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The constraint satisfaction problem (CSP) is a computational problem that includes a range of im-
portant problems in computer science. We point out that fundamental concepts of the CSP, such as
the solution set of an instance and polymorphisms, can be formulated abstractly inside the 2-category
PFinSet of finite sets and sets of functions between them. The 2-category PFinSet is a quantaloid,
and the formulation relies mainly on structure available in any quantaloid. This observation suggests
a formal development of generalisations of the CSP and concomitant notions of polymorphism in a
large class of quantaloids. We extract a class of optimisation problems as a special case, and show
that their computational complexity can be classified by the associated notion of polymorphism.

1 Introduction

1.1 Background

The constraint satisfaction problem (CSP) is a computational problem of determining whether it is possi-
ble to assign values to variables while satisfying all given constraints. The CSP provides a general frame-
work capturing a variety of problems in diverse fields such as artificial intelligence (see e.g., [38, 14, 33]),
theoretical computer science (e.g., [13]) and operations research (e.g., [17]), and has been studied from
both practical and theoretical points of view. Many heuristic algorithms have been developed and incor-
porated into CSP solvers, and these solvers are used for various purposes including corporate decision
making (e.g., [33, 6, 24]). Generalisations of the CSP are also widely studied; these include optimisation
problems (e.g., [41]) and counting problems (e.g., [10]).

Formally, a CSP instance I = (V,D,C ) is given by a finite set V of variables, a finite set D called
the domain, and a finite set C of constraints. Here, each constraint is a triple (k,x,ρ) consisting of
a natural number k called the arity, a k-tuple x ∈ V k of variables called the constraint scope, and a
k-ary relation ρ ⊆ Dk on D called the constraint relation of the constraint. A solution of I is a function
s : V → D satisfying all constraints, i.e., such that for each (k,x,ρ) ∈ C with x = (x1, . . . ,xk), we have
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2 Quantaloidal approach to constraint satisfaction

s(x) = (s(x1), . . . ,s(xk)) ∈ ρ . The set of all solutions of I is denoted by S (I), and is called the solution
set of I. To solve the CSP instance I is to output “yes” if there exists a solution of I, and “no” otherwise.

The following are two typical problems that can be modelled as CSPs.

Example 1.1. The Boolean satisfiability problem (SAT) is the problem of determining whether a given
conjunctive normal form (CNF) propositional formula is satisfiable or not. Here, a CNF formula is
a conjunction of clauses, a clause being a disjunction of literals, and a literal being a propositional
variable or its negation. For example, (x1∨ x2∨ x4)∧ (x1∨ x2∨ x2∨ x4)∧ (x2∨ x4) is a CNF formula. A
CNF formula ϕ(x1, . . . ,xn) can be thought of as a CSP instance Iϕ with V = {x1, . . . ,xn} and D = {0,1};
each clause ψ(xi1 , . . . ,xik) of ϕ gives rise to a constraint of Iϕ expressing the condition for a truth value
assignment to {xi1 , . . . ,xik} to make ψ true. For example, the clause (x1 ∨ x2 ∨ x4) corresponds to the
constraint (3,(x1,x2,x4),{0,1}3 \{(0,1,0)}).

A well-known subclass of SAT is 3-SAT, in which the input is restricted to a 3-CNF formula, i.e., a
CNF formula such that every clause is a disjunction of three literals. SAT and 3-SAT are fundamental in
computer science; for example they are among the first problems shown to be NP-complete [12, 28]. �

Example 1.2. Let k be a positive integer. In the graph k-colouring problem, we are given a simple
undirected graph, i.e., a pair consisting of a finite set V of vertices and a symmetric and irreflexive binary
relation E on V representing the adjacency relation. Our task is to determine whether it is possible
to assign k colours to the vertices so that adjacent vertices are assigned different colours. The graph
k-colouring problem is intensively studied in combinatorics (e.g., [16, 5]). It is known that the graph
k-colouring problem is in P (solvable in polynomial time) if k ≤ 2, and is NP-complete if k ≥ 3. To
formulate the graph k-colouring problem as a CSP, let Dk be the k-element set of colours and 6=k=
{(d1,d2) ∈ D2

k | d1 6= d2}. An instance (V,E) of the graph k-colouring problem can be cast as the CSP
instance (V,Dk,C ), where C = {(2,(v1,v2), 6=k) | (v1,v2) ∈ E }. �

A notable theoretical result in this field is the dichotomy theorem for CSPs [34, 8, 40]. To state
the theorem, we need some definitions. A constraint language is a pair (D,D) of a finite set D
and a finite family D = (Dk)k∈N ∈ ∏k∈NP(P(Dk)) of relations on D. Each constraint language
(D,D) determines the class CSP(D) consisting of all CSP instances (V,D′,C ) such that D′ = D and,
for each constraint (k,x,ρ) ∈ C , we have ρ ∈ Dk. For example, CSP(D) reduces to 3-SAT when
(D,D) =

(
{0,1},

{
{0,1}3 \{(d1,d2,d3)} | d1,d2,d3 ∈ {0,1}

})
, and to the graph k-colouring problem

(for possibly directed graphs with loops) when (D,D) = (Dk,{6=k}). Roughly, the dichotomy theorem
states that CSP(D) is in P if D satisfies a certain property, and is NP-complete otherwise. Notice that
this dichotomy result is highly nontrivial, given the fact that under the assumption P 6= NP, there exists an
infinite hierarchy of complexity classes (up to a polynomial time reduction) containing P and contained
in NP [25]. An interesting aspect of the dichotomy theorem is the fact that the border between P and
NP-completeness can be captured by a purely algebraic criterion based on the notion of polymorphism,
to which we now turn.

In the long chain of research devoted to the analysis of computational complexity of CSP(D) (e.g.,
[34, 20, 19, 15, 9, 7, 8, 40]), special attention has been paid to the symmetry of problems. The idea is
that a problem should be easy to solve if it admits enough symmetry. It is clear (at least intuitively) that
if a CSP instance has certain symmetry, then so does its solution set. For example, the graph k-colouring
problem is invariant under an arbitrary permutation of colours, and thus it follows that so is the solution
set of each of its instances. Although the symmetry of a mathematical object is often captured by its
group of automorphisms, this is not sufficient for the analysis of CSPs; for example, while the graph k-
colouring problem admits the maximum automorphism group, it is NP-complete if k≥ 3. It turns out that
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we need to enlarge the group of automorphisms to the clone of polymorphisms; here, a polymorphism of
a mathematical object X refers to a homomorphism from its finite power Xn to X .1

The adequacy of polymorphisms in the current context is well-attested by their crucial use in a precise
statement of the dichotomy theorem (Theorem 3.5): given a constraint language (D,D), CSP(D) is
in P if the relational structure (D,(ρ)k∈N,ρ∈Dk) admits a Siggers operation (see Definition 3.4) as a
polymorphism, and is NP-complete otherwise.

1.2 Our results

In this paper, we shed a new light on the CSP and its variants by formulating their fundamental concepts
in suitable quantaloids. A quantaloid is a particularly well-behaved 2-category, in which right extensions
and right liftings (right adjoints of precomposition and postcomposition by a morphism) always exist.

First we capture the ordinary CSP in the quantaloid PFinSet whose objects are finite sets, whose
morphisms A 7→ B are sets of functions A→ B, and whose 2-cells are given by the inclusion relation.
Observe that a k-ary relation ρ on a finite set D can be seen as a morphism ρ : [k] = {1, . . . ,k} 7→ D
in PFinSet. Thus each constraint (k,x,ρ) ∈ C of a CSP instance I = (V,D,C ) gives rise to the solid
arrows in the diagram below, from which we obtain the right extension ρ ↙{x}:

[k]

V

D.

{x}

ρ

ρ ↙{x}

As we shall see, ρ ↙ {x} : V 7→ D is precisely the set of all functions V → D satisfying the constraint
(k,x,ρ). Thus the solution set S (I) can be seen as the morphism V 7→ D in PFinSet expressed as
S (I) =

⋂
(k,x,ρ)∈C ρ ↙{x}.

We also give a quantaloidal formulation of polymorphisms. An n-ary polymorphism of a k-ary
relation ρ on D is a homomorphism of relational structures (D,(ρ))n → (D,(ρ)). The set Pol(ρ)n of
all n-ary polymorphisms of ρ can be seen as a morphism Dn 7→ D in PFinSet, and is expressed as
Pol(ρ)n = ρ ↙ ({πi}n

i=1 ↘ ρ), where ↘ denotes right lifting and the morphism {πi}n
i=1 : Dn 7→ D is

the set of projections. This provides a novel view to the set of polymorphisms of ρ as the “double
dualisation” with respect to ρ of the set of projections.

This quantaloidal reformulation of the ordinary CSP opens the way to a formal definition of the
quantaloidal CSP and the associated notion of polymorphism in an abstract setting. We shall sketch
such a definition in an arbitrary quantaloid of the form QA (see Example 2.7) generated by a quantale
(one-object quantaloid) Q and a locally small category A with finite products. In particular, we show
in this generality the claim that the solution set S (I) inherits the symmetry of an instance I, formulated
suitably in terms of Q-valued polymorphisms (Proposition 4.2).

We then instantiate this general framework by setting QA =RFinSet or RSet, where R is a quantale
of extended real numbers. In these cases, the quantaloidal CSP contains a certain class of optimisation
problems which we call the tropical valued CSP (TVCSP). The TVCSP is different from the more widely
studied optimisation variant of the CSP called the valued CSP (VCSP), but is able to formulate certain
scheduling problems as well as (via its infinitary variant) important concepts in continuous optimisation,

1Our usage of the term “polymorphism” follows a tradition in universal algebra (see e.g., [30]). In particular, it has nothing
to do with polymorphism in type theory and programming language theory, nor with poly-morphism in the sense of [29], which
incidentally refers to a morphism in the free quantaloid PA over a category A (see Example 2.6).
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such as quasiconvex functions and piecewise-linear convex functions. We shall establish a dichotomy
theorem for TVCSPs (satisfying suitable finiteness conditions) by reducing it to the dichotomy for CSPs.
The border between P and NP-hardness for TVCSPs can be captured by the notion of R-valued poly-
morphism, which is a special case of our general notion of Q-valued polymorphism.

Related work. Interaction between category theory and the field of algorithms and computational com-
plexity is rare, and to the best of our knowledge this is the first paper relating the CSP and 2-category
theory. We cite [23] as a recent paper applying categorical ideas to a generalisation of the CSP called
the promise CSP, although its approach and goal are entirely different from ours. A generalisation of the
CSP valued in a certain class of idempotent semirings has been introduced in [3, 2]. Whereas quantales
are an infinitary version of idempotent semirings, our definition of S (I) in the quantaloidal CSP is in-
comparable with the corresponding notion (called consistency level) in their framework. In a more recent
work [18], polymorphisms in the context of the above semiring-based generalised CSP are considered.
Over a fixed constraint language, their notion of instance can capture a wider class of problems than ours,
but as a consequence, their computational complexity results rely on extra assumptions; as the valuation
structure (corresponding to our Q), they adopt totally ordered commutative monoids whose unit element
is the largest element and satisfying certain finiteness conditions. We have not been able to find any clear
relationship between their notion of polymorphism and ours.

Outline. The remainder of this paper is organised as follows. In Section 2 we recall the notion of
quantaloid. In Section 3 we give a quantaloidal formulation of the CSP, and then proceed in Section 4 to
its generalisation in quantaloids of the form QA . Section 5 is devoted to the TVCSP; we introduce it as
a special case of the quantaloidal CSP, analyse its computational complexity and explore examples. For
reasons of space, all proofs are relegated to the appendix.

Acknowledgements. We thank Stanislav Živný for providing a comment on an early draft of this paper
and calling our attention to [18], and Takehide Soh for bibliographical information on CSP solvers [33,
6, 24].

2 Quantaloids

In this section we review the definition and basic structure of quantaloids. See e.g., [32, 37] for more
information on quantaloids.
Definition 2.1. A quantaloid is a locally small category K equipped with a partial order ≤A,B on each
hom-set K (A,B) such that

• for each A,B ∈K , (K (A,B),≤A,B) is a complete lattice;

• for each A,B,C ∈K , the composition law K (B,C)×K (A,B)→K (A,C) preserves arbitrary
suprema in each variable: for each set J and ϕ : A→ B, (ϕ j : A→ B) j∈J , ψ : B→C and (ψ j : B→
C) j∈J in K , we have(∨

j∈J

ψ j
)
◦ϕ =

∨
j∈J

(ψ j ◦ϕ) and ψ ◦
(∨

j∈J

ϕ j
)
=
∨
j∈J

(ψ ◦ϕ j).

A quantaloid whose set of objects is a singleton is called a quantale. Explicitly, a quantale is a tuple
Q = (Q,≤,e,⊗) such that (Q,≤) is a complete lattice, (Q,e,⊗) is a monoid, and the multiplication
⊗ : Q×Q→ Q preserves arbitrary suprema in each variable. �
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β +α
α

∞ s −∞

∞ ∞ ∞ ∞

β t ∞ t + s −∞

−∞ ∞ −∞ −∞

γ−β
β

∞ t −∞

∞ −∞ ∞ ∞

γ u −∞ u− t ∞

−∞ −∞ −∞ −∞

Table 1: The operation tables for β +α and γ −β (= γ ↙ β = β ↘ γ) in R. The symbols s, t and u
denote real numbers.

Note that a quantaloid K can be regarded as a 2-category, whose 2-cells are given by the partial
order relation ≤A,B on each hom-set (that is, there exists a necessarily unique 2-cell ϕ ⇒ ϕ ′ between
a parallel pair of morphisms ϕ,ϕ ′ : A→ B precisely when ϕ ≤A,B ϕ ′). Each quantaloid is a biclosed
2-category, meaning that right (Kan) extensions and right liftings always exist:

Proposition 2.2. Let K be a quantaloid. For each A,B,C ∈K , ϕ : A→ B and ψ : B→C in K , both

(−)◦ϕ : K (B,C)→K (A,C) and ψ ◦ (−) : K (A,B)→K (A,C) (1)

have right adjoints.

The right adjoints of (1) are denoted by

(−)↙ ϕ : K (A,C)→K (B,C) and ψ ↘ (−) : K (A,C)→K (A,B)

respectively. If θ : A→ C is a morphism in K , then the morphism θ ↙ ϕ : B→ C is called the right
extension of θ along ϕ , and ψ ↘ θ : A→ B the right lifting of θ along ψ . By the adjointness we have

ψ ≤B,C θ ↙ ϕ ⇐⇒ ψ ◦ϕ ≤A,C θ ⇐⇒ ϕ ≤A,B ψ ↘ θ . (2)

The following are formal properties of these operations in a quantaloid, which we shall use later.

Proposition 2.3. Let K be a quantaloid.

1. For each set J and ϕ : A→ B, (ϕ j : A→ B) j∈J , ψ : B→ C, (ψ j : B→ C) j∈J , θ : A→ C and
(θ j : A→C) j∈J in K , we have(∧

j∈J

θ j
)
↙ ϕ =

∧
j∈J

(θ j↙ ϕ), θ ↙
(∨

j∈J

ϕ j
)
=
∧
j∈J

(θ ↙ ϕ j),

ψ ↘
(∧

j∈J

θ j
)
=
∧
j∈J

(ψ ↘ θ j),
(∨

j∈J

ψ j
)
↘ θ =

∧
j∈J

(ψ j↘ θ).

2. For each ϕ : A→ B, ψ : B→C, θ : C→ D and γ : A→ D in K , we have

γ↙ (ψ ◦ϕ)= (γ↙ϕ)↙ψ, (θ ◦ψ)↘ γ =ψ↘ (θ↘ γ), θ↘ (γ↙ϕ)= (θ↘ γ)↙ϕ.

We conclude this section with several examples of quantales and quantaloids.

Example 2.4. The two-element quantale 2 = ({0,1},≤,0,∧) consists of the two-element chain (with
0≤ 1) equipped with the monoid structure given by infima (or conjunction). Since the multiplication ∧
is commutative, right extensions and right liftings coincide, and are given by implication. �
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Example 2.5 ([27]). The quantale R = (R∪{±∞},≥,0,+) of extended real numbers consists of the
totally ordered set of real numbers ordered by the opposite ≥ of the usual order ≤, extended with the
least element ∞ and the greatest element −∞, and equipped with (an extension of) the usual addition.
We have chosen the direction ≥ in order to match the standard setting of the VCSP, in which the goal is
usually to minimise a certain quantity rather than to maximise it. To avoid confusion, we shall use the
notations inf and sup to denote infima and suprema in R∪{±∞} with respect to the usual order ≤ (so
that e.g., inf{3,5}= 3). As a consequence, when we specialise certain formulas for general quantales to
the quantale R,

∨
is translated to inf and

∧
to sup. The requirement that + should preserve arbitrary

∨
(= inf) in each variable determines its extension to R∪{±∞} uniquely [27]. The right extensions and
right liftings coincide and are given by a suitable extension of subtraction; see Table 1.

Variants of R may be obtained for example by restricting to non-negative numbers [26] or to integers.
�

Example 2.6 ([31]). For any locally small category A , the free quantaloid PA on A has the same
objects as A , and for each A,B ∈ A , (PA )(A,B) is the powerset P(A (A,B)) equipped with the
inclusion order. An element f ∈A (A,B) is written as f : A→ B and ϕ ∈ (PA )(A,B) as ϕ : A 7→ B; we
shall adopt a similar convention throughout this paper. The composition of ϕ : A 7→ B and ψ : B 7→C is
defined as ψ ◦ϕ = {g ◦ f | f ∈ ϕ, g ∈ ψ }. Any morphism f : A→ B in A gives rise to a “singleton”
morphism { f} : A 7→ B in PA . The identity on A ∈PA is {idA}. Given ϕ : A 7→ B, ψ : B 7→ C and
θ : A 7→C in PA , we have

θ ↙ ϕ = {g ∈A (B,C) | ∀ f ∈ ϕ, g◦ f ∈ θ } and ψ↘ θ = { f ∈A (A,B) | ∀g ∈ψ, g◦ f ∈ θ }. (3)
�

Example 2.7. Given any quantale Q = (Q,≤,e,⊗) and any locally small category A , we can define the
quantaloid QA by setting ob(QA ) = ob(A ) and (QA )(A,B) = [A (A,B),Q] (the set of all functions
A (A,B)→ Q) equipped with the pointwise order. The composition of ϕ : A 7→ B and ψ : B 7→C maps
each h ∈A (A,C) to

(ψ ◦ϕ)(h) =
∨
{ψ(g)⊗ϕ( f ) | f ∈A (A,B), g ∈A (B,C), g◦ f = h}.

A morphism f : A→ B in A gives rise to a “singleton” morphism { f} : A 7→ B which assigns e to f and
the least element ⊥ of Q to all morphisms f ′ ∈ A (A,B) different from f . The identity on A ∈QA is
{idA}. The following slight generalisation of singleton morphisms will be used later; for each f : A→ B
in A and α ∈Q, we define the morphism { f}α : A 7→B by assigning α to f and⊥ to all other morphisms
in A (A,B). Given ϕ : A 7→ B, ψ : B 7→C and θ : A 7→C in QA , we have

(θ ↙ ϕ)(g) =
∧
{θ(g◦ f )↙ ϕ( f ) | f ∈A (A,B)} and

(ψ ↘ θ)( f ) =
∧
{ψ(g)↘ θ(g◦ f ) | g ∈A (B,C)}

for each g∈A (B,C) and f ∈A (A,B), where↙ and↘ inside the curly braces denote the right extension
and right lifting in Q, respectively. Observe that when Q = 2, we recover Example 2.6. �
Example 2.8. As a special case of Example 2.7 with Q=R, we obtain the quantaloid RA for any locally
small category A . A morphism ϕ : A 7→ B in RA is a function ϕ : A (A,B)→ R. The composition of
ϕ : A 7→ B and ψ : B 7→C in RA maps each h ∈A (A,C) to

(ψ ◦ϕ)(h) = inf{ψ(g)+ϕ( f ) | f ∈A (A,B), g ∈A (B,C), g◦ f = h}.

Given ϕ : A 7→ B, ψ : B 7→C and θ : A 7→C in RA , we have

(θ ↙ ϕ)(g) = sup{θ(g◦ f )−ϕ( f ) | f ∈A (A,B)} and

(ψ ↘ θ)( f ) = sup{θ(g◦ f )−ψ(g) | g ∈A (B,C)}. �
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3 CSPs and polymorphisms via PFinSet

As mentioned in the Introduction, a CSP instance I = (V,D,C ) and its solution set S (I)⊆ [V,D] can be
formulated inside the quantaloid PFinSet, where FinSet is the category of finite sets and functions. That
is, we regard both V and D as objects of PFinSet, and each constraint (k,x,ρ)∈C as a triple consisting
of the object [k] = {1, . . . ,k}, the (singleton) morphism {x} : [k] 7→ V and the morphism ρ : [k] 7→ D in
PFinSet. The solution set can be regarded as a morphism S (I) : V 7→ D in PFinSet, and may be
expressed as S (I) =

⋂
(k,x,ρ)∈C ρ ↙{x}, in light of (3).

Let us fix a constraint language (D,D). Observe that a CSP instance I = (V,D,C ) in CSP(D)
can be equivalently specified by giving for each k ∈ N and each ρ ∈ Dk, a k-ary relation σρ ⊆ V k on
V ; σρ is the set of all constraint scopes x ∈ V k such that (k,x,ρ) ∈ C . As is well-known, one can
view (V,(σρ)k∈N,ρ∈Dk) and (D,(ρ)k∈N,ρ∈Dk) as relational structures over a common relational signature,
and the solutions are precisely the homomorphisms between these relational structures [15, 19]. An
alternative, quantaloidal perspective is provided as follows. For each ρ ∈ Dk, σρ can be thought of as a
(not necessarily singleton) morphism σρ : [k] 7→V in PFinSet. With this notation, the solution set is

S (I) =
⋂
k∈N

ρ∈Dk

ρ ↙ σρ . (4)

Recall that to solve a CSP instance I is to decide whether it has a solution or not. This amounts
to deciding whether S (I) is empty or not. We can express this in the quantaloid PFinSet as well;
in Section 5 we shall see that the formally same construction captures the required output (the optimal
value) for a certain class of optimisation problems. The set [1] is the terminal object in FinSet (albeit not
so in PFinSet), and thus there exists a unique function !D : D→ [1]. This yields a canonical singleton
morphism {!D} : D 7→ [1] in PFinSet. The composition O(I)= {!D}◦S (I) : V 7→ [1] is empty precisely
when S (I) is empty, and is the singleton morphism {!V} otherwise. Therefore, to solve I is to determine
the morphism O(I) : V 7→ [1] (which can take two values, as PFinSet(V, [1]) = P({!V}) = { /0,{!V}}).

We now move on to polymorphisms, starting with a review of basic definitions. For any finite set A
and natural numbers n and k, an n-ary operation on A is a function f : An→ A, and a k-ary relation on
A is a subset ρ ⊆ Ak. We say that f is a polymorphism of ρ if for all (xi j) ∈ An×k we have(

ρ(x11, . . . ,x1k)∧·· ·∧ρ(xn1, . . . ,xnk)
)
=⇒ ρ( f (x11, . . . ,xn1), . . . , f (x1k, . . . ,xnk)). (5)

We denote the set of all n-ary polymorphisms of ρ by Pol(ρ)n.
We express the construction ρ 7→ Pol(ρ)n by means of basic operations in the quantaloid PFinSet.

First note that, as before, the relation ρ ⊆ Ak can be seen as a morphism ρ : [k] 7→ A in PFinSet.
Similarly, the antecedent of (5), namely the (n× k)-ary relation

{(xi j) ∈ An×k | ρ(x11, . . . ,x1k)∧·· ·∧ρ(xn1, . . . ,xnk)}

on A, can be regarded as a morphism ρ∧n : [k] 7→ An in PFinSet. We claim that ρ∧n is equal to the right
lifting {πi}n

i=1↘ ρ , where {πi}n
i=1 : An 7→A is the morphism in PFinSet defined as the set of projections

from the power An. Indeed, if the tuple (xi j) ∈ An×k corresponds to the function χ : [k]→ An (so that
χ( j) = (x1 j, . . . ,xn j) ∈ An), then the function πi ◦ χ : [k]→ A corresponds to the tuple (xi1, . . . ,xik) ∈ Ak,
hence the equality ρ∧n = {πi}n

i=1 ↘ ρ follows from (3). Now for each n ∈ N, the set of all n-ary
operations on A preserving ρ can be expressed as the right extension ρ ↙ ρ∧n, since

ρ ↙ ρ
∧n = { f : An→ A | ∀(xi j) ∈ ρ

∧n,( f (x11, . . . ,xn1), . . . , f (x1k, . . . ,xnk)) ∈ ρ },
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thus recovering the condition (5). Hence the set Pol(ρ)n of all n-ary polymorphisms of ρ can be written as
the “double dualisation” ρ↙

(
{πi}n

i=1↘ ρ
)

of {πi}n
i=1 with respect to ρ . Note that for each f : An→ A,

we have
f is a polymorphism of ρ ⇐⇒ {πi}n

i=1↘ ρ ⊆ { f}↘ ρ, (6)

because

f ∈ ρ ↙
(
{πi}n

i=1↘ ρ
)
⇐⇒ { f} ⊆ ρ ↙

(
{πi}n

i=1↘ ρ
)

⇐⇒ { f}◦
(
{πi}n

i=1↘ ρ
)
⊆ ρ

⇐⇒ {πi}n
i=1↘ ρ ⊆ { f}↘ ρ.

Given a family R = (Rk)k∈N ∈∏k∈NP(P(Ak)) of relations on A, we define for each n ∈ N,

Pol(R)n =
⋂
k∈N

ρ∈Rk

Pol(ρ)n.

Proposition 3.1. Let A be a finite set and R ∈∏k∈NP(P(Ak)).2

1. For each n ∈ N and i ∈ {1, . . . ,n}, the i-th projection πi : An→ A is in Pol(R)n.

2. For each m,n ∈ N, g ∈ Pol(R)m and f1, . . . , fm ∈ Pol(R)n, we have g ◦ 〈 f1, . . . , fm〉 ∈ Pol(R)n.
(Here, 〈 f1, . . . , fm〉 : An→ Am is the tupling of f1, . . . , fm : An→ A.)

Proposition 3.1 states that polymorphisms form a clone; recall that a (concrete) clone on a set A is a
family F ∈∏n∈NP([An,A]) of operations on A satisfying the following.

1. For each n ∈ N and i ∈ {1, . . . ,n}, the i-th projection πi : An→ A is in Fn.

2. For each m,n ∈ N, g ∈Fm and f1, . . . , fm ∈Fn, we have g◦ 〈 f1, . . . , fm〉 ∈Fn.
Let us now formalise the informal claim that if a problem has certain symmetry, then so does its

solution.
Proposition 3.2. Let A be a finite set.

1. If k ∈ N and (ρ j : [k] 7→ A) j∈J is a family of k-ary relations on A, then for each n ∈ N we have⋂
j∈J Pol(ρ j)n ⊆ Pol(

⋂
j∈J ρ j)n.

2. If k, l ∈ N, ρ : [k] 7→ A is a k-ary relation on A, and σ : [k] 7→ [l] is a morphism in PFinSet, then
for each n ∈ N we have Pol(ρ)n ⊆ Pol(ρ ↙ σ)n.

In view of (4), we immediately have the following.
Corollary 3.3. Let D be a finite set, D ∈∏k∈NP(P(Dk)) and I = (V,D,C ) ∈ CSP(D). Then for each
n ∈ N we have Pol(D)n ⊆ Pol(S (I))n.

We conclude this section with a precise statement of the dichotomy theorem. There are several
possible ways to phrase the theorem, the following being one of them (see [1, Theorem 41]).
Definition 3.4. A 4-ary operation f : D4→ D on a finite set D is said to be Siggers if it satisfies

f (y,x,y,z) = f (x,y,z,x)

for all (x,y,z) ∈ D3. �

Theorem 3.5 (Dichotomy theorem [8, 40]). Let D be a finite set and D a finite set of relations on D. If
some Siggers operation is a polymorphism of D , then CSP(D) is in P. Otherwise, it is NP-complete.

2Precisely speaking, the projection in clause 1 and the tupling in clause 2 must be taken with respect to the (chosen) set
{πi}n

i=1 of projections used in the definition of Pol(R). In particular, the property of being a polymorphism for R is not
invariant under composition of bijections. A similar remark applies to Proposition 4.1 below.
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4 The quantaloidal CSP

The above reformulation of CSPs and polymorphisms in the quantaloid PFinSet suggests that a certain
part of the mathematical theory of the CSP can be developed in a much broader context. In this section we
shall embark on such a development. Although the discussion below might look rather formal, we shall
apply it to a certain class of optimisation problems in the next section (which can be read independently
of this section). We remark that in the special case where Q = 2 (hence QA is the free quantaloid PA ),
some of the notions introduced below appear in [21].

Let us take any quantale Q = (Q,≤,e,⊗) and any locally small category A with finite products;
we shall work within the quantaloid QA instead of PFinSet. For objects A,K ∈ A , we define a
K-ary Q-valued relation on A to be a morphism K 7→ A in QA . Given such a Q-valued relation
ρ : K 7→ A and a natural number n, we define the (totality of) n-ary Q-valued polymorphisms for ρ as
Pol(ρ)n = ρ ↙

(
{πi}n

i=1↘ ρ
)
, where {πi}n

i=1 : An 7→ A is the morphism in QA defined as

{πi}n
i=1( f ) =

{
e if f is the i-th projection πi : An→ A for some i ∈ {1, . . . ,n},
the least element ⊥ of Q otherwise,

for all f ∈A (An,A). Notice that Pol(ρ)n is a morphism An 7→ A in QA , i.e., it assigns to each morphism
f : An → A in A an element Pol(ρ)n( f ) of Q, which may be thought of as the degree to which f is a
polymorphism of ρ .

Individual polymorphisms (as opposed to the totality of them) can then be defined as follows. An
(individual) n-ary Q-valued polymorphism for ρ : K 7→A is a pair ( f ∈A (An,A),α ∈Q) such that α ≤
Pol(ρ)n( f ). Using a notation introduced in Example 2.7, the latter condition is equivalent to {πi}n

i=1↘
ρ ≤ { f}α ↘ ρ; cf. (6). This in turn amounts to the following more explicit condition, generalising (5):
for any χ : K→ An in A , we have α⊗

(
ρ(π1 ◦χ)∧·· ·∧ρ(πn ◦χ)

)
≤ ρ( f ◦χ).

For a set R of Q-valued relations on A ∈A (i.e., R is a set of morphisms in QA with codomain A)
and n ∈ N, we define Pol(R)n =

∧
ρ∈R Pol(ρ)n. We say ( f ∈ A (An,A),α ∈ Q) is an n-ary Q-valued

polymorphism of R if α ≤ Pol(R)n( f ).
The following propositions generalise Propositions 3.1 and 3.2, respectively.

Proposition 4.1. Let Q = (Q,≤,e,⊗) be a quantale, A a locally small category with finite products,
A ∈A and R a set of Q-valued relations on A.

1. For each n ∈ N and i ∈ {1, . . . ,n}, the i-th projection πi : An→ A satisfies e≤ Pol(R)n(πi).

2. For each m,n ∈ N, g : Am→ A and f1, . . . , fm : An→ A in A , we have

Pol(R)m(g)⊗
(
Pol(R)n( f1)∧·· ·∧Pol(R)n( fm)

)
≤ Pol(R)n(g◦ 〈 f1, . . . , fm〉).

Proposition 4.2. Let Q be a quantale, A a locally small category with finite products and A ∈A .
1. If K ∈A and (ρ j : K 7→ A) j∈J is a family of K-ary Q-valued relations on A, then for each n ∈ N,

we have
∧

j∈J Pol(ρ j)n ≤ Pol(
∧

j∈J ρ j)n.

2. If K,L ∈A , ρ : K 7→ A is a K-ary Q-valued relation on A, and σ : K 7→ L is a morphism in QA ,
then for each n ∈ N, we have Pol(ρ)n ≤ Pol(ρ ↙ σ)n.

In the remainder of this section, we shall sketch the quantaloidal CSP in QA . In order to render
the following as a well-defined computational problem, we would have to specify suitable machine
representations of the data involved. We shall omit such considerations in this section, and simplify the
discussion by allowing infinitely many constraints as well as infinite constraint languages.

An instance I = (V,D,C ) consists of objects V,D ∈A and a set C of Q-valued constraints (in A ).
There seems to be a few possibilities concerning the detail of a definition of Q-valued constraint.
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1. A straightforward approach is to define a Q-valued constraint as a triple (K,x,ρ) consisting of an
object K ∈ A , a morphism x : K → V in A and a morphism ρ : K 7→ D in QA . We may then
define the morphism S (I) : V 7→ D by S (I) =

∧
(K,x,ρ)∈C ρ ↙{x}.

2. The second possibility is to define a Q-valued constraint as a quadruple (K,x,α,ρ), adding a new
component α ∈ Q. S (I) is now given as

∧
(K,x,α,ρ)∈C ρ ↙ {x}α . This latter formulation seems

to be better suited for considerations involving Q-valued constraint languages. A Q-valued con-
straint language consists of a pair (D,D) of an object D ∈A and a set D of morphisms in QA
with codomain D. Given an instance I = (V,D,C ) such that ρ ∈ D for each (K,x,α,ρ) ∈ C , we
may define for each (say, K-ary) ρ ∈ D the morphism σρ : K 7→ V as the supremum of all mor-
phisms {x}α with (K,x,α,ρ) ∈ C . In view of the equation

∧
j∈J
(
ρ ↙ σ j

)
= ρ ↙

(∨
j∈J σ j

)
, we

have S (I) =
∧

ρ∈D ρ↙ σρ . Notice that Proposition 4.2 implies that any Q-valued polymorphism
for D is a Q-valued polymorphism for S (I).

3. This suggests the third, most general definition of Q-valued constraint; it is a triple (K,σ ,ρ)
consisting of an object K ∈A and morphisms σ : K 7→ V and ρ : K 7→ D in QA . We now have
S (I) =

∧
(K,σ ,ρ)∈C ρ↙ σ . In the next section, we shall adopt (a finitary version of) this definition.

In each case, the goal is to determine the value O(I) = {!D} ◦S (I) : V 7→ 1, where 1 is the terminal
object of A . Notice that since (QA )(V,1) = [A (V,1),Q]∼= Q, we can naturally identify O(I) with an
element of Q, the “optimal value” of I.

5 Quantaloidal CSPs in RFinSet and RSet as optimisation problems

In this section, we consider a certain class of optimisation problems which we call the tropical valued
CSP (TVCSP). The TVCSP is a subclass of the quantaloidal CSP in the quantaloid RSet. A TVCSP
instance I consists of a finite set V of variables, a (possibly infinite) set D called the domain, and a finite
set C of R-valued constraints. Here, we define an R-valued constraint as a triple (k,σ ,ρ) consisting
of a natural number k and morphisms σ : [k] 7→ V and ρ : [k] 7→ D in RSet. For a TVCSP instance
I = (V,D,C ), the morphism S (I) : V 7→ D in RSet maps each s : V → D to

S (I)(s) = sup
(k,σ ,ρ)∈C

sup
x∈V k

(ρ(s(x))−σ(x)) , (7)

where s(x) denotes the composite s◦x : [k]→ D. To solve the TVCSP instance I is to compute

O(I) = inf
s:V→D

S (I)(s).

The TVCSP is a problem of computing a minimax value. Hence it can model scenarios in which we
wish to “minimise the maximum loss” or “optimise the worst case”.

Example 5.1. Consider a scheduling problem, in which we are given multiple activities 1, . . . ,n, prece-
dence relations among the activities of the form “activity j cannot start until activity i finishes”, the
processing time pi ∈N of each activity i (so that if activity i starts at time s(i)∈N, then it finishes at time
s(i)+ pi ∈N) and the due date di ∈N of each activity i. We are interested in a schedule of the activities (a
function s : [n]→ N) that minimises the maximum deviation from due dates (maxi∈[n] |di− (s(i)+ pi)|).
We can model this as a TVCSP instance by setting V = [n] and D = N (or D = [N] for a suitably large
N ∈ N), expressing the maximum deviation by an R-valued relation, and encoding the precedence rela-
tions (and the processing time) using R-valued constraints taking values in {0,∞}. �
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We explain our choice of the name “tropical valued CSP”. The valued CSP (VCSP) is a well-known
optimisation variant of the CSP (see e.g., [41]). The data of a VCSP instance I = (V,D,C ) is similar to
that of a TVCSP instance, and the goal is to compute the infimum of

∑
(k,σ ,ρ)∈C

∑
x∈V k

σ(x) ·ρ(s(x)) (8)

over s : V → D. (Precisely, we have to assume e.g., that 0 ≤ σ(x) < ∞ for each x ∈ V k in the VCSP.)
We can regard (7) as a variant of (8), in which addition is replaced by supremum and multiplication by
subtraction. This is analogous to the transition from the field R of real numbers to the quantale R, which
may be thought of as a variant of the tropical semiring (see e.g., [36]); roughly, the latter is obtained
from the former by replacing addition by infimum and multiplication by addition.3

5.1 The dichotomy theorem for TVCSPs with finite domains

In this subsection, we consider TVCSPs in which the domains D are also finite. Thus we may think of
our problems as a subclass of the quantaloidal CSP in the quantaloid RFinSet.

We shall classify TVCSPs in terms of computational complexity. In order to do so rigorously, we
specify a representation of instances as follows. We assume that σ and ρ in each R-valued constraint
(k,σ ,ρ) take values in Q∪ {±∞}. Furthermore, (k,σ ,ρ) is given by the lists of all pairs (x,σ(x))
for x ∈ domσ and of all pairs (d,ρ(d)) for d ∈ domρ , where domσ = {x ∈ V k | σ(x) < ∞} and
domρ = {d ∈ Dk | ρ(d) < ∞}. Hence the input size of an instance I = (V,D,C ) is O(|V |+ |D|+
∑(k,σ ,ρ)∈C (|domσ |+ |domρ|)). Let D be a finite set of R-valued relations on a finite set D. TVCSP(D)

denotes the class of all TVCSP instances I =(V,D′,C ) such that D′=D and, for each R-valued constraint
(k,σ ,ρ) ∈ C , we have ρ ∈D .

For a k-ary R-valued relation ρ and α ∈ R with α < ∞, we denote by ρα the sublevel set of ρ with
respect to α , i.e., ρα = {d ∈ Dk | α ≥ ρ(d)}. We define UD = {ρα | ρ ∈D , α < ∞}.
Proposition 5.2. Let D be a finite set and D a finite set of R-valued relations on D. Then TVCSP(D)
and CSP(UD) are polynomial-time reducible to each other.

Hence the classification of TVCSPs is reduced to that of CSPs. In particular, the dichotomy theorem
for CSPs (Theorem 3.5) implies the dichotomy for TVCSPs: TVCSP(D) is either in P or NP-hard. We
note that a relation analogous to that between TVCSP(D) and CSP(UD) described in Proposition 5.2
has already been known in the context of the fuzzy CSP [33, Section 9.4.3], which can be seen as a
special case of the TVCSP (see also [18]). However, the situation for the TVCSP is subtler due to the
coexistence of ∞ and −∞, and our proof of Proposition 5.2 relies heavily on the adjointness relation (2)
in R as well as the details of the operations + and − (Table 1).

The above dichotomy for TVCSPs can be captured by a suitable notion of polymorphism. Specialis-
ing the notion of Q-valued polymorphism in Section 4 to the quantaloid RFinSet, we define an (n-ary)
R-valued polymorphism of an R-valued relation ρ : [k] 7→ A on a finite set A to be a pair ( f ,α) of a
function f : An→ A and α ∈ R such that for all (xi j) ∈ An×k, we have

α + sup{ρ(x11, . . . ,x1k), . . . ,ρ(xn1, . . . ,xnk)} ≥ ρ( f (x11, . . . ,xn1), . . . , f (x1k, . . . ,xnk)).

Given a set R of R-valued relations on A, we say ( f ,α) is an R-valued polymorphism of R if it is so
for every element of R.

3It is known that computational complexity of VCSPs can be captured by the notion of weighted polymorphism [11].
Weighted polymorphisms differ substantially from our R-valued polymorphisms, and we have not been able to understand the
former from a categorical perspective.
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Lemma 5.3. Let A be a finite set and R a set of R-valued relations on A. For any function f : An→ A,
( f ,0) is an R-valued polymorphism of R if and only if f is a polymorphism of UR.

As an easy consequence of Theorem 3.5, Proposition 5.2 and Lemma 5.3, we have the following
criterion of computational complexity in terms of R-valued polymorphisms. An analogous result has
been obtained in [18], although in a different setting.

Theorem 5.4. Let D be a finite set and D a finite set of R-valued relations on D. If ( f ,0) is an R-valued
polymorphism of D for some Siggers operation f on D, then TVCSP(D) is in P. Otherwise, it is NP-hard.

Remark 5.5. Let ρ : [k] 7→ A be an R-valued relation on a finite set A. The R-valued polymorphisms
of ρ give rise to the clone on A consisting of all operations f on A such that ( f ,0) is an R-valued
polymorphism of ρ . By Lemma 5.3, this is the clone of polymorphisms of {ρα | α < ∞}. In addition,
we also have the (in general strictly larger) clone on A which consists of all f such that ( f ,α) is an
R-valued polymorphism of ρ for some α < ∞. See Proposition 4.1. �

5.2 TVCSPs and continuous optimisation

Finally, we consider TVCSPs in which the domains D are equal to the set R of real numbers. In this
case, S (I) : V 7→ R for a TVCSP instance I = (V,R,C ) amounts to a function RV → R and O(I) is
the infimum of S (I). Hence, it can be considered as a continuous optimisation problem. In continuous
optimisation, convexity of a function plays a key role in the design of efficient minimisation algorithms.
We investigate the relationship between convexity and the TVCSP in what follows. We note that infinite
numeric domains such as D = R, Q, and Z have been studied in the ordinary CSP (see e.g., [4]).

A function ρ : Rk → R is called quasiconvex if max{ρ(x),ρ(y)} ≥ ρ(λx+(1−λ )y) for all x,y ∈
Rk and λ ∈ [0,1]. In other words, a function is quasiconvex if and only if every sublevel set of it
is convex. Quasiconvex functions generalise convex functions, and their minimisation algorithms have
been studied (e.g., [22]). We can capture quasiconvexity by R-valued polymorphisms. For each λ ∈ [0,1]
we define a binary operation fλ : R2 → R as f (x,y) = λx+(1− λ )y. It is then immediate from the
definition of quasiconvexity that a function ρ : Rk → R is quasiconvex if and only if ( fλ ,0) is an R-
valued polymorphism of the corresponding R-valued relation ρ : [k] 7→ R for all λ ∈ [0,1].

Next we consider a TVCSP associated with linear R-valued relations, where ρ : [k] 7→ R is linear if
there exists wρ = (wρ

1 , . . . ,w
ρ

k ) ∈ Rk such that for all d = (d1, . . . ,dk) ∈ Rk, we have ρ(d) = ∑
k
j=1 wρ

j d j.
Given a TVCSP instance I = (V,R,C ) such that ρ is linear for all (k,σ ,ρ) ∈ C , S (I) is the supremum
of finitely many affine functions (or the constant function with the value ∞), hence is a piecewise-linear
convex function RV → R. Its minimisation can be reduced to linear optimisation, provided that each
R-valued constraint (k,σ ,ρ) ∈ C is given as follows: σ takes values in Q∪{±∞} and is given by a list
as in Section 5.1, and ρ is specified by a list wρ ∈ Qk. Here, linear optimisation (also known as linear
program) is the problem of minimising a linear function subject to a system of linear inequalities, and is
one of the central problems in mathematical optimisation (e.g., [39]). We can see that O(I) is equal to
the value of the following optimisation problem.

minimise α

subject to α ≥ ∑
k
j=1 wρ

j s(x j)−σ(x1, . . . ,xk) ((k,σ ,ρ) ∈ C , (x1, . . . ,xk) ∈ domσ),

where the variables are s : V → R and α ∈ R. This is an instance of linear optimisation. Accordingly, it
is solvable in polynomial time by a suitable linear optimisation algorithm (e.g., [35]).
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A Proofs

A.1 Proof of Proposition 2.3

These are all straightforward consequences of the adjointness (2). As an example, we shall prove the last
equation. For any ψ ′ : B→C in K , we have

ψ
′ ≤B,C θ ↘ (γ ↙ ϕ) ⇐⇒ θ ◦ψ

′ ≤B,D γ ↙ ϕ

⇐⇒ (θ ◦ψ
′)◦ϕ ≤A,D γ

⇐⇒ θ ◦ (ψ ′ ◦ϕ)≤A,D γ

⇐⇒ ψ
′ ◦ϕ ≤A,C θ ↘ γ

⇐⇒ ψ
′ ≤B,C (θ ↘ γ)↙ ϕ.

Since ψ ′ was arbitrary, we must have θ ↘ (γ ↙ ϕ) = (θ ↘ γ)↙ ϕ .

A.2 Proof of Proposition 3.1

One can easily show these using (5). We shall present an alternative proof making full use of quantaloidal
structure ((2) and Proposition 2.3), as a warm-up for a similar proof of Proposition 4.1 (Appendix A.4).

Clearly, it suffices to consider the case where R consists of a single (say, k-ary) relation ρ . We shall
use the criterion (6). Clause 1 is clear because (−)↘ ρ is order-reversing. Under the assumption of
clause 2, we have {πi}m

i=1↘ ρ ⊆ {g}↘ ρ and {πi}n
i=1↘ ρ ⊆ { f1, . . . , fm}↘ ρ . Hence,

{πi}n
i=1↘ ρ ⊆ { f1, . . . , fm}↘ ρ

=
(
{πi}m

i=1 ◦{〈 f1, . . . , fm〉}
)
↘ ρ

= {〈 f1, . . . , fm〉} ↘
(
{πi}m

i=1↘ ρ
)

⊆ {〈 f1, . . . , fm〉} ↘
(
{g}↘ ρ

)
=
(
{g}◦{〈 f1, . . . , fm〉}

)
↘ ρ

= {g◦ 〈 f1, . . . , fm〉} ↘ ρ.

A.3 Proof of Proposition 3.2

Recall that the condition for an n-ary operation f to be a polymorphism can be expressed as (6).

1. If f ∈
⋂

j∈J Pol(ρ j)n, then we have {πi}n
i=1↘ ρ j ⊆ { f}↘ ρ j for each j ∈ J. By Proposition 2.3,

{πi}n
i=1↘

⋂
j∈J

ρ j =
⋂
j∈J

({πi}n
i=1↘ ρ j)⊆

⋂
j∈J

({ f}↘ ρ j) = { f}↘
⋂
j∈J

ρ j.

2. If f ∈ Pol(ρ)n, then we have {πi}n
i=1↘ ρ ⊆ { f}↘ ρ . By Proposition 2.3,

{πi}n
i=1↘ (ρ ↙ σ) = ({πi}n

i=1↘ ρ)↙ σ ⊆ ({ f}↘ ρ)↙ σ = { f}↘ (ρ ↙ σ).
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A.4 Proof of Proposition 4.1

We consider the case where R consists of a single morphism ρ : K 7→ A in QA . Clause 1 amounts
to the claim that {πi} ≤ ρ ↙

(
{πi}n

i=1 ↘ ρ
)
, and can be shown as in the proof of Proposition 3.1

(Appendix A.2). For clause 2, it suffices to show that for any α,β ∈ Q, β ≤ Pol(ρ)m(g) and α ≤
Pol(ρ)n( f1)∧·· ·∧Pol(ρ)n( fm) imply β ⊗α ≤ Pol(ρ)n(g◦〈 f1, . . . , fm〉). Define { f1, . . . , fm}α : An 7→ A
as the join of { f1}α , . . . ,{ fm}α (cf. Example 2.7); that is,

{ f1, . . . , fm}α( f ′) =

{
α if f ′ = fi for some i ∈ {1, . . . ,m},
⊥ otherwise

for all f ′ ∈A (An,A). The assumptions amount to {g}β ≤ ρ↙
(
{πi}m

i=1↘ ρ
)

and { f1, . . . , fm}α ≤ ρ↙(
{πi}n

i=1↘ ρ
)
, i.e., {πi}m

i=1↘ ρ ≤ {g}β ↘ ρ and {πi}n
i=1↘ ρ ≤ { f1, . . . , fm}α ↘ ρ . Hence

{πi}n
i=1↘ ρ ≤ { f1, . . . , fm}α ↘ ρ

=
(
{πi}m

i=1 ◦{〈 f1, . . . , fm〉}α
)
↘ ρ

= {〈 f1, . . . , fm〉}α ↘
(
{πi}m

i=1↘ ρ
)

≤ {〈 f1, . . . , fm〉}α ↘
(
{g}β ↘ ρ

)
=
(
{g}β ◦{〈 f1, . . . , fm〉}α

)
↘ ρ

= {g◦ 〈 f1, . . . , fm〉}β⊗α ↘ ρ,

showing β ⊗α ≤ Pol(ρ)n(g◦ 〈 f1, . . . , fm〉).

A.5 Proof of Proposition 4.2

One can show these by a straightforward modification of the proof of Proposition 3.2 (Appendix A.3),
along the lines of the proof of Proposition 4.1 (Appendix A.4).

A.6 Proof of Proposition 5.2

We first give a polynomial-time reduction from TVCSP(D) to CSP(UD). Take an arbitrary TVCSP
instance I = (V,D,C ) ∈ TVCSP(D). For any α < ∞, we obtain

α ≥ O(I) ⇐⇒ ∃s : V → D. ∀(k,σ ,ρ) ∈ C . ∀x ∈V k. α ≥ ρ(s(x))−σ(x)

⇐⇒ ∃s : V → D. ∀(k,σ ,ρ) ∈ C . ∀x ∈V k. σ(x)+α ≥ ρ(s(x))
⇐⇒ ∃s : V → D. ∀(k,σ ,ρ) ∈ C . ∀x ∈ domσ . σ(x)+α ≥ ρ(s(x))

⇐⇒ ∃s : V → D. ∀(k,σ ,ρ) ∈ C . ∀x ∈ domσ . s(x) ∈ ρ
σ(x)+α .

Define the CSP instance Iα = (V,D,C α) by

C α = {(k,x,ρσ(x)+α) | (k,σ ,ρ) ∈ C , x ∈ domσ }.

Then we have

α ≥ O(I) ⇐⇒ S (Iα) 6= /0. (9)
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Note that, since α < ∞, Iα ∈ CSP(UD) and the input size of Iα is bounded by a polynomial in that of I.
(Indeed, such a bound is provided by |V |+ |D|+∑(k,σ ,ρ)∈C |domσ ||domρ|.) The relation (9) says that
the computation of O(I) can be reduced to the problem of finding the minimum α such that S (Iα) 6= /0.
Since

O(I) ∈ {ρ(d)−σ(x) | (k,σ ,ρ) ∈ C , d ∈ domρ, x ∈ domσ }∪{±∞},

it suffices to solve the CSP instance Iα only for

α ∈ ({ρ(d)−σ(x) | (k,σ ,ρ) ∈ C , d ∈ domρ, x ∈ domσ }\{∞})∪{−∞}.

Since |{ρ(d)−σ(x) | (k,σ ,ρ)∈C ,d∈ domρ,x∈ domσ }| ≤∑(k,σ ,ρ)∈C |domσ ||domρ|, we can com-
pute O(I) by solving polynomially many instances in CSP(UC ). Thus TVCSP(D) is polynomial-time
reducible to CSP(UD).

We then give a polynomial-time reduction from CSP(UD) to TVCSP(D). For α < ∞ and x ∈ V k,
recall the morphism {x}α : [k] 7→V in RFinSet defined in Example 2.7 as

{x}α(x′) =

{
α if x′ = x,
∞ otherwise.

From a CSP instance I0 = (V,D,C0) ∈ CSP(UD), we construct a TVCSP instance I = (V,D,C ) as

C = {(k,{x}α ,ρ) | (k,x,ρα) ∈ C0 }.

(Note that for each (k,x,ρ ′) ∈ C0, there exist ρ ∈Dk and α < ∞ such that ρ ′ = ρα , and we can find such
a pair (ρ,α) in polynomial time by inspecting all ρ ∈Dk and α ∈ {ρ(x) | x ∈ domρ}.) Then

S (I0) 6= /0 ⇐⇒ ∃s : V → D. ∀(k,x,ρα) ∈ C0. α ≥ ρ(s(x))
⇐⇒ ∃s : V → D. ∀(k,x,ρα) ∈ C0. 0≥ ρ(s(x))−α

⇐⇒ ∃s : V → D. ∀(k,{x}α ,ρ) ∈ C . ∀x′ ∈ dom{x}α . 0≥ ρ(s(x′))−{x}α(x′)

⇐⇒ ∃s : V → D. ∀(k,{x}α ,ρ) ∈ C . ∀x′ ∈V k. 0≥ ρ(s(x′))−{x}α(x′)
⇐⇒ 0≥ O(I).

Thus we can solve I0 by determining if 0≥O(I). This gives a polynomial-time reduction from CSP(UD)
to TVCSP(D).

A.7 Proof of Lemma 5.3

We may assume that R consists of a single (say, k-ary) R-valued relation ρ : [k] 7→ A.
First suppose that ( f ,0) is an R-valued polymorphism of ρ . Our aim is to show that for every α < ∞,

f is a polymorphism of ρα , i.e., that for any (xi j) ∈ An×k we have(
ρ

α(x11, . . . ,x1k)∧·· ·∧ρ
α(xn1, . . . ,xnk)

)
=⇒ ρ

α( f (x11, . . . ,xn1), . . . , f (x1k, . . . ,xnk)). (10)

Assume the antecedent of (10), i.e., that α ≥ ρ(xi1, . . . ,xik) for every i ∈ {1, . . . ,n}. Since ( f ,0) is an
R-valued polymorphism of ρ , we have

sup{ρ(x11, . . . ,x1k), . . . ,ρ(xn1, . . . ,xnk)} ≥ ρ( f (x11, . . . ,xn1), . . . , f (x1k, . . . ,xnk)).
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Thus it follows that α ≥ ρ( f (x11, . . . ,xn1), . . . , f (x1k, . . . ,xnk)), showing the conclusion of (10).
Next suppose that ( f ,0) is not an R-valued polymorphism of ρ . This means that there exists a tuple

(xi j) ∈ An×k such that

sup{ρ(x11, . . . ,x1k), . . . ,ρ(xn1, . . . ,xnk)}< ρ( f (x11, . . . ,xn1), . . . , f (x1k, . . . ,xnk)).

Let α be the value of the left hand side. Then α < ∞ and f is not a polymorphism of ρα ; indeed, our
choice of (xi j) and α implies that (10) is violated.
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