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Abstract

Lambek calculus with a relevant modality !L∗ of (Kanovich et al., 2016)
syntactically resolves parasitic gaps in natural language. It resembles the
Lambek calculus with anaphora LA of (Jäger, 1998) and the Lambek
calculus with controlled contraction L♦ of (Wijnholds and Sadrzadeh,
2019b) which deal with anaphora and ellipsis. What all these calculi add
to Lambek calculus is a copying and moving behaviour. Distributional
semantics is a subfield of Natural Language Processing that uses vector
space semantics for words via co-occurrence statistics in large corpora
of data. Compositional vector space semantics for Lambek Calculi are
obtained via the DisCoCat models (Coecke et al., 2010). LA does not
have a vector space semantics and the semantics of L♦ is not compo-
sitional. Previously, we developed a DisCoCat semantics for !L∗ and
focused on the parasitic gap applications. In this paper, we use the vector
space instance of that general semantics and show how one can also in-
terpret anaphora, ellipsis, and for the first time derive the sloppy vs strict
vector readings of ambiguous anaphora with ellipsis cases. The base

∗This is an extended version of the paper accepted at the SemSpace2020 workshop, to
appear in the Journal of Cognitive Science.
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of our semantics is tensor algebras and their finite dimensional variants:
the Fermionic Fock spaces of Quantum Mechanics. We implement our
model and experimentwith the ellipsis disambiguation task of (Wijnholds
and Sadrzadeh, 2019a).

Keywords: Lambek Calculus Relevant Modality Controlled
Contraction Anaphora Ellipsis Strict vs Sloppy Vector Space Se-
mantics Tensor Algebras Fock Spaces.

1. Introduction

Inspired by Linear Logic’s !, extensions of Lambek calculi with exponentials
were introduced in the 90’s in (Morrill et al., 1990; Barry et al., 1995) for
the purpose of deriving phenomena with medial extraction, as in relative
clauses such as “book which fell”, “book which John read”, and “book which
John read yesterday”, iterated coordination, as in “John Bill Mary and Suzy”,
parasitic gaps, as in “the paper which Suzy filed without reading”, and cases
were there is a lexical item whose arguments optionally contains a gap, as
in the lexical item ‘too’ in clauses such as “too boring for one to follow”.
For a modern exposition and review of these systems, see (Moot and Retoré,
2012). Similar extensions, with limited copying, and combinations of per-
mutation and associativity, rather than just permutation, were used to model
coreference phenomena such as anaphora and ellipsis in (Jäger, 1998; Morrill
and Merenciano Saladrigas, 1996). These systems were recently revisited in
(Morrill and Valentín, 2016, 2015) and also independently in (Wijnholds and
Sadrzadeh, 2018, 2019b). It was the former set that inspired the logic !L∗:
Lambek calculus with a Relevant Modality, developed in (Kanovich et al.,
2016) and used in this paper.

In previous work (McPheat et al., 2021), we developed a categorical se-
mantics for !L∗ via coalgebra modalities of Differential Categories (Blute
et al., 2006) and showed how at least two different interpretations of ! in the
category of finite dimensional vector spaces and linear maps provide vector
space instantiations for the abstract categorical semantics. Our focus in that
paper, was to develop a vector space semantics for parasitic gaps, the motivat-
ing example of (Kanovich et al., 2016). In this paper, we briefly re-introduce
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the vector space semantics of !L∗, making use of the notion of tensor alge-
bras and their finite variants: Fermionic Fock spaces of QuantumMechanics.
Then, following previous work (Wijnholds and Sadrzadeh, 2018, 2019b) and
the work of Jäger (Jäger, 1998, 2006), we apply the setting to obtain tensor
algebraic interpretations of examples with anaphora, ellipsis, and combina-
tions of the two. By so doing, we overcome two different weaknesses of
the above mentioned previous approaches: (1) developing a compositional
vector space semantics for a Lambek calculus that can deal with anaphora
and ellipsis, whereas the work of (Jäger, 1998, 2006) did not (it only had a
lambda calculus semantics), and (2) being able to obtain two different vec-
tor semantics for the sloppy vs strict readings of ambiguous anaphora with
ellipsis cases, whereas the work in (Wijnholds and Sadrzadeh, 2018, 2019b)
could not. The contributions of this and previous work (McPheat et al., 2021)
are thus two-fold: first we have developed a direct vector space semantics
for an extension of Lambek calculus with limited contraction. The work
done in (Wijnholds and Sadrzadeh, 2018, 2019b) does develop a vector space
semantics for Jäger’s multi modal calculus (Jäger, 1998), but via a two-step
semantics and by going through a dynamic logic of vectors (Muskens and
Sadrzadeh, 2019). Turning this semantics into a single-step one faced the
challenge of discovering a linear copying map. We have done this for !L∗
through the use of Fermionic tensor algebras and in effect infinitely many
linear copying maps. Second, the semantics proposed in (Wijnholds and
Sadrzadeh, 2018, 2019b), could not distinguish between the sloppy and strict
readings of anaphora with ellipsis, and here we are able to do so. We imple-
mented our vector space semantics on distributional data and experimented
with the ellipsis disambiguation dataset of (Wijnholds and Sadrzadeh, 2019a).
The results show that our linear copying operations do as well as the full non
linear copying and also outperform non compositional and additive baselines.

Finally, the use of exponentials may not be necessary when dealing with
the phenomena of parasitic gaps, anaphora and ellipsis; milder modal Lambek
calculi with structural control, as defined in (Moortgat, 1996), or displacement
calculi (Morrill et al., 2011), can also be used as a base as well, e.g. see
the recent proposal of (Sadrzadeh et al., 2020), which uses modal Lambek
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calculi with a Frobenius algebraic semantics for parasitic gaps. Finding formal
connections with these is a possible future direction.

2. Background

We introduce the relevant background and context for this paper, along with
the definitions and examples of the linguistic phenomena we are considering
(i.e. anaphora and ellipsis), the logic we employ, and previous examples of
similar logics modelling anaphora and ellipsis.

2.1 Anaphora and Ellipsis

Anaphora and Ellipsis are instances of coreference in natural language, which
is a phenomenon where two distinct linguistic expressions refer to the same
entity (Chomsky, 1981; Bach, 2008). Resolving coreference is the task of
identifying what entity is being referred to.

Anaphora is a phenomenon where expressions called anaphors receive
their meaning from a previously mentioned word or phrase, for instance
pronouns like ‘He’ in ‘John sleeps. He snores.’, where clearly, ‘John’ and
‘He’ have the same referent1.

Ellipsis is a more general phenomenon, where broadly speaking, the
meanings of entire phrases are referred to by combinations of other words,
sometimes called ellipsis markers. In some cases ellipsis markers are dropped
and a phrase is referred to by the empty expression. For instance, in “John
plays guitar. Mary does too.", the combination of words ‘does too’ is an
ellipsis marker that refers to the phrase ‘plays guitar’. A complete list of
types of ellipsis is not yet agreed upon in the linguistics community and
different theories have different lists. The above example is sometimes called
verb-phrase ellipsis (VP-ellipsis) and is the focus of this paper.

Anaphora with ellipsis is an utterance containing both anaphora and
ellipsis. The example we will use throughout this paper is “John likes his

1One may also consider cataphora, which are phenomena where expressions called
cataphors receive their meanings from a word or phrase following them.
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code. Bill does too". Here the pronoun ‘his’ is an anaphor, and the verb
phrase ‘likes his code’ is being elliptically referred to by the marker ‘does
too’. Note how we can read this example in two different ways by choosing
which order to resolve the anaphora or the ellipsis. The simpler way is called
the strict reading, and has the meaning “John likes John’s code. Bill likes
John’s code", which is achieved by first resolving the anaphor with John, and
then the ellipsis with the verb-phrase ‘likes John’s code’. The second reading
is called the sloppy reading, and is achieved by first resolving the ellipsis with
‘likes his code’, and then resolve the two distinct anaphors ‘his’ with ‘John’
and ‘Bill’ separately, giving us the meaning “John likes John’s code. Bill
likes Bill’s code". In section 3 we show how to distinguish between the two
readings syntactically, and in section 5 we derive the vector semantics of the
two readings.

2.2 Type Logical Grammars and Anaphora

Earlier works have modelled the syntactic structures that arise from anaphora
and ellipsis as derivations in type-logical grammars (TLGs) in efforts tomodel
these phenomena in the same formalism as TLGs model other phenomena
of language. An early instance of this work comes in a paper by Jäger
(Jäger, 1998), where the author defines amultimodal TLGwhich syntactically
resolves anaphora and ellipsis. Jäger follows up this idea in his book (Jäger,
2006), where he suggests themore concise idea of using TLGswith controlled
contraction and permutation. However, neither in this book nor in (Jäger,
1998) can you find any mention of a vector space semantics, as this was not
the goal of the author. A standard lambda calculus semantics was however
developed.

A vector space semantics for VP-ellipsis is developed in (Wijnholds and
Sadrzadeh, 2018), which employs a TLG with controlled contraction and per-
mutation, inspired by (Jäger, 2006), and defines vector space interpretations
for anaphora with ellipsis examples. This semantics, however, uses a non-
linear copying operation, and fails to distinguish between strict and sloppy
readings. Both of the issues with this semantics are addressed in this paper.
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A→ A
Γ→ A ∆1, B,∆2 → C

(/L)
∆1, B/A, Γ,∆2 → C

Γ, A→ B
(/R)

Γ→ B/A

Γ→ A ∆1, B,∆2 → C
(\L)

∆1, Γ, A\B,∆2 → C
A, Γ→ B

(\R)
Γ→ A\B

Γ1, A, Γ2 → C
(!L)

Γ1, !A, Γ2 → C
!A1, . . . , !An → B

(!R)
!A1, . . . , !An →!B

∆1, !A, Γ,∆2 → C
(perm1)

∆1, Γ, !A,∆2 → C
∆1, Γ, !A,∆2 → C

(perm2)
∆1, !A, Γ,∆2 → C

∆1, !A, !A,∆2 → C
(contr)

∆1, !A,∆2 → C

Table 1. Rules of the !L∗ calculus.
2.3 Lambek Calculus with a Relevant Modality

Lambek calculus with a Relevant Modality, denoted by !L∗, is a variation
of Lambek calculus, L where we may use empty sequents (denoted by ∗),
and which has a (relevant) modality, !, which denotes when a formula is not
resource sensitive. We consider the calculus !L∗ over the set of primitive
types {N, S} and logical connectives {/, \, !}. The primitive types represent
the basic grammatical types of “noun" and “sentence". With these types and
the connectives we generate the full set of types2 according to the following
BNF:

Typ!L∗ ::= ∗ | N | S | A, B | A/B | A\B |!A.

The rules of !L∗ are presented in the sequent calculus system of table 1.
Sequents are written as Γ → A, where Γ is a finite (possibly empty) list of
formulas {A1, . . . , An}, and A is a single formula. We refer to the set of
formulas of !L∗ as Typ!L∗ .

3. Resolving Anaphora and Ellipsis in !L∗

We follow (Wijnholds and Sadrzadeh, 2018; Jäger, 1998, 2006) in how we re-
solve anaphora and ellipsis syntactically using type logical grammars. Given

2 We use the terms ‘formula’ and ‘type’ interchangeably.
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a word or compound w with a !L∗-type C whose meaning comes from a refer-
ence w′ (necessarily of the same type) e.g. a pronoun (anaphor) or an ellipsis
marker (eg. ‘does-too’), we first change the assignments of types of w to
(!C\C). We then assign the reference word, w′ the type !C, apply contraction
to this type, obtain the formula !C, !C, and then move one of the copies to the
reference type (!C\C), to which we then apply the (\L)-rule. This procedure
provides us with a proof tree as follows:

!C −→!C

...
Γ1, !C, Γ2,C, Γ3 −→ B

Γ1, !C, Γ2, !C, !C\C, Γ3 −→ B
(\L)

Γ1, !C, !C, Γ2, !C\C, Γ3 −→ B
(perm2)

Γ1, !C, Γ2, !C\C, Γ3 −→ B
(contr)

where Γ1, Γ2, Γ3 are (possibly empty) contexts surrounding the coreference.
For a concrete example of this procedure, consider: “John sleeps. He

snores". Clearly, ‘He’ refers to ‘John’, but since‘John’ is already being used
as the argument of ‘sleeps’, it is not possible for ‘He’ to use it as well in
classical Lambek calculus. Thus we instead wish to “copy" the meaning of
‘John’ using the (contr)-rule of !L∗, and move one copy to where ‘He’ can
use it, using the (perm2)-rule of !L∗.

In what follows, we present examples of anaphora, ellipsis, and the com-
bination of the two. These examples involve some seemingly intimidating
derivations, of which we want the reader to be wary. We will verbally de-
scribe what is happening in each of these derivations, and later in section 5
we will be able to view the derivations as string diagrams, which are far more
intuitive.
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N → N
!N →!N

N → N S, S → S, S
S, N, N\S → S, S

(\L)

S, !N, !N\N, N\S → S, S
(\L)

N, N\S, !N, !N\N, N\S → S, S
(\L)

!N, N\S, !N, !N\N, N\S → S, S
(!L)

!N, !N, N\S, !N\N, N\S → S, S
(perm2)

!N, N\S, !N\N, N\S → S, S
(contr)

Figure 1. Anaphora Derivation

3.1 Anaphora

Following (Wijnholds and Sadrzadeh, 2018), weworkwith the example “John
sleeps. He snores" and the following type assignment 3 :

{(John, !N), (sleeps, N\S), (snores, N\S), (he, !N\N)}

which provides us with the derivation proof tree in figure 1. We note that the
very first rule applied (reading the proof from bottom to top) is the contraction
which copies the type !N of ‘John’ providing us with !N, !N . We then permute
the rightmost copy to the immediate left hand side of the type of ‘He’, i.e.
the formula !N\N , and then unify the types of ‘John’ and ‘He’ using the
(\L)-rule.

3.2 Ellipsis
For ellipsis, consider the simple example “John plays guitar. Mary does too"
and the following type assignment

{(John, N), (plays, !(N\S)/N), (guitar, N), (Mary, N), (does-too, (!(N\S))\(N\S))} .

In order to resolve the ellipsis in this example, all we need to do is to show
that the sequent

N, !(N\S)/N, N, N, (!(N\S))\(N\S) −→ S, S

3 Note that one can always “ignore” the ! of a type by applying the (!L)-rule. This
means that in principle one may wish to consider every noun and every verb phrase as
having type !, since every noun/VP may be referred to at some point. We choose to
exclude this typing, as it adds more steps to the derivations.
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N −→ N

!(N\S) −→!(N\S)

N −→ N
N −→ N S, S −→ S, S

S, N, N\S −→ S, S
(\L)

N, N\S, N, N\S −→ S, S
(\L)

N, !(N\S), N, N\S −→ S, S
(!L)

N, !(N\S), N, !(N\S), (!(N\S))\(N\S) −→ S, S
(\L)

N, !(N\S), !(N\S), N, (!(N\S))\(N\S) −→ S, S
(perm2)

N, !(N\S), N, (!(N\S))\(N\S) −→ S, S
(contr)

N, !(N\S)/N, N, N, (!(N\S))\(N\S) −→ S, S
(/L)

Figure 2. Ellipsis Derivation

is derivable in !L∗. This is done in figure 2. The first application of a rule is the
(/L)-rule, which applies ‘plays’ to its subject ‘guitar’. After that application
we proceed as we do in the anaphora example, the next rule being contraction,
but this time to the formula of the entire verb phrase ‘plays guitar’, that is,
the formula !(N\S). One of the copies is then moved to the ellipsis site “does
too", and identified using the (\L)-rule.

3.3 Anaphora with Ellipsis

We now combine anaphora and ellipsis and work with the example “John
likes his code, Bill does too.", where we have an anaphor ‘his’ and ellipsis
marker ‘does too’. Clearly, the derivation of the sloppy reading will involve
more resolutions than the strict reading, so one would expect this derivation
to be more complex than a strict one, which is indeed the case.

Below, we present the derivations of the strict and sloppy readings in full,
using the following type-dictionary for both examples:

{(John :!N), (likes :!((!(!N\S))/N), (his : (!(!N\N))/N), (code : N),
(Bill :!N), (does too : (!(!N\S))\(!N\S))}

Strict Reading.

The derivation of the strict reading is presented in figure 3, where we can see
only two uses of the (contr)-rule. We expect only two uses of (contr) since
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N → N

!N →!N
N → N

!N →!N
!(!N\S) →!(!N\S)

!N →!N S, S → S, S
S, !N, !N\S → S, S

(\L)

S, !N, !(!N\S), (!(!N\S))\(!N\S) → S, S
(\L)

!N, !N\S, !N, !(!N\S), (!(!N\S))\(!N\S) → S, S
(\L)

!N, !(!N\S), !N, !(!N\S), (!(!N\S))\(!N\S) → S, S
(!L)

!N, !(!N\S), !(!N\S), !N, (!(!N\S))\(!N\S) → S, S
(perm2)

!N, !(!N\S), !N, (!(!N\S))\(!N\S) → S, S
(contr)

!N, (!(!N\S))/N, N, !N, (!(!N\S))\(!N\S) → S, S
(/L)

!N, (!(!N\S))/N, !N, !N\N, !N, (!(!N\S))\(!N\S) → S, S
(\L)

!N, !N, (!(!N\S))/N, !N\N, !N, (!(!N\S))\(!N\S) → S, S
(perm2)

!N, (!(!N\S))/N, !N\N, !N, (!(!N\S))\(!N\S) → S, S
(contr)

!N, (!(!N\S))/N, !(!N\N), !N, (!(!N\S))\(!N\S) → S, S
(!L)

!N, (!(!N\S))/N, (!(!N\N))/N, N, !N, (!(!N\S))\(!N\S) → S, S
(/L)

!N, !((!(!N\S))/N), (!(!N\N))/N, N, !N, (!(!N\S))\(!N\S) → S, S
(!L)

Figure 3. The derivation of the strict reading: ‘John likes John’s code, Bill likes
John’s code’, in !L∗

we are first resolving the anaphor ‘his’ with ‘John’, and then the verb-phrase
‘likes John’s code’ with the ellipsis site ‘does-too’.

Sloppy Reading.

The derivation of the sloppy reading is presented in figure 4, and is clearly
more complex than the strict reading in figure 3. Looking at the right hand
side of the sloppy derivation we see four instances of the (contr)-rule, which
correspond to the four different coreferences we are resolving. The Gentzen
presentation really obfuscates the coreference resolution visually, and one is
forced to read these derivations very closely to understand what is happening.
It is far easier to read the string-diagrams attached to these proofs which we
demonstrate later in section 5
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N → N

!N →!N
!N →!N

N → N
N → N

!N →!N

!(!N\S) →!(!N\S)
!N →!N S, S → S, S

S, !N, !N\S → S, S
(\L)

S, !N, !(!N\S), (!(!N\S))\(!N\S) → S, S
(\L)

S, !(!N\S), !N, (!(!N\S))\(!N\S) → S, S
(perm2)

!N, !N\S, !(!N\S), !N, (!(!N\S))\(!N\S) → S, S
(\L)

!N, !(!N\S), !(!N\S), !N, (!(!N\S))\(!N\S) → S, S
(!L)

!N, !(!N\S), (!(!N\S))/N, N, !N, (!(!N\S))\(!N\S) → S, S
(/L)

!N, (!(!N\S))/N, N, (!(!N\S))/N, N, !N, (!(!N\S))\(!N\S) → S, S
(/L)

!N, (!(!N\S))/N, N, !((!(!N\S))/N), N, !N, (!(!N\S))\(!N\S) → S, S
(!L)

!N, !((!(!N\S))/N), N, !((!(!N\S))/N), N, !N, (!(!N\S))\(!N\S) → S, S
(!L)

!N, !((!(!N\S))/N), !((!(!N\S))/N), N, N, !N, (!(!N\S))\(!N\S) → S, S
(perm2)

!N, !((!(!N\S))/N), N, N, !N, (!(!N\S))\(!N\S) → S, S
(contr)

!N, !((!(!N\S))/N), N, !N, !N\N, !N, (!(!N\S))\(!N\S) → S, S
(\L)

!N, !((!(!N\S))/N), !N, !N\N, !N, !N\N, !N, (!(!N\S))\(!N\S) → S, S
(\L)

!N, !((!(!N\S))/N), !N, !N\N, !N, !(!N\N), !N, (!(!N\S))\(!N\S) → S, S
(!L)

!N, !((!(!N\S))/N), !N, !N\N, !(!N\N), !N, !N, (!(!N\S))\(!N\S) → S, S
(perm2)

!N, !((!(!N\S))/N), !N, !(!N\N), !(!N\N), !N, !N, (!(!N\S))\(!N\S) → S, S
(!L)

!N, !N, !((!(!N\S))/N), !(!N\N), !(!N\N), !N, !N, (!(!N\S))\(!N\S) → S, S
(perm2)

!N, !N, !((!(!N\S))/N), !(!N\N), !(!N\N), !N, (!(!N\S))\(!N\S) → S, S
(contr)

!N, !((!(!N\S))/N), !(!N\N), !(!N\N), !N, (!(!N\S))\(!N\S) → S, S
(contr)

!N, !((!(!N\S))/N), !(!N\N), !N, (!(!N\S))\(!N\S) → S, S
(contr)

!N, !((!(!N\S))/N), (!(!N\N))/N, N, !N, (!(!N\S))\(!N\S) → S, S
(/L)

Figure 4. The derivation of the sloppy reading: ‘John likes John’s code, Bill
likes Bill’s code, in !L∗

Despite the difficulty of gaining quick qualitative information from the
derivations, we have already shown that we can derive anaphora, ellipsis and
anaphora with ellipsis in both of its possible strict and sloppy readings. The
ability of our calculus to distinguish between the strict and sloppy readings is
a desirable property, and more importantly, this distinction carries over into
the vector space semantics, as we demonstrate next.

4. Vector Space Semantics of !L∗

In this section we introduce the vector space semantics of !L∗, as defined
in our previous work (McPheat et al., 2021). We briefly summarise the
categorical semantics in 4.4, but refer the reader to (McPheat et al., 2021) for
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full technical details. We will point out any practical use of the categorical
semantics in the examples of this paper, but please note that it is also not
necessary to do so; the vector space semantics provides what we need for
our linguistic motivations. We also introduce the diagrammatic calculus of
(McPheat et al., 2021) with the exception that here we omit the use of thick
strings as to minimise the amount of string diagrammatic machinery present
in this paper, as the diagrams are not the main contribution. This will be in
4.2; the diagrammatic calculus is as a didactic tool to let the reader visualise
the derivations in section 3. The semantics of these derivations is presented
in 5. Before we define the semantics, we first need to understand tensor
algebras, and comultiplications on them as these structures will allow us to
define semantics for ! and the (contr)-rule.

4.1 Tensor Algebras

We recall the definition of a tensor algebra, and show how to construct a
Fermionic Fock space from it. Dualised versions of these constructions were
used to interpret ! of full linear logic (Blute et al., 1994), and then for !L∗
(McPheat et al., 2021). We briefly introduce tensor algebras, Fermionic Fock
spaces and their duals below, and refer to (McPheat et al., 2021) for further
details on these constructions.

Definition 1 Given a vector space V , the tensor algebra TV is defined as

TV :=
⊕
n≥0

V ⊗n = R ⊕ V ⊕ (V ⊗ V) ⊕ (V ⊗ V ⊗ V) ⊕ · · · .

We call the terms V ⊗n the n-th layer of TV .
There is a monoid structure on TV given by a multiplication m : TV ⊗

TV → TV defined by layer-wise concatenation i.e.

m((v1 ⊗ · · · ⊗ vn) ⊗ (w1 ⊗ · · · ⊗ wm)) := v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wm,

and a unit u : R −→ TV given by u(1) := 1.
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It is in fact the case thatT is a free functorVectR −→ AlgR. Thus defining
a monad on VectR by composing with the forgetful functor AlgR −→ VectR,
where AlgR is the category of real associative algebras.

Clearly, TV is infinite-dimensional for any nonzero vector space V and an
inappropriate choice for our semantics of !. Instead, we will interpret ! using
Fermionic Fock Spaces, which have similar properties as Tensor algebras, but
can be made finite dimensional. To define a Fermionic Fock Space we will
need alternating tensor products.

Definition 2 Given a (real) vector space V with basis (ei)i∈I respectively, we
define the n-fold alternating tensor product V∧n of V as:

n-times︷              ︸︸              ︷
V ∧ V ∧ · · · ∧ V := V ⊗n/U,

where U is the vector space spanned by vectors of the form

(ei1 ⊗ ei2 ⊗ · · · ⊗ ein ) − sgn(σ)(eσ(i1) ⊗ eσ(i2) ⊗ · · · ⊗ eσ(in)) .

In the above, ij ∈ I for each 1 ≤ j ≤ n and each permuation σ on n-symbols.
Vectors in V ∧ V are linear combinations of equivalence classes of simple
tensors, denoted ei1 ∧ ei2 ∧ · · · ∧ ein . The key point in this definition is that
the vector ei1 ∧ ei2 ∧ · · · ∧ ein is equal to the vector sgn(σ)(eσ(i1) ∧ eσ(i2) ∧
· · · ∧ eσ(in)). For instance, if n = 2, we have that e1 ∧ e2 = −e2 ∧ e1, since
the sign of the permutation (12) is −1.

Note

Basis vectors in V∧n with repeated factors are zero. Consider a vector ei1 ∧
ei2 ∧ · · · ∧ ein where WLOG the first two factors are the same: ei1 = ei2 .
Thus we have the equality

ei1 ∧ ei2 ∧ · · · ∧ ein = sgn(12)(e(12)i1 ∧ e(12)i2 ∧ · · · ∧ e(12)in )
= −ei2 ∧ ei1 ∧ · · · ∧ ein
= −ei1 ∧ ei2 ∧ · · · ∧ ein .
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However if a vector equals its negative, it must have been zero to begin with,
thus confirming that ei1 ∧ ei2 ∧ · · · ∧ ein = 0.

With the definition of alternating tensor products under our belts, we can
quickly define the Fermionic Fock space construction in close analogy to the
tensor algebra definition.

Definition 3 Given a vector space V its Fermionic Fock space is the vector
space

FV :=
⊕
n≥0

V∧n = R ⊕ V ⊕ (V ∧ V) ⊕ (V ∧ V ∧ V) ⊕ · · · .

The space FV also has a monoidal structure, defined exactly as we did for
TV , the only difference being that the multiplication on FV is alternating.
FV is also known as the Grassmanian algebra of V , or the antisymmetric
tensor algebra of V .
F is also a free functor, this time of the form VectR −→ AAlgR, where

AAlgR is the category of alternating real associative algebras.
We recall the well-known fact that given a finite dimensional vector space

V , we can easily see that FV is also finite dimensional by applying the
pigeonhole principle to the dimension of V and the number of layers in FV .
Concretely, note that for any n > dimV , we must repeat some factor of
ei1 ∧ ei2 ∧ · · · ∧ ein ∈ V∧n, but since V∧n is spanned by such vectors, we have
V∧n = 0. Thus, FV =

⊕dimV
n=0 V∧n for finite dimensional V .

The finite dimensionality property gives us an even nicer way to write
down a comonoid structure on F (V), since for finite dimensional vector
spaces V with a chosen basis (ei)i∈I , we have V � V∗ by taking the set ( fi)i∈I
as a basis for V∗, where every functional fj is defined on the basis of V as
fj(ei) = δi j . Thus, (FV)∗ � FV , meaning we can define the comultiplication
on FV . Of course this formally carries little significance, but practically it is
easier to work with elements of FV rather than duals. The dualising process
has a more fundamental importance to the categorical semantics of (McPheat
et al., 2021), as outlined in 4.4.

The assumption that we can choose a basis is informed by our application
domain. For any application of this theory, we either work with vector spaces
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built from term-term matrices and thus we fix a set of context words as the
bases (Grefenstette and Sadrzadeh, 2011; Kartsaklis et al., 2013) or learn the
vectors and tensors by machine learning on a fixed set of features (Wijnholds
et al., 2020; Kartsaklis et al., 2019). This makes the availability of bases
immediate.

The monoidal product m : FV ⊗ FV → FV is given by layerwise
concatenation as it was for tensor algebras. Dualising this product gives us a
coproduct ∆ : FV → FV ⊗ FV , defined by mapping vectors ṽ ∈ FV to all
possible vectors in FV ⊗ FV that multiply to give ṽ. Explicitly, this is:

∆(ṽ) :=
∑

ũ,w̃∈FV
ṽ=m(ũ⊗w̃)

ũ ⊗ w̃

This mapping is hard to use in practice, since if dimV = n then,
dimFV = 2n, making the comultiplication ∆ a 2n × (2n)2 matrix. Any
practical applications of this would use n ≥ 100 at the very least, making
the mapping quite difficult to use. We overcome this problem by considering
other comultiplications which we will define in 5.

4.2 String Diagrams

The formalisation of categorical reasoning using string diagrams was first
achieved in (Joyal and Street, 1991), then systematically extended in (Selinger,
2010) to autonomous, braided and traced categories, to name only a few. In
the same style, (Baez and Stay, 2011) interpret monoidal biclosed categories
in their clasped diagrammatic calculus. In this section, we go over the clasp
diagrams in order to later represent our derivations in a more legible format.
The use of clasp diagrams to depict Lambek calculus derivations is possible,
since the categorical semantics of Lambek calculus is a monoidal bi-closed
category. This was initiated in the work of (Coecke et al., 2013) and proved
coherent in (Wijnholds, 2017). In (McPheat et al., 2021), we added some
more structure in the form of ∆-maps and the diagrammatic !-modality. This
extension of the clasp diagrams requires a new proof of coherence, which
constitutes work in progress.
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V f

f

g

V

W

U

V

W

Figure 5. Vector spaces, linear maps and composition of linear maps, in terms
of string diagrams

V W f g

V

W W ′

V ′

V ⊗W = f ⊗ g

V ⊗V ′

W ⊗W ′

=

Figure 6. Tensor products of vector spaces on the left, and of linear maps on the
right.

We recall how to draw objects morphisms and composition diagrammat-
ically in figure 5.

Tensor products of vector spaces and linear maps are drawn side by side
as in figure 6. We use the clasp notation of (Baez and Stay, 2011) to draw
vector spaces of the form V ⇒ W and W ⇐ V as depicted in figure 7. Recall
that these are the set of linear maps V → W , which gets its vector space
structure pointwise.

==
W ⇐ V W VV ⇒W V W

Figure 7. Right facing and left facing clasp diagrams representing vector spaces
containing⇒,⇐.
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V V W
V V W

evV ,W

=

W

Figure 8. (Left) evaluation drawn as a cup

.

.

.

V ⇒W

V W

.

.

.

W ⇐ V

W V

Figure 9. How we identify strings with complex labels and their diagrams

Recall that evaluation of linear maps is a linear map itself of the form
evV,W : V ⊗ (V ⇒ W) → W :: v ⊗ f 7→ f (v). We have a concise depiction
of evaluation of linear maps in our diagrams, namely as “cups", as seen in
figure 8. Note also that⇐ and⇒ are isomorphic, and so there is only one
evaluation map. This is easiest to see by considering the two (a priori distinct)
evaluation maps v ⊗ f 7→ f (v) and f ⊗ v 7→ f (v). Since the tensor product is
symmetric, we can get the first map from the other by first applying symmetry
and vice versa, making the two maps isomorphic. We choose to distinguish
between⇒ and⇐ in our presentation of the semantics because it keeps us
closer to the !L∗-syntax. Work is being done to define a tensor product on
vector spaces which is non-symmetric, thus distinguishing between ⇒ and
⇐ in (Correia et al., 2020).

In some cases it will simplify our diagrams significantly if we can in-
terchange between our string diagrammatic conventions for vector spaces
defined using the⇒ and⇐ operations. We will denote these equalities using
vertical dots as shown in figure 9.
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4.3 Vector Space Semantics for !L∗

We can now define the part of the vector space semantics for !L∗ necessary for
the derivations of anaphora and ellipsis. We also show how to interpret the
rules of !L∗ using the diagrams of the previous section, which will enable us
to read the derivations of anaphora and ellipsis in a far more legible manner.
For a definition of vector space semantics for the rest of !L∗ and the proof of
soundness, we refer the reader to the original paper (McPheat et al., 2021).

Definition 4 We inductively define a semantic map, which using conventional
notation we denote by “ J K", on formulas and derivable sequents of !L∗. This
map sends formulas to finite dimensional real vector spaces, and derivable
sequents to linear maps. We give the inductive definition below.

• To atomic types N and S of !L∗ we assign vector spaces as follows

JNK := VN JSK := VS

• To complex types of !L∗ we assign:

JA, BK := JAK ⊗ JBK
JA\BK := JAK⇒ JBK
JB/AK := JBK⇐ JAK
J!AK := F JAK

In the above definition, for any two vector spacesV,W , the spacesV ⇒ W and
W ⇐ V denote the set of linear maps from W to V . The space FV for a finite
dimensional vector spaceV is the Fermionic Fock Space ofV . For a finite list
of formulas Γ = {A1, A2, . . . , An} we define JΓK := JA1K⊗ JA2K⊗ · · · ⊗ JAnK.

Derivable sequents Γ −→ A are interpreted as linear maps JΓK −→ JAK.
Since sequents are not typically labelled, we add lower case roman letters
( f , g, h, . . .) to name linear maps when needed. To define the interpretation a
derivable sequent Γ −→ A in practice, one essentially builds it from the root
of the derivation up, following the below interpretations of the proof rules of
!L∗. As we introduce the semantics of all the rules of !L∗ we also show how
to depict them as string diagrams in FdVectR.
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We begin by interpreting the axiom rule A −→ A of !L∗. This is simply
interpreted as the existence of an identity map idJAK : JAK −→ JAK. Dia-
grammatically, the axiom rule is depicted with a string labelled JAK. The
(\L) and (/L)-rules are interpreted very similarly, so we will show one and
let the reader deduce the other. We recall the syntax of the (\L)-rule on the
left below, and lay out the semantics on the right and define it below

Γ −→ A ∆1, B,∆2 −→ C
∆1, Γ, A\B,∆2 −→ C

(\L)
f : JΓK −→ JAK g : J∆1K ⊗ JBK ⊗ J∆2K −→ JCK

h : J∆1K ⊗ JΓK ⊗ JAK⇒ JBK ⊗ J∆2K −→ JCK
(\L)

where we are given f and g, and define h as

h := g ◦ (id∆1 ⊗ evJAK,JBK ⊗ id∆2) ◦ (id∆1 ⊗ f ⊗ idJAK⇒JBK ⊗ id∆1)

which can be visualised diagrammatically in figure 10a.

JBKJAKJ∆1K JΓK J∆2K

f

g

JCK

(a)

J∆1K JΓK FJAK J∆2K

f

JBK

(b)

∆JAK

FJAK

FJAK FJAK

f

J∆1K J∆2K

JBK

(c)

Figure 10. Diagrammatic interpretation of structural !L∗ rules.

Next we have the semantics of the permutation rules, which are immediate
from the symmetry of the tensor product inFdVectR. Diagrammatically, these
rules say that we may cross strings representing Fock spaces as done in figure
10b.

Finally, we have the contraction rule. This is interpreted using the
comonoidal comultiplication introduced in 4.1.

∆1, !A, !A,∆2 −→ B
∆1, !A,∆2 −→ B

(contr)
f : J∆1K ⊗ J!AK ⊗ J!AK ⊗ J∆2K −→ JBK

f c : J∆1K ⊗ J!AK ⊗ J∆2K −→ JBK
(contr)
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where given f , we define f c as f c := f ◦ (idJ∆1K ⊗ ∆JAK ⊗ idJ∆2K), where
∆JAK is a comultiplication F JAK → F JAK ⊗ F JAK. Diagrammatically, this
rule lets us ‘split’ strings corresponding to !-ed formulas, as in figure 10c.

Note that the ∆-box only specifies the type of the map ∆, meaning that
we can do a derivation in !L∗, interpret it as string diagram, and then choose
whichever instances of ∆ as we please.

It is worth pointing out that we do not aim to define a complete model.
As probably already noted by the reader, interpreting !L∗ in terms of vector
spaces could never be complete; take for example the distinction between \
and / in !L∗ which is clearly not carried into the semantics. However, this is
common practice in the DisCoCat line of research (Coecke et al., 2010, 2013)
and has also been employed in set theoretic semantics of Lambek calculus
(Van Benthem, 1988). The choice of vector spaces as an interpretion of
!L∗ reflects that one can convey the same meanings in syntacically different
languages. Consider for example the English sentence "John likes Mary"
and the Farsi sentence "John Mary-ra Doost-darad(likes)". The syntaxes are
distinct, but the meanings are the same. This is despite the fact that the order
of words is very different in the two languages.

Finding complete models of !L∗ is an interesting pursuit, although not the
goal of the current paper. Work in this direction has begun in (Correia et al.,
2020; Greco et al., 2020), where the use of different nonsymmetric tensor
products are investigated. One of our reviewers has suggested specifying
subspaces of atomic vector spaces in order to distinguish between spaces
and their duals. This also takes us closer to a complete model. We have
also considered defining a model in C∗-algebras, which have a nonsymmetric
tensor product.

4.4 Categorical Vector Space Semantics

For readers who are familiar with categorical semantics of linear logic such
as (Melliès, 2014), and diagrammatic reasoning, you may have noticed some
category-theoretic constructions, which we have not mentioned; we briefly
outline them here and again refer the reader to (McPheat et al., 2021) for full
detail. The category theoretic machinery is incredibly useful and succinct for
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proving soundness results, but can be cumbersome in practice when looking
at concrete applications as we do in this paper.

Wemention thatF is a free functorFdVectR → AAlgR, and thenmention
dualising spaces FV . Combining these two facts actually defines comonad
on FdVectR. First of all, since F is free, we have a a right adjoint forgetful
functor AAlgR → FdVectR, which when composed form a monad UF :

FdVectR → FdVectR. Then, pre and post-compose the functor UF with
the vector space dual, which as shown in (Bruguières and Virelizier, 2007),
defines a comonad.

To explicitly define the structure of this comonad we will make use
of the isomorphism (UFV∗)∗ � UFV to simplify the mathematics. The
counit of the comonad (εV : UFV → V)V ∈FdVectR is defined using pro-
jection onto the first layer. The comultiplication of the comonad (δV :

UFV → UFUFV)V ∈FdVectR is given by inclusion into the first layer. That
is, εV (v0, v1, v2 ∧ v3, . . .) = v1 ∈ V , and δV (ṽ) := (0, ṽ, 0, 0, . . .)

There is an alternative categorical interpretation of the relevant modality
! provided by (Jacobs, 1994) using what the author calls “relevant monads”.
However, these monads are the categorical semantics of a smaller fragment
of logic which is only concerned with contraction, as opposed to !L∗ which
considers ! to be responsible for both contraction and permutation. Further,
for the semantics of ! to be sound for the full logic of !L∗, we need ! to be a
comonad rather than a monad. The comonad counit propoerty is necessary to
prove soundness of the (!L)-rule of the calculus. This is the approach taken
by the paper (Blute et al., 1994) showing that Fock spaces can been used to
interpret the linear logic !-modality and provide a sound semantics for the full
logic. There is a natural connection to a comonadic interpretation rather than
a monadic one, again suggesting that relevant monads are not the immediate
best semantics for the ! of !L∗. However considering a smaller fragment of
!L∗, or perhaps a Lambek calculus with a soft exponential modality as in
(Lafont, 2004) may allow the use of contraction monads.
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5. Examples of Vector Space Semantics of Anaphora and Ellipsis

In this section we show how to interpret each of the derivations from section
3 in our vector space semantics. In each example we first draw the string
diagram corresponding to the derivation which firstly gives us a far more
readable version of the sequent derivation, and secondly gives us the linear
map corresponding to the meaning. We demonstrate how to extract the linear
map from the diagram, and show how to evaluate it for each example.

Wewill use the following notation in the coming subsections. Superscript
tildes denote vectors in Fock spaces (i.e. ṽ ∈ FV). We fix bases (ni)i∈I and
(sj)j∈J for spaces JNK, JSK respectively. Basis elements marked with asterisks
denote basis elements in dual spaces JNK∗, JSK∗, i.e. n∗i : JNK → R :: ni′ 7→
δii′. We also recall that you may define a basis of a tensor product of
vector spaces V ⊗ W , as the tensor products of the basis vectors of V and
W . In particular for spaces of the form JNK ⇒ JSK we work with the basis
(n∗i ⊗ sj)i∈I, j∈J . We also fix a number k ∈ R and use boldface k to denote
a vector of k’s in the appropriate vector space, e.g. k = (k, k) ∈ R2 or
k = (k, k, k, k) ∈ R4 and so on.

In the following examples we will write out the semantics of the deriva-
tions from section 3 using two different instances of the ∆-map. However
there is a way to write out the semantics without specifying a ∆-map, by us-
ing Sweedler notation. This is a notation for abstract comultiplication maps
∆ : V → V ⊗ V where we write ∆(v) := v(1) ⊗ v(2). Once ∆ is specified, we
substitute the relevant terms in for v(1) and v(2). We use this notation when
appropriate to simplify or generalise the computations. The ∆-maps we use
are called the k-extension and basis copy maps. k-extension maps vectors v
to v ⊗ k + k ⊗ v (this was called cofree-inspired in (McPheat et al., 2021)).
The basis copy map is defined on the basis of the relevant vector space as
ei 7→ ei ⊗ ei, and extended linearly to the whole space. After extending, one
can give two mathematically equivalent versions of this map by gathering
the coefficients to the left or right factor. That is, if we apply basis copying
to a vector v =

∑
i Civi we get ∆(v) =

∑
i Ci(vi ⊗ vi), and by gathering the

coefficients on the left factor we get ∆(v) = v ⊗ 1, or on the right we get
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John sleeps He snores

FJNK JNK
∆JNK

εJNK

JNK JSK JSK

JSK JNK JSKFJNK JNK

Figure 11. Anaphora diagram

∆(v) = 1 ⊗ v. Although mathematically equivalent, a choice must be made
to implement this model. We call the maps gathering the coefficients on the
left(right) basis copying a(b) (these were called cogebra a(b) in (McPheat
et al., 2021)).

5.1 Semantics of Anaphora
We begin with drawing the diagram corresponding to the derivation in figure
1. Reading the derivation from bottom to top, we draw the diagram from
top to bottom4. The resulting string diagram in figure 11, clearly shows that
the meaning of ‘John’ is being copied by the ∆JNK map, and then one of the
copies is sent to ‘He’, which is in turn sends the meaning of ‘John’ to the
input of ‘snores’. This is far easier to see using string diagrams rather than
the sequent calculus derivation. The vector spaces at the top and the bottom
of the diagram (corresponding respectively to the semantics of the left and
right hand sides of the sequent !N, N\S, !N\N, N\S −→ S, S) tell us that this
diagram defines a linear map, say f , of type

F JNK ⊗ JNK ⊗ JSK ⊗ F JNK⇒ JNK ⊗ JNK⇒ JSK→ JSK ⊗ JSK .

Explicitly, taking the vectors J̃ohn ∈ F JNK,
−−−−−→
sleeps,−−−−−→snores ∈ JNK ⇒ JSK

and −→He ∈ F JNK⇒ JNK, we may define f (in Sweedler notation) as:

f (J̃ohn⊗
−−−−−→
sleeps⊗

−→
He⊗−−−−−→snores) :=

−−−−−→
sleeps(εJNK(J̃ohn(1)))⊗

−−−−−→snores(
−→
He(J̃ohn(2))).

4For a step-by-step example of how to draw these diagrams, we refer the reader to
(McPheat et al., 2021) where we present how to draw a string diagram from a !L∗-
derivation.
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John plays guitar Mary does too
JNK F(JNK⇒ JSK) F(JNK⇒ JSK) JNK⇒ JSKJNK JNK JNK

∆JNK⇒JSK

.

.

.
JNK

.

.

.JNK JSK

JSK

εJNK⇒JSK

Figure 12. Ellipsis string diagram

By using k-extension or basis copying for the ∆JNK-map, f becomes:

k-extension :

f (J̃ohn ⊗
−−−−−→
sleeps ⊗

−→
He ⊗ −−−−−→snores) :=

−−−−−→
sleeps(εJNK(J̃ohn)) ⊗ −−−−−→snores(

−→
He(k)) +

−−−−−→
sleeps(εJNK(k)) ⊗

−−−−−→snores(
−→
He(J̃ohn))

Basis copy :
f (ñi ⊗ (n∗i′ ⊗ sj) ⊗ (ñ∗i′′ ⊗ ni′′′) ⊗ (n∗i′′′′ ⊗ sj′)) := n∗i′(ni)sj ⊗ ñ∗i′′(ñi)n

∗
i′′′′(ni′′′)sj′

5.2 Semantics of Ellipsis

We proceed in this example as we did for the anaphora example, by reading
the derivation of the ellipsis (figure 2) from the root, and the diagram from
the top, as presented in figure 12. By inspecting the strings at the top and
bottom of the diagram, we see that this defines a linear map, say g, of type

JNK⊗(F(JNK⇒JSK))⇐JNK⊗JNK⊗JNK⊗F(JNK⇒JSK)⇒(JNK⇒JSK)→JSK⊗JSK.

If we consider vectors
−−−−→
John,

−−−−−→
guitar,

−−−−→
Mary ∈ JNK,

−−−−→
plays ∈ F (JNK⇒ JSK) ⇐ JNK,

−−−−−−−→
does too ∈ F (JNK⇒ JSK) ⇒ (JNK⇒ JSK)
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John likes his code Bill does too

FJNK F((F(FJNK⇒ JSK)) ⇐ JNK) F(J!NK⇒ JNK) JNK JNK FJNK F(FJNK⇒ JSK) FJNK⇒ JSK

ε(F(FJNK⇒S))⇐JNK

εFJNK⇒JNK

∆JNK .
.
.

FJNK FJNK

.

.

.

JNK

FJNK JNK

∆FJNK⇒JSK

εFJNK⇒JSK

.

.

.

FJNK

JSK

.

.

.

FJNK JSK

JSK

Figure 13. Strict Diagram

we can define g as

g(
−−−−→
John ⊗

−−−−→
plays ⊗

−−−−−→
guitar ⊗

−−−−→
Mary ⊗

−−−−−−−→
does too) :=

εJNK⇒JSK((
−−−−→
plays(

−−−−−→
guitar)(1))(

−−−−→
John) ⊗

−−−−−−−→
does too(

−−−−→
plays(

−−−−−→
guitar)(2),

−−−−→
Mary).

Note that function
−−−−→
plays is a function of type JNK → F(JNK ⇒ JSK) and is

first being evaluated at the noun −−−−−→guitar . This lets us define

˜plays guitar ∈ F (JNK⇒ JSK) as ˜plays guitar :=
−−−−→
plays(

−−−−−→
guitar) .

We may also consider taking
−−−−−−−→
does too to be a projection, like ε, which

maps ˜plays guitar to a vector
−−−−−−−−−−−→
plays guitar ∈ JNK ⇒ JSK. This makes the
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definition of g slightly neater:

g(
−−−−→
John ⊗

−−−−→
plays ⊗

−−−−−→
guitar ⊗

−−−−→
Mary ⊗

−−−−−−−→
does too) :=

εJNK⇒JSK( ˜plays guitar (1))(
−−−−→
John) ⊗

−−−−−−−−−−−→
plays guitar(

−−−−→
Mary).

The mathematical form of g looks very similar to the natural language se-
mantics ‘John plays guitar, Mary does too’.

Finally, when specifying the ∆-maps to be one of the k-extension and
basis copying we get:

k-extension
g(
−−−−→
John ⊗

−−−−→
plays ⊗

−−−−−→
guitar ⊗

−−−−→
Mary ⊗

−−−−−−−→
does too) :=

εJNK⇒JSK((
−−−−→
plays(

−−−−−→
guitar))(

−−−−→
John) ⊗

−−−−−−−→
does too(k,

−−−−→
Mary)+

εJNK⇒JSK(k)(
−−−−→
John) ⊗

−−−−−−−→
does too(

−−−−→
plays(

−−−−−→
guitar,

−−−−→
Mary)

Basis copy
g(ni1 ⊗ ( ˜n∗i2 ⊗ sj1 ⊗ n∗i3 ) ⊗ ni4 ⊗ ni5 ⊗ (( ˜n∗i6 ⊗ sj2 )

∗ ⊗ n∗i7 ⊗ sj3 )) :=

n∗i2 (ni1 )sjn
∗
i3
(ni4 ) ⊗ ( ˜n∗i6 ⊗ sj2 )

∗( ˜n∗i2 ⊗ sj1 )n
∗
i7
(ni5 )sj3 .

5.3 Anaphora with Ellipsis

An important contribution to note in the following is that the linear maps for
the strict and sloppy semantics are distinct, thus showing that not only does !L∗
provide a syntactic distinction between strict and sloppy, but also so does the
vector space semantics. This overcomes the difficulty faced in (Wijnholds and
Sadrzadeh, 2019b) where there are indeed two different syntactic derivations,
but the corresponding vector spaces semantics collapses and they become
equal to each other.

As we have done in 5.1 and 5.2 we first present the diagrams of the strict
and sloppy derivations of (figures 3 and 4), which is done in figures 13 and
14 respectively.

Again, by inspecting the wires on the top and bottom of both diagrams,
we see that they specify linear maps, say hstrict, hsloppy , which are both of
the following type:

FJNK⊗F(F(FJNK⇒JSK)⇐JNK)⊗F(FJNK⇒JNK)⇐JNK⊗JNK⊗

FJNK⊗(F(FJNK⇒JSK))⇒(FJNK⇒JSK)→JSK⊗JSK.
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John likes his code Bill does too
FJNK F((F(FJNK⇒ JSK)) ⇐ JNK)

F(FJNK⇒ JNK)

JNK JNK FJNK F(FJNK⇒ JSK) FJNK⇒ JSK

∆(F(FJNK⇒JSK))⇐JNK

∆FJNK⇒JNK
∆JNK .

.

.∆JNK
JSKFJNK

εFJNK⇒JNK

.

.

.

JNKFJNK

εFJNK⇒JNK

.

.

. JNKFJNK

.

.

.

ε(F(FJNK⇒JSK))⇐JNK

JNK

F(FJNK⇒ JSK)

.

.

.

ε(F(FJNK⇒JSK))⇐JNK

JNK
F(FJNK⇒ JSK)

εFJNK⇒JSK

.

.

.

FJNK

JSK JSK

FJNK

FJNK

Figure 14. Sloppy Diagram

Taking vectors

J̃ohn, B̃ill ∈ F JNK, l̃ikes ∈ F (F (F JNK⇒ JSK) ⇐ JNK)
−→
his ∈ F (F JNK⇒ JNK) ⇐ JNK,

−−−→
code ∈ JNK

−−−−−−−→
does too ∈ (F (F JNK⇒ JSK)) ⇒ (F JNK⇒ JSK)



28 McPheat et al.

we can define the maps hstrict, hsloppy with Sweedler notation as:

hstrict (J̃ohn ⊗ l̃ikes ⊗
−→
his ⊗

−−−→
code ⊗ B̃ill ⊗

−−−−−−−→
does too) :=

εFJNK⇒JSK(εF(FJNK⇒JSK)⇐JNK(l̃ikes)(εFJNK⇒JNK(h̃is(code)))(1))(J̃ohn(2))⊗
−−−−−−−→
does too(εF(FJNK⇒JSK)⇐JNK(l̃ikes)(εFJNK⇒JNK(h̃is(code)))(2)))(εJNK)(B̃ill))

hsloppy(J̃ohn ⊗ l̃ikes ⊗
−→
his ⊗

−−−→
code ⊗ B̃ill ⊗

−−−−−−−→
does too) :=

εF(FJNK⇒JSK)⇐JNK(l̃ikes(1))(εFJNK⇒JNK(h̃is(1))(
−−−→
code)(J̃ohn(2)))(J̃ohn(1))⊗

−−−−−−−→
does too(εF(FJNK⇒JSK)⇐JNK(l̃ikes(2))((εFJNK⇒JNK(h̃is(1))(

−−−→
code)(B̃ill(2))))(εJNK(B̃ill(2))

Finally, we show what the strict and sloppy maps look like when specifying ∆ to be
k-extension and basis copying, however we omit the k-extension map for the sloppy
reading, as this takes about 16 lines to define, and becomes highly uninformative.

k-extension
hstrict (J̃ohn ⊗ l̃ikes ⊗

−→
his ⊗

−−−→
code ⊗ B̃ill ⊗

−−−−−−−→
does too) :=

(likes(
−−−−→
John, his(k,

−−−→
code)) ⊗ k(

−−→
Bob, his(k,

−−−→
code))+

k(
−−−−→
John, his(k,

−−−→
code) ⊗ likes(

−−→
Bob, his(k,

−−−→
code)))+

likes(k, his(
−−−−→
John,

−−−→
code)) ⊗ k(

−−→
Bob, his(

−−−−→
John,

−−−→
code))+

k(k, his(k,
−−−→
code)) ⊗ likes(

−→
1 , his(

−−−−→
John,

−−−→
code))

Basis copy

hstrict (ñi1 ⊗ (
˜

( ˜ñ∗i2 ⊗ sj1 ) ⊗ n∗i3 ) ⊗ ((
˜ñ∗i4 ⊗ ni5 ) ⊗ n∗i6 ) ⊗ ni7 ⊗ ñi8 ⊗ (( ˜ñ∗i9 ⊗ sj2 )

∗ ⊗ ñ∗i10 ⊗ sj3 ))
:= (n∗i2 (ni1 )sj1n∗i3 (ni5 )n

∗
i4
(ni1 )n

∗
i6
(ni7 ))⊗

(n∗i10 (ni8 )sj3 (n
∗
i9
⊗ sj2 )

∗(n∗i2 ⊗ sj1 )n
∗
i3
(ni5 )n

∗
i4
(ni1 )n

∗
i6
(ni7 ))

hsloppy(ñi1 ⊗ (
˜

( ˜ñ∗i2 ⊗ sj1 ) ⊗ n∗i3 ) ⊗ ((
˜ñ∗i4 ⊗ ni5 ) ⊗ n∗i6 ) ⊗ ni7 ⊗ ñi8 ⊗ (( ˜ñ∗i9 ⊗ sj2 )

∗ ⊗ ñ∗i10 ⊗ sj3 ))
:= (n∗i2 (ni1 )sj1n∗i3 (ni5 )n

∗
i4
(ni1 )n

∗
i6
(ni7 ))⊗

(n∗i10 (ni8 )sj3 (n
∗
i9
⊗ sj2 )

∗(n∗i2 ⊗ sj1 )n
∗
i3
(ni5 )n

∗
i4
(ni8 )n

∗
i6
(ni7 ))

6. Experiments

We implement our copying operations on the disambiguation task of (Wijn-
holds and Sadrzadeh, 2019a), for the purpose of deciding which copying map
does better in practice. The aim is to compare the performance of our linear
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copying maps to each other and to the non linear copying map. Wewould also
like to find out how well do the compositional models do in comparison to
a non compositional verb only baselines and non grammatical compositional
methods such as addition.

The disambiguation task of (Wijnholds and Sadrzadeh, 2019a), extends
the original disambiguation task introduced in (Grefenstette and Sadrzadeh,
2011)with elliptic phrases. The original dataset of (Grefenstette andSadrzadeh,
2011) worked with 10 ambiguous verbs and two of their meanings. An ex-
ample is the verb draw, which is ambiguous between depict and pull. The
ambiguous verb and each of its meanings are placed in subject-verb-object
triples. For the verb draw, we have the sentences

S: man draw sword.
S1: man depict sword.
S2: man pull sword.

The dataset consists of pairs of triple (S, S1) and (S, S2). The aim of the
task is to build vectors for S, S1, S2, compute the cosine distances between
S, S1 and S, S2, in order to decide which meaning of the verb is the more
appropriate one in S. Clearly, if S is closer to S1, its first meaning is deemed
more appropriate and if it is closer to S2, its second meaning.

In (Wijnholds and Sadrzadeh, 2019a), the above dataset is extended to
triples with elliptic phrases. It is hypothesised that the extended sentences
provide a better base for disambiguation and indeed this hypothesis is verified
in the paper. In the interest of space we do not go through the details of this
hypothesis and the results and only provide an example. For the ambiguous
verb draw, we now work with the following sentences:

S′: man draw sword and artist does too.
S′1: man depict sword and artist does too.
S′2: man pull sword and artist does too.

Vectors for each sentence with elliptic phrase are built using the proce-
dure described in subsection 5.2, where we choose to consider vectors in Fock
spaces to be of the form (0, v, 0, 0, . . .) for practicality. For the verb, previous
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experimentation has shown that cubes have a much lower performance than
matrices. So although the derivational system prescribes a cube for a transi-
tive verb, in practice it is better to approximate them by matrices. In this case,
the cube contraction is approximated by a matrix multiplication followed by
a pointwise vector multiplication. We follow previous work and implement
the Relational verb matrices and the Copy-Object composition model. These
two methods used in conjunction have consistently provided consistent good
results in previous work, e.g. see (Grefenstette and Sadrzadeh, 2011; Kartsak-
lis et al., 2013; Milajevs et al., 2014; McPheat et al., 2021). The Relational
method of building verb matrices sums the Kronecker product of the sub-
jects and objects of the verb in the sentences across the corpus, resulting in
the formula V :=

∑
i
−→s i ⊗

−→o i. Using this formula and employing a Copy-
Object method in a sentence with elliptical phrase ‘Sub1 Verb Obj and Sub2
does-too’ results in the following formulae for the k-extension copying.

k-extension : ((V ×
−−−→
Obj) �

−−−→
Sub1 + (1 �

−−−→
Sub2)) + ((1 �

−−−→
Sub1) + (V ×

−−−→
Obj) �

−−−→
Sub2)

= ((V ×
−−−→
Obj) �

−−−→
Sub1 +

−−−→
Sub2) + (

−−−→
Sub1 + (V ×

−−−→
Obj) �

−−−→
Sub2)

Here, following previous work we are interpreting the preposition ‘and’ as
addition, taking k to be 1, and interpreting the elliptic marker ‘does-too’ as
identity. The full model is where the copying operation is non-linear and
provides us with two proper copies of the ellipsis verb phrase, resulting in the
following formula:

full : ((V ×
−−−→
Obj) �

−−−→
Sub1) + ((V ×

−−−→
Obj) �

−−−→
Sub2)

We use 100 dimensional pre-trained word2vec and fasttext vectors for
the
−−−→
Sub1,

−−−→
Sub2,

−−−→
Obj vectors, as well as the −→s i and −→o i vectors used to build

our Relational verb matrices.
Going through Table 2, we observe that both of theword2vec and fasttext

vectors provide correlations close to the upper-bound, which are slightly
higher for word2vec. In either case, the best performance is obtained by the
full and the k-extension copying operations. Interestingly, the compositional
models perform better than the non compositional verb-only baseline, which
only provides a correlation of 0.24. This low correlation is improved to 0.31
when a non grammatical additive base line is used and to reaches its maximum



Anaphora and Ellipsis in Lambek Calculus with a Relevant Modality 31

basis basis
full copy(a) copy(b) k-extension

word2vec 0.44 0.34 0.42 0.44
fasttext 0.43 0.36 0.41 0.43
baselines
verb only 0.24
additive 0.31
BERT phrase 0.36
inter-annotator agreement 0.58

Table 2. Spearman’s ρ correlations for the ellipsis disambiguation task; upper
bound is the inter annotator agreement score, computed in (Wijnholds, 2020).

when 0.35 when pre-trained BERT vectors are used. It is worth noting that
the compositional state of the art of the Ellipsis Disambiguation dataset is
0.58, as reported in (Wijnholds et al., 2020) and is obtained via neural verb
matrices. In the same paper, it is explained how fine-tuning a BERT model
provides the best non compositional performance of 0.65. Given that the
performances reported here are obtained via pre-trained vectors, we expect
that fine tuning our vectors or matrices will provide better results than those
reported here. We also expect that the use of neural verb matrices in our
linear copying operations will improve the results.

7. Conclusion and Future Work

Following the style of (Coecke et al., 2013), where the authors develop a
functorial vector space semantics and string diagrams for Lambek calculus,
in another paper (McPheat et al., 2021) we developed a functorial categorical
semantics for Lambek calculus with a Relevant Modality of (Kanovich et al.,
2016). This logic extends Lambek calculus with a relevant modality that
allows for limited contraction and permutation. The motivation for develop-
ment of !L∗ is the use of limited contraction and permutation to reason about
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parasitic gaps in line of research initiated in (Morrill et al., 1990) and followed
up on in (Morrill and Valentín, 2016) and (Morrill, 2017, 2018). In this paper,
we do not go through the categorical model, as it is extensive and constitutes
the contribution of another paper. Instead, we show how one can assign a
vector space semantics to this calculus directly, without going through cate-
gory theory, and with the help of the notion of tensor algebras and a particular
finite kind used in QuantumMechanics: Fermionic Fock Spaces. Inspired by
the work of (Jäger, 1998, 2006) and (Wijnholds and Sadrzadeh, 2018, 2019b),
for the first time, we apply the Lambek calculus with the Relevant Modality
to reason about anaphora with ellipsis and develop closed form linear alge-
braic terms for the results of the corresponding derivations. We experiment
with our model on the Ellipsis Disambiguation dataset of (Wijnholds and
Sadrzadeh, 2019a) and observed that our k-extension linear copying opera-
tion provides the same results as a full non linear copying operation. These
models significantly outperform the non compositional and non grammatical
baselines. They are, however, improved by a fine tuned bert model and also
in a compositional model with neural verb matrices (Wijnholds et al., 2020).
Our other contribution is that we show how this vector space semantics is
able to distinguish between the two readings of the ambiguous anaphora with
ellipsis cases. Indeed and as desired and aligned with the standard literature
on coreference modelling (Bach, 2008), we obtain two different linear maps
as semantics of these cases, one for the strict reading and one for the sloppy
reading. This overcomes the weakness of previous work (Wijnholds and
Sadrzadeh, 2019b), where a Lambek calculus with a copying modality was
used to model coreference.
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