Theorem
Each dagger Frobenius monad T = (T , µ, η) on a dagger category
D has an FK-object, which is the Kleisli category DT of the
monad T .



Free cocompletions

Kelly (2005) provides very general theory of cocompletions. Hard
(impossible?) to transfer to the dagger context (e.g. Karvonen,
2019)

Build closure K via transfinite process: take [Kop,Cat] and start
with representables. At each stage, add colimits of the previous
stage.

Plan: imitate this for FK-objects without general theory.



Free cocompletions, cont.

Transfinite process ends in after one step. Proof: In [Dop,DagCat]

D(−,D)

F

GH

��

u

f

OO

��

u′

f ′

OO

''

u′′

f ′′

ii ))

FK(D) is replete, full dagger-sub-2-category of [Dop,DagCat] of
objects resulting from the single step.



Explicit definition

We want FEM(D) = KL(Dop)op. So we define FEM(D) as:
0-cells are dagger Frobenius monads in D
1-cells are the same as 1-cells in DFMnd(D)
A 2-cell (f , σ) −→ (g , γ) : (D, t) −→ (C , s) is a 2-cell
α : f −→ gt in D suitably commuting with a “Kleisli
composition”.

There is an embedding I : D −→ FEM(D), D 7−→ (D, 1).



Explicit definition, cont.

Theorem
When a dagger 2-category C has FEM-objects, there is an
equivalence of categories FEM(C) −→ C.

Proof: By bijection of mates under the adjunction f t a ut in D

(D, t)

(C , s)

(g ,γ)
��

(f ,σ)
��

α // 7−→

FEM(D, t) FEM(C , s)

D C

f
''

g

77
ρ
��

ut

��

us

��
f

&&

g

88



Universal property of FEM construction

Theorem
For a dagger 2-category D, and C a dagger 2-category with
FEM-objects, each dagger 2-functor extends to a FEM-object
preserving 2-functor

D FEM(D)

C

I //

�� ��

;C

That is,

[FEM(D), C]FEM ≈ [D, C]



Examples

Calculate FEM(Σ(FHilb)):

0-cells: (Heunen & Vicary, 2019)
Let G be a finite groupoid, and G its set of objects. The
assignments

1 7−→
∑
A∈G

idA f ⊗ g 7−→
{

f · g if f · g is defined
0 otherwise

define a dagger Frobenius monoid in FHilb. Any dagger Frobenius
monoid in FHilb is of this form.

1-cells: Any isometry f : A −→ B between 0-cells preserving
(co)multiplication and the unit. More generally, seem to be related
to the unitary transformations of fibre functors of D. Verdon.
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