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The real unit interval is the fundamental building block for many branches of mathematics, such
as probability theory, measure theory, convex sets and homotopy theory. However, a priori the unit
interval could be considered an arbitrary choice and one can wonder if there is some more canonical
way in which the unit interval can be constructed. In this paper we find such a construction by using
the theory of effect algebras. We show that the real unit interval is the unique non-initial, non-final
irreducible algebra of a particular monad on the category of bounded posets. The algebras of this
monad carry an order, multiplication, addition and complement, and as such model much of the
operations we need to do on probabilities. On a technical level, we show that both the categories of
ω-complete effect algebras as well as that of effect monoids are monadic over the category of bounded
posets using Beck’s monadicity theorem. The characterisation of the real unit interval then follows
easily using a recent representation theorem for ω-complete effect monoids.

1 Introduction

Probabilities in our world are represented by numbers in the real unit interval [0,1]. This leads to the usage
of [0,1] in all fields of mathematics that are motivated by a probabilistic view, such as probability theory
and measure theory, and more indirectly the theory of convex sets and homotopy theory. It naturally
raises the question of how we can generalise or abstract [0,1]. For instance, we could generalise it to
the set of continuous functions C(X , [0,1]) from some topological space X to [0,1] in order to represent
probabilities that can vary across space, or we could replace [0,1] by an algebraic generalisation like an
MV-algebra [3] or an effect algebra [5] to study fields like probability theory or convex sets in a more
abstract setting [1, 9, 11].

Turning around this question we can ask if we can recover the standard real unit interval [0,1] from
some abstract conditions in order to get a clearer understanding of its central importance in mathematics.
A categorical characterisation of the unit interval was given by Freyd [6] who showed that the unit
interval is the final coalgebra of an operation that consists of ‘glueing together’ the ends of two spaces,
which can be captured by the midpoint operation (a,b) 7→ 1

2(a+b). This was later generalised to give
characterisations of higher-dimensional simplices [16]. However, the ability to take a midpoint is not
what one would usually consider a crucial feature of [0,1], especially if we consider [0,1] as a set of
probabilities. Instead, as argued in [19], the operations on [0,1] that have a direct correspondence to its use
as a set of probabilities are the partially defined additions a+b of probabilities a and b satisfying a+b≤ 1
that corresponds to the coarse-graining of independent events; the complement a 7→ 1−a corresponding
to negation; the multiplication a ·b corresponding to the conjunction of events; and the partial order a≤ b
to tell us which event is more likely. We will aim to derive the unit interval from algebraic structure
mimicking these operations.

An effect algebra has a partially defined addition, and has a complement operation so that for every
a we have a unique a⊥ with a+ a⊥ = 1. Effect algebras were originally introduced as an abstraction
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of the set of effects in a C∗-algebra [5]. As shown by Jenča [12], the category of effect algebras is
isomorphic to the category of Eilenberg-Moore algebras of the Kalmbach monad [14] which arises from
the free-forgetful adjunction between the category of bounded posets (those posets with a minimum and
maximum element) BPos and the category of orthomodular posets. Hence, one could ‘discover’ effect
algebras by considering the basic structures of (orthomodular) bounded posets.

The category of effect algebras is symmetric monoidal [10] and the monoids resulting from this
tensor product are called effect monoids. Concretely, effect monoids are effect algebras that have an
associative, unital, distributive multiplication operation. The unit interval [0,1] is an effect monoid with
its multiplication operation given by the standard multiplication.

The unit interval has one additional property that we aim to capture: when we have an infinite sequence
of probabilities of which we can sum every finite subset, then we can sum the entire infinite set. Extending
the partially defined addition operation to an infinitary partially defined operation results in a partially
additive monoid [2, 17]. Effect algebras that are also partially additive monoids can be equivalently
described as effect algebras that are ω-complete, i.e. for which every increasing sequence has a supremum.
We show that the category of the resulting ω-effect-algebras is equivalent to an Eilenberg-Moore category
for some monad on BPos (although note that we do not succeed in constructing this monad explicitly,
instead relying on Beck’s monadicity theorem). The category of ω-effect-algebras is also symmetric
monoidal, and its monoids, the ω-effect-monoids, have all the structure that we were interested in in
[0,1]: a countable partial addition, a complement, and a multiplication. It turns out ω-effect-monoids
are particularly well-behaved. A recent representation theorem by Westerbaan, Westerbaan and the
author [19] shows that each ω-effect-monoid embeds into a direct sum of a Boolean algebra and the
set of continuous functions from a topological space into [0,1]. In particular, we can show that the only
irreducible ω-effect-monoids, those that cannot be written as a non-trivial direct sum, are {0}, {0,1}
and the unit interval [0,1]. Each of these three possibilities gives a different view on probabilities. The
effect monoid {0} represents the inconsistent world where 0 = 1. The effect monoid {0,1} represents
the deterministic world, where everything either holds or does not hold with certainly. And finally, [0,1]
gives us the probabilistic world. As {0} is the final object in the category of ω-effect-monoids and {0,1}
is the initial object, this establishes [0,1] as the unique non-initial, non-final irreducible monoid in the
Eilenberg-Moore category of a monad on BPos.

Hence, starting from the Kalmbach monad resulting from the free-forgetful adjunction between
bounded posets and orthomodular posets, we get effect algebras. Then by considering an extension of
the addition operation to a countable addition operation we find an ‘ω-Kalmbach’ monad, of which the
algebras are ω-effect-algebras. Then by focusing on the monoids in this category we find the unit interval
as one of three basic irreducible objects.

Finally, we also show that the category of ω-effect-monoids itself is monadic over BPos, so that we
can also directly exhibit the unit interval as an irreducible algebra over BPos.

2 Preliminaries

We start by recalling all the necessary concepts: orthomodular posets, effect algebras, ω-completeness,
and effect monoids. Although the technical results in this section are all known, by combining them we
get our first categorical characterisation of the real unit interval, which is a new observation in itself.
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2.1 Posets, orthomodularity and effect algebras

Definition 1. A poset P is bounded when it has a minimal element 0 and a maximal element 1. A
morphism of bounded posets is an order-preserving map f : P→ Q satisfying f (0) = 0 and f (1) = 1. We
denote the category of bounded posets by BPos.

Remark 2. Call a category thin when it has at most one morphism between each pair of objects, and
skeletal when isomorphic objects are equal. Then a poset corresponds to a thin skeletal category where
we have a morphism a→ b iff a≤ b. Monotone maps are then simply functors between these types of
categories. A bounded poset is such a category with an initial and final object, and a BPos morphism is a
functor preserving the initial and final objects.

Our next definition concerns a particular type of bounded poset that we call orthomodular. Intuitively,
an orthomodular poset is a poset equipped with a ‘negation operation’ ⊥. This satisfies the classical
properties we would expect for a negation: (a⊥)⊥ = a (not not a is just a), a∧ a⊥ = 0 (a and not a is
false), a ≤ b =⇒ b⊥ ≤ a⊥ (If a implies b, then not b implies not a). However, it also satisfies two
conditions that are perhaps less familiar. We say two elements a and b of the poset are orthogonal when
a ≤ b⊥. For such elements we expect to be able to take the ‘sum’ of the elements, so we require that
a∨b exists. Additionally, orthogonal elements can be treated ‘classically’, meaning that the conjunction
and disjunction distribute over one another as in a Boolean algebra. This is expressed by the equality
b = a⊥∧ (a∨b) which holds for any pair of orthogonal a and b.

Originally, orthomodularity was studied in the context of quantum logic, as the set of closed subspaces
of a Hilbert space forms an orthomodular lattice. However, orthomodularity is actually a much more
general concept. For instance, one can generalise the algebraic structure of the set of relations on a set
X into a relation algebra [18], and one can then extract an orthomodular poset by looking at pairs of
equivalence relations [7].

Definition 3. An orthomodular poset (OMP) is a bounded poset (P,0,1) together with an orthocomple-
mentation operation mapping each element a ∈ P to a⊥ ∈ P, satisfying the conditions below. We write
a⊥ b and say a and b are orthogonal when a≤ b⊥.

• (a⊥)⊥ = a,

• a≤ b ⇐⇒ b⊥ ≤ a⊥,

• a∧a⊥ = 0,

• if a⊥ b, then a∨b exists,

• if a⊥ b, then b = a⊥∧ (a∨b).

An OMP morphism is a bounded poset homomorphism f : P→ Q additionally satisfying a ⊥ b =⇒
f (a)⊥ f (b) and a⊥ b =⇒ f (a∨b) = f (a)∨ f (b). We denote the category of OMPs by OMP.

Remark 4. Treating a bounded poset P as a category as in Remark 2, we can view the orthocomplementa-
tion as a functor (·)⊥ : P→ Pop satisfying (·)⊥ ◦ (·)⊥ = id. However, the other properties cannot be easily
described in these categorical terms.

Note that there is an evident forgetful functor U : OMP→ BPos.

Theorem 5 ([8]). The forgetful functor U : OMP→ BPos has a right adjoint K : BPos→OMP.

This right adjoint can be explicitly described: the orthomodular poset K(P) is known as the Kalmbach
extension.
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Definition 6. Let P be a poset. A chain C in P is a totally ordered subset C ⊆ P. If C is finite then we
write it as [a1 < a2 < · · ·< an]. Let K(P) be the set of finite chains of even length. This is a poset in the
following way:

[a1 < a2 < · · ·< a2n]≤ [b1 < b2 < · · ·< b2m] ⇐⇒ ∀1≤ i≤ n∃1≤ j ≤ m : b2 j−1 ≤ a2i−1 < a2i ≤ b2 j.

The minimal element of K(P) is the empty set, and the maximal element is the chain [0 < 1]. It has an
orthocomplement given by S⊥ = S∆{0,1} where ∆ denotes the symmetric difference of sets. K(P) turns
out to be an orthomodular poset when P is bounded. If we have a morphism of bounded posets f : P→ Q
then this gives rise to an OMP morphism K( f ) : K(P)→ K(Q) defined by K( f )(S) = ∆s∈S{ f (s)}.

A useful way to think about the partial order on the Kalmbach extension K(P) is to see each chain
[a1 < a2 < · · · < a2n−1 < a2n] as a set of half-open intervals [a1,a2), [a3,a4), . . . , [a2n−1,a2n). We then
have S≤ S′ in K(P) if each interval of S is contained in an interval of S′.

The free-forgetful adjunction between OMP and BPos gives rise to a monad T :=U ◦K on BPos. We
will refer to this as the Kalmbach monad. It turns out we can explicitly describe the Eilenberg-Moore
algebras α : K(P)→ P that arise from this monad.
Definition 7. An effect algebra (EA) [5] is a set E with distinguished element 0 ∈ E, partial binary
operation > (called sum) and (total) unary operation a 7→ a⊥ (called complement), satisfying the
following axioms, writing a⊥ b whenever a>b is defined and defining 1 := 0⊥.
• Commutativity: if a⊥ b, then b⊥ a and a>b = b>a.

• Zero: a⊥ 0 and a>0 = a.

• Associativity: if a⊥ b and (a>b)⊥ c, then b⊥ c, a⊥ (b> c), and (a>b)> c = a> (b> c).

• The complement a⊥ is the unique element with a>a⊥ = 1.

• If a⊥ 1, then a = 0.
For a,b ∈ E we write a ≤ b whenever there is a c ∈ E with a > c = b. This turns E into a poset with
minimum 0 and maximum 1. The map a 7→ a⊥ is an order anti-isomorphism. Furthermore, a ⊥ b if
and only if a ≤ b⊥. An effect algebra homomorphism is a map f : E → F satisfying f (1) = 1, and
a⊥ b =⇒ f (a)⊥ f (b), f (a>b) = f (a)> f (b). We denote the category of effect algebras by EA.
Remark 8. Each OMP is an effect algebra where we set a⊥ b when a≤ b⊥, and we define a>b := a∨b.
The OMP morphisms are then effect algebra homomorphisms, hence there is a full and faithful functor
OMP→ EA. As each effect algebra is a bounded poset there is a forgetful functor EA→ BPos.
Remark 9. In an effect algebra, if a ≤ b, then the element c with a > c = b is unique. We denote this
unique element by b	a.
Theorem 10 ([12]). The Eilenberg-Moore category BPosT of the monad T := K ◦U : OMP→OMP is
isomorphic to the category of effect algebras.

Proof. We give a short sketch of how the construction behind this result works, as described in [12]. Any
effect algebra E is a bounded poset. We define the algebra action α : K(E)→ E by α([a1 < a2 < · · ·<
a2n−1 < a2n]) = (a2	a1)> · · ·> (a2n	a2n−1), so each effect algebra is an Eilenberg-Moore algebra of
the Kalmbach monad. A morphism of effect algebras preserves 	 and >, and hence the algebra structure,
so that we have an embedding EA→ BPosT . Conversely, if we have an EM-algebra α : K(P)→ P we
can define a partial binary operation b	a on P that is defined for a≤ b and is given by b	a = 0 when
b = a and otherwise b	a = α([a < b]). This makes P into a D-poset [15] (the ‘D’ stands for ‘difference’).
This is a structure that is equivalent to an effect algebra. The operation > that makes a D-poset an effect
algebra is given by a>b = 1	 ((1	a)	b).
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2.2 Effect monoids and the real unit interval

Properties of the category of effect algebras EA were studied in [10]. Therein it was shown that this
category is complete and co-complete (although in retrospect, because effect algebras form an Eilenberg-
Moore category, the category is complete for entirely abstract reasons). A tensor product of effect algebras
was also constructed leading to symmetric monoidal structure. For our purposes it will suffice to describe
this tensor product by its universal property.

Definition 11. Let E, F and G be effect algebras. A map f : E ×F → G is a bimorphism of effect
algebras when f (1,1) = 1 and for all a1 ⊥ a2 in E and b1 ⊥ b2 in F we have f (a1 >a2,b1) = f (a1,b1)>
f (a2,b1) and f (a1,b1 >b2) = f (a1,b1)> f (a1,b2). A tensor product of E and F consists of an effect
algebra G together with a bimorphism f : E×F → G such that for every bimorphism g : E×F → G′

there is a unique effect algebra homomorphism h : G→ G′ such that g = h ◦ f . We denote the tensor
product of E and F (which is unique up to effect algebra isomorphism) by E⊗F .

Using this tensor product we get a notion of monoid M⊗M→M internal to the category of effect
algebras. These monoids can be described explicitly.

Definition 12. An effect monoid (EM) is an effect algebra (M,>,0,( )⊥, ·) with an additional (total)
binary operation ·, such that for all x,y,z ∈M:

• Unitality: x ·1 = x = 1 · x.

• Multiplication is a bimorphism: If y⊥ z, then x ·y⊥ x ·z and y ·x⊥ z ·x with x ·(y>z) = (x ·y)>(x ·z)
and (y> z) · x = (y · x)> (z · x).

• Associativity: x · (y · z) = (x · y) · z.

Example 13. An orthomodular poset is an effect monoid iff it is a Boolean algebra. In this case we have
a ·b := a∧b.

Example 14. Let X be a compact Hausdorff space. Then the space C(X , [0,1]) of continuous functions
from X to [0,1], equipped with pointwise defined addition and multiplication, is an effect monoid.
Note that by the Gelfand-Naimark theorem we can equivalently describe this as the unit interval of a
commutative unital C∗-algebra.

It is at this point that we can describe the real unit interval categorically (although not yet uniquely): it
is a monoid in the Eilenberg-Moore category of the Kalmbach monad. The unit interval [0,1] is obviously
a bounded poset. It is an effect algebra with a⊥ b ⇐⇒ a≤ 1−b, a>b := a+b and a⊥ := 1−a. It is an
effect monoid with · just the regular multiplication of real numbers. We can be a bit more specific: [0,1]
as a monoid is irreducible. To describe this we need the following straightforwardly verified proposition.

Proposition 15. Let C be a category with products × and symmetric monoidal structure ⊗, such that
⊗ distributes over ×: A⊗ (B×C)∼= (A⊗B)× (A⊗C) (in a suitably natural way). Given two monoids
A and B (with respect to ⊗) we can construct a monoid map m : (A×B)⊗ (A×B)→ A×B using the
isomorphisms given by the distributivity of ⊗, projection maps, compositions of the monoid maps of A
and B and the universal property of the product.

Definition 16. We call a monoid M in a category with products and a distributive symmetric monoidal
tensor product irreducible when M ∼= M1×M2 implies that either M1 or M2 is final.1

1It might actually be more natural to call such monoids ‘prime’, while irreducibility with respect to a distributive coproduct
should be called ‘irreducible’. However, because products in the category of effect algebras are given by the Cartesian product it
seems warranted in this case to call these monoids irreducible.
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Proposition 17. Let M be an effect monoid. We call an element p ∈M idempotent when p · p = p. An
effect monoid is irreducible iff the only idempotents are 0 and 1.

Proof. The product in the category of effect algebras is the Cartesian product. Hence, a product effect
monoid M1×M2 is likewise defined using pointwise operations. In such an effect monoid (1,0) and
(0,1) are idempotents not equal to 0 and 1. Conversely, if M has an idempotent p 6= 0,1, then we can
consider the ‘subalgebras’ pM := {a ∈ M ; a ≤ p}, and p⊥M (defined analogously). We then have
M = pM× p⊥M. For the details see [19, Corollary 23].

As the only idempotents in [0,1] are 0 and 1 we see that [0,1] is indeed irreducible. Other irreducible
effect monoids are the initial object {0,1} and the final object {0}. However, there are also more
pathological irreducible effect monoids. For instance, the ‘lexicographically ordered vector spaces’ of [21]
or Example 40 of [20].

2.3 ω-completeness

The reason we got other possible ‘pathological’ irreducible effect monoids is that we were not capturing
enough of the ‘specialness’ of the order of [0,1]. The missing ingredient is that when we have an increasing
sequence a1 ≤ a2 ≤ a3 ≤ ·· · in [0,1] that this has a unique least upper bound ∨iai.

Definition 18. Let P be a bounded poset. We say P is ω-complete when every increasing sequence
a1 ≤ a2 ≤ ·· · in P has a supremum. We denote the full subcategories of BPos, OMP and EA consisting
of ω-complete posets by BPosω , OMPω respectively EAω .

Remark 19. ω-completeness is a weaker version of the more well-known directed completeness. This
states that any directed set (i.e. a set S such that for each a,b ∈ S there is a c ∈ S such that a,b≤ c) has a
supremum. ω-completeness is equivalent to requiring this property for countable directed sets. When
viewing a bounded poset as a category as in Remark 2, the poset is directed complete iff it it has all
directed limits. It is ω-complete if it has all countable directed limits (these are also known as sequential
limits).

The full subcategory of BPosT consisting of those algebras whose underlying objects lie in BPosω is
isomorphic to EAω , which follows easily from the fact that the isomorphism between BPosT and EA acts
as the identity on the underlying posets. We will often write ω-effect algebra instead of ω-complete effect
algebra for brevity and similarly for effect monoids.

Remark 20. There is a different perspective on ω-complete effect algebras that is more algebraic in
nature. Namely, they are precisely those effect algebras that are σ -additive. The definition is a bit technical
(see [2, 17] or [4, Definition 2]), but intuitively in such effect algebras we have a partial infinite sum
operation where the sum of an infinite sequence x1,x2, . . . is defined precisely when the sum of every finite
subset is defined.

We have the following theorem characterising ω-effect monoids.

Theorem 21 ([19]). Let M be an ω-effect monoid. Then there exists a Boolean algebra B and a compact
Hausdorff space X such that M embeds (as an effect monoid) into B×C(X , [0,1]).

Note that this theorem in particular implies that all ω-effect monoids are commutative. We will be
primarily interested in the following consequence of the result.

Corollary 22 ([19]). Let M be an ω-effect monoid with no non-trivial zero divisors (i.e. if a ·b = 0, then
either a = 0 or b = 0). Then M is isomorphic as an effect monoid to either {0}, {0,1} or [0,1].
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Corollary 23. Let M be an irreducible ω-effect monoid. Then M ∼= {0}, M ∼= {0,1} or M ∼= [0,1].

Proof. Any irreducible effect monoid has no non-trivial zero divisors. See [20, Lemma 72].

This result allows us now to give our first categorical characterisation of the real unit interval.

Theorem 24. The real unit interval is the unique non-initial, non-final, irreducible monoid in the full
subcategory of BPosT consisting of those algebras that have their underlying objects in BPosω . Here T is
the Kalmbach monad arising from the free-forgetful adjunction between BPos and OMP.

Proof. BPosT is isomorphic to the category of effect algebras, and its restriction to objects of BPosω

gives precisely EAω . The monoids in this category are ω-complete effect monoids. There are precisely
three such effect monoids that are irreducible: {0}, {0,1} and [0,1]. The first of these is final in EAω and
the second initial. Hence, the only remaining non-initial, non-final irreducible monoid is [0,1].

3 The ω-Kalmbach extension

The fact that we have to refer to a full subcategory of an Eilenberg-Moore category to get our characterisa-
tion is not very natural. If the adjunction between BPos and OMP were to restrict to BPosω and OMPω ,
then we could present the result by referring to monoids in the category BPosT

ω . However, it is not the
case that the Kalmbach extension K(P) of an ω-complete poset P is itself ω-complete, and hence the
adjunction does not restrict. Let us demonstrate this with an explicit counter-example.

Example 25. Let P = [0,1]. Obviously P is ω-complete. Now consider the following family of chains in
K(P). Define Sn = [ 1

2n < 1
2n−1 < · · ·< 1

2 < 1]. It is clear from the definition of the partial order in K(P)
that S1 ≤ S2 ≤ S3 ≤ ·· · . We will show that this sequence does not have a least upper bound in K(P) and
hence that K(P) is not ω-complete.

Let C = [a1 < a2 < · · ·< a2n−1 < a2n] be an upper bound to all the Si. As Sn+1 is a chain of length
2n+2, there must by the pigeon-hole principle be an interval in C that covers at least two intervals in
Sn+1. Suppose then without loss of generality that the interval [a2 j−1,a2 j] covers the adjacent intervals
[ 1

2k−1 ,
1
2k ] and [ 1

2k+1 ,
1

2k+2 ] for some 1≤ k ≤ n−1. Define now the chain C′ =C∪{ 1
2k ,

1
2k+1}. Then the

interval [a2 j−1,
1
2k ] in C′ covers [ 1

2k−1 ,
1
2k ] in Sn, and similarly [ 1

2k+1 ,a2 j] covers [ 1
2k+1 ,

1
2k+2 ]. It is then

clear that C′ is also an upper bound of all the Si. However, as C′ ≤C and C was arbitrary this shows that
the sequence S1 ≤ S2 ≤ ·· · cannot have a least upper bound.

This example shows that the problem with the existence of suprema is that the lengths of the chains in a
sequence can increase without bound, while any supremum must always have a finite number of elements.
Naively, one might think that this problem can be fixed by considering a modified construction where we
allow the chains to have countable length. Unfortunately, this also runs into problems. Unfortunately, the
author has not succeeded in constructing the suitable generalisation explicitly. Instead, we will construct
it implicitly as a consequence of the adjoint functor theorem.

Definition 26. Let f : P→ Q be a monotone map between ω-complete bounded posets. We say f is
ω-normal when it preserves the supremum of increasing sequences, i.e. when f (∨ixi) = ∨i f (xi) for a
sequence x1 ≤ x2 ≤ ·· · . We denote by ωEA the ‘wide’ subcategory of EAω containing just the maps that
are ω-normal.

Proposition 27. Both BPos and ωEA are complete and the forgetful functor from ωEA preserves limits.
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Proof. To prove completeness it suffices to show a category has all (small) products and all equalizers.
Products in both BPos and ωEA are given by the Cartesian product with pointwise operations. In BPos
the equalizer of morphisms f ,g : E→ F is given by X ⊆ E defined as X := {x ∈ E ; f (x) = g(x)}. The
object X inherits the poset structure from E, and because f (0) = 0 = g(0) and f (1) = 1 = g(1) it contains
the bounds 0 and 1. Verifying that X satisfies the appropriate universal property is entirely standard. If
f ,g : E→ F are now morphisms in ωEA the equalizer is given in the same way: that X is ω-complete
follows because f and g are ω-normal, and as f and g preserve addition and complement, X is also closed
under addition and orthocomplement so that X is also an effect algebra.

As the underlying set for products and equalizers are the same, the forgetful functor indeed preserves
all limits.

Proposition 28. The forgetful functor U : ωEA→ BPos has a left adjoint.

Proof. The adjoint functor theorem says a functor G : D→ C from a locally small complete category D
has a left adjoint when it preserves all limits and satisfies the solution set condition: for all P ∈ C there is
a set I and an I-indexed family of morphisms hi : P→ G(Ai) such that all h : P→ G(A) can be written as
h = G( f )◦hi for some f : Ai→ A.

As ωEA is indeed locally small and complete, and U preserves all limits it remains to verify the
solution set condition. So fix a bounded poset P. We will denote by card(S) the cardinality of a set S.

Let WP be a set of bounded posets such that for every bounded poset W ′ with card(W ′)≤max(card(P),ℵ1)
there is a W ∈ WP such that W ′ is isomorphic to W . Define now the family HP = {hi}i∈I of all BPos
morphisms hi : P→U(Ai) where Ai ∈ ωEA and U(Ai) ∈WP.

Let h : P→U(A) be an arbitrary morphism in BPos for some A ∈ ωEA. Let B be the ωEA generated
by h(P) in A. The cardinality of B is bounded by max(card(P),ℵ1), and hence U(B) is isomorphic
to some Ai in WP. But then we can equip Ai with an effect algebra structure as well so that B is also
isomorphic to Ai as an effect algebra. Write φ : Ai→ A for the corresponding embedding of effect algebras
in ωEA arising from the embedding B→ A. Then h =U(φ)◦hi for some hi : P→U(Ai) in HP, and we
are done.

Remark 29. One might be surprised that we get an adjunction between ωEA and BPos instead of
between ωEA and ‘ωBPos’. We can see Remark 20 as an explanation for this: ωEAs are not just EAs
with a stronger order property, instead we can see them as a different type of algebraic structure defined
on the back of a bounded poset. This adjunction between BPos and ωEA then equips a bounded poset
with this infinitary algebraic structure.

The left adjoint of the forgetful functor between EA and BPos is the Kalmbach extension, so we
will refer to the left adjoint of U : ωEA→ BPos as the ω-Kalmbach extension Kω : BPos→ ωEA. The
author does not know of an explicit description of Kω . For a finite bounded poset P it is clear that we
have Kω(P) = K(P). However, for other bounded posets P it is not easy to see what Kω(P) should be,
just that this has to generally be quite a complex object. Let’s give an example to demonstrate why we
need this complexity (in a somewhat heuristic manner). Take P = [0,1] and write ι : [0,1]→ Kω([0,1])
for its embedding in its ω-Kalmbach extension. Denote by B([0,1]) the Borel sets on [0,1] equipped with
the standard inclusion order. Then we have a BPos morphism f : [0,1]→ B([0,1]) given by f (0) = /0 and
f (a) = [0,a]. As B([0,1]) is an ω-complete Boolean algebra, it is an ω-complete effect algebra, and hence
there must be a unique ωEA morphism f̂ : Kω([0,1])→ B([0,1]), such that f̂ ◦ ι = f . By considering
ωEA operations on the elements ι(a) in Kω([0,1]) for a ∈ [0,1] and transporting these using f̂ to B([0,1])
we can generate almost all of the Borel sets, so that Kω([0,1]) must itself contain structure mimicking
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that of the Borel sets. Hence, even for a relatively simple totally ordered poset like [0,1], its ω-Kalmbach
extension carries a complexity rivaling the complex hierarchy of Borel sets.

3.1 Proving monadicity

Just like how EA is the Eilenberg-Moore category for the Kalmbach monad, so is ωEA the Eilenberg-
Moore category for the ω-Kalmbach monad. As we don’t have an explicit description of Kω , we will use
Beck’s monadicity theorem to prove this.

Definition 30. A (co)limit in a category C is called absolute when it is preserved by every functor with
domain C. We say a functor G : D→ C reflects absolute coequalizers when for every pair f ,g : A→ B
in D such that G( f ),G(g) has an absolute coequalizer in C, the pair f ,g has a coequalizer in D that is
preserved by G.

Definition 31. We say a category D is monadic over C when D is equivalent to an Eilenberg-Moore
category CT for some monad T .

Theorem 32 (Beck’s monadicity theorem). A category D is monadic over C iff there exists a functor
U : D→ C that reflects absolute coequalizers and has a left adjoint.

To prove our result we will need the following lemma.

Lemma 33. Let U : D→ C be a functor and let A,B ∈ D and f ,g : A→ B in D be such that there is an
absolute coequalizer q : U(B)→ Q of U( f ) and U(g) in C. Then for any functor F : C→ C and natural
transformation η : FU⇒U there exists a unique map ηQ : F(Q)→Q in C making the following diagram
commute:

FU(B) F(Q)

U(B) Q

F(q)

ηB ηQ

q

In words: the natural transformation η can be extended to include the object Q and morphism q.

Proof. Consider the following diagram:

FU(A) FU(B) F(Q)

U(A) U(B) Q

FU( f )

FU(g)
ηA

F(q)

ηB ηQ
U( f )

U(g)

q

(1)

We need to show that the morphism ηQ exists and is the unique one making the right-hand square
commute.

The naturality of η ensures that both squares on the left commute. Because q is an absolute coequalizer
of U( f ),U(g), we see that F(q) is a coequalizer of FU( f ),FU(g), hence both rows in the diagram are
coequalizers. We claim that q◦ηB coequalizes FU( f ),FU(g). Indeed by using that q◦U( f ) = q◦U(g)
and the naturality of η we easily calculate

q◦ηB ◦FU( f ) = q◦U( f )◦ηA = q◦U(g)◦ηA = q◦ηB ◦FU(g).

Now because F(q) is the coequalizer of FU( f ),FU(g) we get the unique arrow ηQ that makes the
right-hand square commute.
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Theorem 34. ωEA is equivalent to the Eilenberg-Moore category of the ω-Kalmbach monad over BPos.

Proof. We know that U : ωEA→ BPos has a left adjoint, so by Beck’s monadicity theorem it suffices to
show U reflects absolute coequalizers.

So let A and B be ω-EAs and let f ,g : A→ B be ωEA morphisms such that U( f ),U(g) have an
absolute coequalizer q : U(B)→ Q in BPos. We need to show that there is an ω-EA Q′ and a ωEA
morphism q′ : B→ Q′ that coequalizes f ,g. Since we furthermore need U(Q′) = Q and U(q′) = q and
U is forgetful this boils down to 1) showing that Q carries the structure of an effect algebra, 2) that q
preserves this structure, 3) that Q is ω-complete, 4) that q is ω-normal and 5) that q is also a coequalizer
in ωEA.

Proving 1) and 2) Let U1 : ωEA→ EA and U2 : EA→ BPos denote the evident forgetful functors.
Then U =U2 ◦U1, and we have U(A) =U2(A), U(B) =U2(B), U( f ) =U2( f ), U(g) =U2(g) as objects
and morphisms in BPos. Since U2 : EA→ BPos is monadic (via the Kalmbach extension), we then have
by the ‘if direction’ of Beck’s monadicity theorem that there is an effect algebra Q′ such that U2(Q′) = Q
and an effect algebra morphism q′ : B→ Q′ such that U2(q′) = q. Since U2 is just forgetful this means
that Q is an effect algebra and that q preserves the effect algebra structure.

Proving 3) and 4) We adapt the arguments used in [13, Theorem 3.1] that proved that pseudo-effect
algebras are monadic over bounded posets.

Let P be a bounded poset. Define I′(P) = {s : N→ P ; s monotone}. That is, s ∈ S(P) consists of
s(1),s(2),s(3), . . . ∈ P such that s(1)≤ s(2)≤ s(3)≤ . . ., and hence consists of increasing sequences in
P. We preorder I(P) by setting s≤ t ⇐⇒ ∃N∀i≥ N : s(i)≤ t(i). In words: s≤ t when s is smaller than
t pointwise, except for some finite set at the start of the sequence. Then define I(P) := I′(P)/∼ where ∼
is the equivalence relation given by the preorder. I.e. I(P) consists of equivalence classes of sequences
that are eventually equal. We see that I(P) is a bounded poset with minimal element the (equivalence
class of the) constant 0 function, and maximal element the constant 1 function. We make I into a functor
I : BPos→ BPos by mapping f : P→ Q to I( f )(s)(i) = f (s(i)).

Let E be an ω-EA. Define SE : IU(E)→U(E) as SE(s) =
∨

i s(i). It is clear that SE is monotone and
preserves bounds, and hence is a morphism in BPos. We claim that it forms a natural transformation
S : IU ⇒U for the functors IU,U : ωEA→ BPos. Indeed for any ω-normal morphism f : E → F we
calculate:

SF(IU( f )(s(1)≤ s(2)≤ . . .)) = SF( f (s(1))≤ f (s(2))≤ . . .)

= ∨i f (s(i))

= f (∨is(i))

=U( f )(SE(s(1)≤ s(2)≤ . . .))

Now, by applying Lemma 33 with F := I and η := S we see that we get a unique map SQ : I(Q)→ Q
such that SQ ◦ I(q) = q◦SB.

We claim that SQ assigns suprema to increasing sequences in Q, so that Q is indeed ω-complete.
Once we have shown this, the commutativity of the righthand square of (1) shows that q preserves these
suprema, and thus that it is ω-normal.

To prove the claim we introduce another natural transformation α : id⇒ I of functors id, I : Bpos→
BPos defined as αP(x) = (x≤ x≤ x≤ . . .), i.e. it maps each element to its ‘constant’ increasing sequence.
That αP : P→ I(P) is a morphism in BPos and that it forms a natural transformation is easily verified.
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Now, for any ω-EA E we also easily see that SE ◦αU(E) = idU(E). We now augment the diagram (1) with
an additional row.

U(A) U(B) Q

IU(A) IU(B) I(Q)

U(A) U(B) Q

U( f )

U(g)
αU(A)

q

αU(B) αQ

IU( f )

IU(g)
SA

I(q)

SB SQ
U( f )

U(g)

q

(2)

The naturality of α shows that this is still a commutative diagram. Note that the left and middle vertical
arrows compose to identities. Hence, we can ‘squash’ the diagram to the following commutative diagram.

U(A) U(B) Q

U(A) U(B) Q

U( f )

U(g)
idU(A)

q

idU(B) SQ◦αQ
U( f )

U(g)

q

(3)

Note that if we were to replace the rightmost arrow SQ ◦αQ in this diagram by idQ that the diagram would
still commute. However, due to the present coequalizers the arrow making the diagram commute is unique
and so that we must have SQ ◦αQ = idQ.

Now, let x1 ≤ x2 ≤ . . . be an increasing sequence in Q, and let s be its associated element in I(Q). We
claim that SQ(s) = ∨ixi. First, let us establish that it is indeed an upper bound of the sequence. For each
x j we note that αQ(x j)≤ s (as s(i) is indeed eventually bigger than x j). Then apply the monotone map
SQ to this inequality to get x j = idQ(x j) = (SQ ◦αQ)(x j)≤ SQ(s). Now suppose xi ≤ y for all i for some
y ∈ Q. Then s≤ αQ(y) in I(Q). Again, apply SQ to this inequality: SQ(s)≤ (SQ ◦αQ)(y) = idQ(y) = y,
so that SQ(s) is indeed the least upper bound of the xi.

Proving 5) It remains to show that q is also the coequalizer of f and g in ωEA. Note first that q◦ f = q◦g
since U is the identity on the underlying set structure, so it only remains to show that q has the universal
property of coequalizers in ωEA. So let h : B→C be an ωEA morphism satisfying h ◦ f = h ◦ g. By
applying U to these equalities we find a unique e : U(Q)→U(C) satisfying e◦U(q) =U(h). We need
to show that e is ω-normal and that e preserves the addition operation so that it is a morphism in ωEA.
Consider the following diagram:

IU(B) I(Q) IU(C)

U(B) Q U(C)

IU(q)

SB

I(e)

SQ SC

U(q) e

(4)

The left-hand square commutes because q is ω-normal, and the outer rectangle commutes because
e◦U(q) =U(h) is ω-normal. We can hence calculate:

e◦SQ ◦ IU(q) = e◦U(q)◦SB = SC ◦ I(e)◦ IU(q).
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Now because IU(q) is a coequalizer, it is an epimorphism, and hence we can ‘cancel’ it from this equation
to get e◦SQ = SC ◦ I(e), which indeed shows that e is ω-normal.

Proving that e is an effect algebra homomorphism is done using a similar argument. It is entirely
analogous to the proof given in [13], so we only give a brief sketch. First, construct the ‘interval’ functor I2 :
BPos→BPos by I2(P) = {(x,y)∈P2 ; x≤ y} and order it by [x1≤ y1]≤ [x2≤ y2] ⇐⇒ x2≤ x1 & y1≤ y2.
We then construct a natural transformation 	 : I2 ◦U →U for the functors I2 ◦U,U : ωEA→ BPos by
	E([x ≤ y]) = y	 x. The naturality of 	 witnesses the fact that morphisms f : E → F preserve 	 and
thus are effect algebra homomorphisms. We then construct a diagram like (4) but with I replaced by I2
and S replaced by 	, and use the same argument to show that e must preserve 	 as well.

Now that we know that ω-complete effect algebras are also monadic over bounded posets we can give
a different characterisation of the real unit interval, by referring to monoids in this category.

Remark 35. Effect monoids were defined with respect to the tensor product in EA which relied on the
definition of effect algebra bimorphisms (see Definition 11). In ωEA morphisms are ω-normal, so we
need to modify this notion of bimorphism, so that we a priori would get a different notion of ‘ω-effect
monoid’. However, as was shown in [19, Theorem 45], when we have an effect monoid that is ω-complete,
its multiplication is automatically normal. Hence, monoids in EA that are ω-complete coincide with
monoids in ωEA produced using the modified definition of the tensor product.

Theorem 36. The real unit interval is the unique non-initial, non-final, irreducible monoid in BPosT

where T is the ω-Kalmbach monad.

3.2 ω-effect monoids as Eilenberg-Moore algebras

In this last characterisation of the real unit interval we made reference first to a type of Eilenberg-Moore
algebra, and then to monoids in that category. It turns out we can cut out the middle man and directly
consider ω-complete effect monoids as a type of Eilenberg-Moore algebra.

Definition 37. Let ωEM denote the category of ω-effect monoids and ω-normal effect monoid homo-
morphisms (i.e. ω-effect algebra homomorphisms that also preserve the product operation).

Theorem 38. ωEM is equivalent to the Eilenberg-Moore category of some monad over BPos.

Proof. The proof is similar in structure to that of Theorem 34. We present it in the appendix.

Corollary 39. There exists a monad T on BPos such that the real unit interval is the unique non-initial,
non-final irreducible algebra in BPosT ∼= ωEM.

4 Conclusion

We looked at the theory of ω-complete effect monoids and showed how it can be used to give a categorical
characterisation of the real unit interval. These effect monoids have an order, addition, complement, and
multiplication, so this shows that this algebraic structure suffices to reconstruct the unit interval.

An interesting aspect of our characterisation is that the unit interval is the unique irreducible monoid
(in a suitable category) that is not initial nor final. This seems to say that while it is a simple structure
(because it is irreducible), it is not too simple (initial or final).

For future work it would be interesting to give a concrete description of the ω-Kalmbach monad.
While such a concrete description might prove difficult for general bounded posets, it might be easier for



J. van de Wetering 13

totally ordered sets like the real unit interval, because the description of the regular Kalmbach extension for
those sets is also simpler (it is essentially the free Boolean algebra generated by its downsets), so perhaps
we get the ω-Kalmbach extension by looking at free ω-Boolean algebras. A perhaps easier question to
answer is whether the ω-Kalmbach extension of a bounded poset always forms an orthomodular poset
itself, and whether the monad arises from an adjunction with the category of ω-complete orthomodular
posets.

Acknowledgements The author would like to thank Bas and Bram Westerbaan for insightful discussions.
The author is supported by a Rubicon fellowship financed by the Dutch Research Council (NWO).

References

[1] Robin Adams & Bart Jacobs (2015): State and Effect Logics for Deterministic, Non-deterministic,
Probabilistic and Quantum Computation. TYPES 2015, p. 8.

[2] Michael A Arbib & Ernest G Manes (1980): Partially Additive Categories and Flow-Diagram
Semantics. Journal of Algebra 62(1), pp. 203–227.

[3] Chen Chung Chang (1958): Algebraic analysis of many valued logics. Transactions of the American
Mathematical society 88(2), pp. 467–490.

[4] Kenta Cho, Bas Westerbaan & John van de Wetering (2020): Dichotomy between deterministic
and probabilistic models in countably additive effectus theory. https://arxiv.org/abs/2003.
10245.

[5] David J Foulis & Mary K Bennett (1994): Effect Algebras and Unsharp Quantum Logics. Founda-
tions of physics 24(10), pp. 1331–1352, doi:10.1007/BF02283036.

[6] Peter Freyd (2008): Algebraic real analysis. Theory and Applications of Categories 20, pp. 215–306.

[7] John Harding (1996): Decompositions in quantum logic. Transactions of the American Mathematical
Society 348(5), pp. 1839–1862.

[8] John Harding (2004): Remarks on Concrete Orthomodular Lattices. International Journal of
Theoretical Physics 43(10), pp. 2149–2168.

[9] Bart Jacobs (2011): Probabilities, Distribution Monads, and Convex Categories. Theoretical
Computer Science 412(28), pp. 3323–3336, doi:10.1016/j.tcs.2011.04.005.

[10] Bart Jacobs & Jorik Mandemaker (2012): Coreflections in Algebraic Quantum Logic. Foundations
of physics 42(7), pp. 932–958, doi:10.1007/s10701-012-9654-8.

[11] Bart Jacobs & Abraham A Westerbaan (2017): Distances between States and between Predicates.
https://arxiv.org/abs/1711.09740.
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A Proof of Theorem 38

By an argument entirely analogous to that of Proposition 28 we can show that the forgetful functor
U : ωEM→ BPos has a left-adjoint. By Beck’s monadicity theorem it then remains to show that U
reflects absolute coequalizers.

So just as in the proof of Theorem 34, suppose f ,g : A→ B are ωEM morphisms such that U( f ),U(g)
have an absolute coequalizer q : U(B)→ Q in BPos. We need to show that Q carries the structure of an
ωEM and that q is an ωEM morphism. As the forgetful functor factors through ωEA we already know
that Q is an ωEA and that q is an ωEA morphism. It remains to show that Q also has an associative, unital
and distributive multiplication which is preserved by q.

Existence of a product and preservation by q Write P2 : BPos → BPos for the product functor
P2(A) := A×A. For an ωEM M define µM : P2(U(M))→U(M) by µM(a,b) = a ·b. It is easily verified
that µ then forms a natural transformation µ : P2 ◦U ⇒U . By applying Lemma 33 with F := P2 and
η := µ we see then that there is a unique Bpos morphism µQ : P2(Q)→ Q satisfying µQ ◦P2(q) = q◦µB.
We define a product operation on Q by a ·Q b := µq(a,b). The naturality condition µQ ◦P2(q) = q◦µB

shows that q is indeed a homomorphism for this product.

Unitality of the product For A ∈ BPos define εA : A→ P2(A) by εA(0) = (0,0) and εA(a) = (a,1) for
a 6= 0. It is straightforward to check that εA is indeed a morphism in Bpos. Furthermore, it defines a natural
transformation ε : id⇒ P2. Note that for any ωEM M we have µM ◦ εU(M) = idU(M) as µM(εU(M)(a)) =
µM(a,1) = a ·1 = a for a 6= 0 and similarly for a = 0. We can then construct diagrams analogous to (2)
and (3), but with α replaced by ε and S replaced by µ to show that µQ ◦ εQ = idQ, and hence a ·Q 1 = a.
To show 1 ·Q a = a we can use an entirely analogous argument.
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Associativity of the product Let P3 : Bpos→ BPos denote the product functor P3(A) := A×A×A.
Then µ × id : P3 ◦U ⇒ P2U forms a natural transformation given by (a,b,c) 7→ (a · b,c). Composing
this with the natural transformation µ : P2 ◦U ⇒U we get µL := µ ◦ (µ × id) : P3 ◦U ⇒U given by
(a,b,c) 7→ (a ·b) · c = a ·b · c. Defining the natural transformation id×µ analogously we then see that
µR = µ ◦ (id× µ) = µ ◦ (µ × id) = µL, which expresses the associativity of the product in an effect
monoid. Now, taking the diagram (2), but with S replaced by µ and α replaced respectively by µ× id and
id×µ and ‘squashing’ the columns like in diagram (3) we get the diagrams:

U(A) U(B) Q

U(A) U(B) Q

U( f )

U(g)
µL

A

q

µL
B µL

Q
U( f )

U(g)

q

U(A) U(B) Q

U(A) U(B) Q

U( f )

U(g)
µR

A

q

µR
B µR

Q
U( f )

U(g)

q

(5)

The arrows µL
Q and µR

Q in their respective diagrams are the unique ones making the diagram commute
due to the presence of the coequalizers. However, as µL

A = µR
A and µL

B = µR
B , we see that that we can

replace µR
Q in the diagram on the right by µL

Q and still retain a commutative diagram. Hence, by uniqueness
µL

Q = µR
Q, so that the product ·Q is indeed associative.

Distributivity of the product It remains to show that a ·Q (b > c) = (a ·Q b)> (a ·Q c) (the case for
(b> c) ·Q a follows by symmetry). As it is more straightforward, we will prove the equivalent statement
a ·Q (c	 b) = (a ·Q c)	 (a ·Q b) for all a and b ≤ c in Q. We do this by constructing some appropriate
functors and natural transformations. As at the end of the proof of Theorem 34 we require the interval
functor I2 : BPos→ BPos defined by I2(P) = {(a,b) ∈ P2 ; a ≤ b} which is ordered by [a1 ≤ b1] ≤
[a2 ≤ b2] ⇐⇒ a2 ≤ a1 & b1 ≤ b2. Then there is a natural transformation 	 : I2 ◦U →U defined by
	M([b ≤ c]) = c	 b. This natural transformation extends to Q by Lemma 33. We also have a natural
transformation β : (id× I2) ◦ (P2 ◦U)⇒ I2 ◦U given by morphisms βA : A× I2(A)→ I2(A) defined by
βA(a, [b ≤ c]) = [a · b ≤ a · c]. Distributivity of multiplication over addition is then witnessed by the
equation of natural transformations 	◦β = µ ◦ (id×	). By building an analogue of the diagrams (5) we
can extend this equality to those morphisms defined for Q, so that multiplication is also distributive in Q.

q is a coequalizer We now know that Q is a ωEM and that q is an ωEM morphism. It remains to show
that q is also a coequalizer in ωEM. This is done in the same way as in the proof of Theorem 34 (i.e. we
need to show that the unique morphisms that exist due to the universal property of q in BPos are actually
ωEM morphisms; this is done by constructing some appropriate commutative diagrams).
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