
Submitted to:
ACT 2021

© C. Williams & M. Stay
This work is licensed under the
Creative Commons Attribution License.

Native Type Theory

Christian Williams
University of California, Riverside, US

cwill041@ucr.edu

Michael Stay
Pyrofex Corporation, Utah, US

stay@pyrofex.net

We present a method to construct “native” type systems for a broad class of languages, in which
types are built from term constructors by predicate logic and dependent types. Many languages can
be modelled as structured λ -theories, and the internal language of their presheaf toposes provides
total specification the structure and behavior of programs. The construction is functorial, thereby
providing a shared framework of higher-order reasoning for most existing programming languages.

1 Introduction

Type theory is growing as a guiding philosophy in the design of programming languages. However in
practice, type systems are heterogeneous, and there are no standard ways to reason across languages. We
present a method to enhance a language with its own “internal logic”: we construct from a λ -theory its
native type system, which provides total specification of the structure and behavior of programs.

Categorical logic unifies languages: virtually any formalism, from a heap to the calculus of construc-
tions, can be modelled as a structured category [20]. By doing so, we inherit a wealth of tools from
category theory. In particular, we can generate expressive type systems by composing two known ideas.

λtheory topos type system
P L

The first is the presheaf construction P [10, Ch. 8]; it preserves product, equality, and function types.
The second is the language of a topos L [20, Ch. 11]. The composite is 2-functorial, so that translations
between languages induce translations between type systems.

The type system is native in the sense that types are built only from term constructors, predicate logic,
and a form of dependent type theory. For example, the following predicate on processes in a concurrent
language (ex. 5) is effectively a compile-time firewall.

sole.in(α) := νX. (in(α,N→ X) | P)∧¬[in(¬[α],N→ P) | P]
Can input on channels in type α and cannot input on ¬α , and continues as such.

Native type theory is intended to be a practical method to equip programming languages with a shared
system of higher-order reasoning. The authors believe that the potential applications are significant and
broad, and we advocate for community development.

1.1 Motivation and implementation

As software systems become increasingly complex, it is critical to develop adequate frameworks for
reasoning about code. By generating expressive type systems for programming languages, native type
theory can improve control, reasoning, and communication of systems.

For example, web browsers use the dynamic, weakly-typed language of JavaScript. Companies have
recognized that correct and maintainable code requires static type checking. Microsoft’s TypeScript

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


2 Native Type Theory

[6], Facebook’s Flow [1], and Google’s Closure Compiler [2] are multi-million dollar efforts to retrofit
JavaScript with a strong, static type system; yet none of these is sound. When presented as a structured
λ -theory [5], JavaScript has a native type system which is sound by construction.

We aim to implement native type theory as a development environment, based on a library of formal
semantics and translations, for programming in languages enriched by their native type systems. One
can then write code with higher-order logic and dependent types, both to condition existing codebases
and to expand software capability.

To this end, we plan to leverage progress in language specification. K Framework [4] is a formal ver-
ification tool which is used to give complete semantics of many popular languages, including JavaScript,
C, Java, Python, Haskell, LLVM, Solidity, and more. These specifications can be presented as structured
λ -theories (§2), and input to native type theory.

The type system generated can then be used for many purposes, e.g. to query codebases. The search
engine Hoogle [3] queries Haskell libraries by function signature. This idea can be expanded to many
languages and strengthened by more expressive types. If ϕ : S→ Prop is a predicate on S-terms and
ψ : T→ Prop is one on T-terms, e.g. a security property, we can form the type of programs S→ T for
which substituting ϕ entails ψ (§3.1, def. 13).

[ϕ,ψ] := {λx.c : S→ T | ∀p : S. ϕ(p)⇒ ψ(c[p/x])}

Of course, the full applications of native type systems require substantial development. Most basic
is the need for efficient type-checking, but this is well-studied [33]. For usability we need to convert
between existing types and native types, as well as libraries of native types, so programmers can express
useful ideas without overly complex formulae.

The larger endeavor, to create a framework for reasoning across many languages, calls for developing
a public library of both formal semantics and translations between languages.

1.2 Organization and contribution

Our goal is to demonstrate that composing two categorical ideas can be highly useful to computer science.
In the process we emphasize many ideas that may be “known” in theory but are not widely known nor
used in practice.

§2 Structured λ -theories. We define λ -theories with equality as cartesian closed categories with
pullbacks, and interpret the internal language as simply-typed λ -calculus combined with the syntax of
generalized algebraic theories [15].

Rewriting systems can be presented as internal categories; this motivates the 2-category of structured
λ -theories. In §A these are used to demonstrate a translation of λ -calculus into π-calculus which respects
their operational semantics. We define the ρπ-calculus, a concurrent language with reflection, as our
running example for native types.

§3 Logic in a presheaf topos. A λ -theory T embeds into a presheaf topos P(T), and we develop its
internal language. Predicates on the sorts of T form a λ -theory ωT which refines the entire language;
refined binding is then applied to condition program input (§5.2).

We show that the predicate and codomain fibrations of P(T) form a “cosmic” higher-order dependent
type theory (HDT), and this construction is 2-functorial.

Hence native type theory is the composite 2-functor

λThyop= Topos HDTΣ.P L



C. Williams & M. Stay 3

This extends to structured λ -theories, i.e. the arrow 2-categories over this composite. Monads and
comonads are preserved by 2-functors, in particular Moggi’s notions of computation [31].

§4 Native type theory. The native type system of a λ -theory T is presented as the internal language
of the presheaf topos, LP(T). The system is an extension of higher-order dependent type theory [20], as
in the Calculus of Constructions [16]. We present the system as generated by T, and give the rules for
types and terms, as well as those for functoriality.

§5 Applications. We explore a few kinds of applications: conditioning term behavior, with subgraphs
of rewrite systems and modalities, and deriving behavioral equivalence; conditioning program input
with refined binding, and reasoning about contexts with predicate homs; and translating types across
programming paradigms.

The scope of applications is beyond what can be given here.
§A Appendix. We give an overview of related work, including the project origin.

2 Structured λ -theories

Simply-typed λ -calculus is the language of products and functions. It is regarded as the foundation of
computer science [12] and much of modern programming [18].

The syntax of a language can be modelled by a syntactic category, in which an object is a sorted
variable context, a morphism is a term constructor, and composition is substitution. Simply-typed λ -
calculus is the language of cartesian closed categories [22].

A particular λ -calculus or λ -theory is presented by sorts, constructors, and equations. This is just like
algebraic presentation, but with higher-order constructors. Good references for the syntax and semantics
of simply-typed λ -calculus are [17, Ch. 4] and [20, Ch. 2]. We denote products S× T by S,T and
functions [S,T] by [S→ T].

Γ,x:S ` t : T
abstraction

Γ ` λx.t : [S→ T]

Γ ` λx.t : [S→ T],u : S
application

Γ ` t[u/x] : T

Definition 1. A λ -theory with equality is a cartesian closed category with pullbacks, also known as a
“properly cartesian closed category” [21]. The 2-category of λ -theories with equality, finitely continuous
closed functors, and cartesian natural transformations is λThy=.

The syntax of a λ -theory with equality can be derived from its subobject fibration having fibered
equality [20, Ch. 3]. We interpret the language as simply-typed λ -calculus combined with the syntax of
generalized algebraic theories [15], which provide indexed sorts.

Γ ` x1 : S1, . . . ,xn : Sn sort symbol
Γ,~xi : ~Si ` A(x1, . . . ,xn) sort

Γ ` s1 : S1, . . . ,sn : Sn term symbol
Γ ` f(s1, . . . ,sn) : S

These are presented in the same way as λ -theories, plus constructors which may be parameterized by
equations, such as composition in the theory of categories. This is our motivation: we represent behavior
of terms using internal categories.

Henceforth, “λ -theory” means λ -theory with equality.

λ -theories with structure

What λ -theories do not explicitly represent is the process of computation. In practice, computing consists
not of equations but transitions. There are many ways to model the behavior of languages [36], but the



4 Native Type Theory

operational semantics of higher-order languages is still in development [19]. We introduce a method of
representing behavior internally.

A language with a rewrite system can be modelled by a λ -theory T equipped with an internal cat-
egory, which includes constructors and equations to specify the interaction between rewrites and con-
structors, such as forming a congruence.
Definition 2. Th.Cat

Hom : E→ V,V ;abc : Hom(a,b),Hom(b,c)→ Hom(a,c) (e1;e2);e3 = e1;(e2;e3)
ida : 1→ Hom(a,a) ida;e = e e;idb = e

Given e : Γ→ E and a,b : Γ→ V we denote e : Hom(a,b) by e(~x) : a(~x) b(~x).
Though composition is useful, we often want to reason about “basic rewrites” or single-step compu-

tations. For most of the paper we will simply use an internal graph. It is easy to combine both approaches,
by distinguishing one sort for edges and one sort for morphisms.

To specify how basic rewrites interact with constructors, we can take the source map s : E→ S as a
sort symbol S∗(x). Then S∗(v) are the rewrites with source v, i.e. the behaviors of the term. This allows
us to define operational semantics.
Definition 3. A rewrite rule for a term constructor f : ∏Si→ S in λ -theory T(ES,{ESi}) is specified by
an edge constructor

R(f)~v : ∏S∗i (vi)→ S∗(f(~v)) such that R(f)(〈v1,e1〉, . . . ,〈vn,en〉) : f(~v) g

where g : ∏S∗i (vi)→ S. An operational semantics O is a set of basic rewrites {ri(~x) : ai(~x) bi(~x) : ESi}
together with a family of pairs {(fi j,R(fi j))}.
Lemma 4. These operational semantics correspond to the class of GSOS rules [36] for deterministic
labelled transition systems. The general case can be derived using an internal relation act� V,A,V.

By representing behavior internally, native type systems reason about both the structure and behavior
of programs. For example there is a predicate for “contexts λx.c : S→ T such that if a : S satisfies ϕ then
for all e : c[a/x] b if ψ(b) then no step of e satisfies ε”.
Example 5. ρπ-calculus Th.ρπ (polyadic)

0 : 1→ P −|− : P,P→ P (P,−|−,0) commutative monoid
@ : P→ N outk : N,Pk→ P run : P→ E

∗ : N→ P ink : N, [Nk→ P]→ P commk : N,Pk, [Nk→ P]→ E

run(p) : ∗(@p) p commk(n,~qi,λ~xi.p) : out(n,~qi)|in(n,λ~xi.p) p[@qi/xi]

Th.Cat + — parl : E,P→ E parl(ρ,q) : s(ρ)|q t(ρ)|q
parr : P,E→ E parr(p,ρ) = parl(ρ, p) parl c. monoid action of P on E

The ρπ-calculus or reflective higher-order π-calculus [28] is a concurrent language succeeding the
π-calculus [29]. It is the language of the blockchain platform RChain [7].

The ρπ-calculus has processes P and names N, which act as code and data respectively; reference @
and execute ∗ transform one into the other. Terms are built up from the null process 0 by parallel −|−,
output out, and input in. The basic rule is communication comm: an output and input process connect
on a name and transfer a list of processes as data.

The ρπ-calculus is our running example. In the native type system of Th.ρπ (§3.1), a predicate on
names α : y(N)→ Prop is called a namespace [27], and a predicate on processes ϕ : y(P)→ Prop is
called a codespace.



C. Williams & M. Stay 5

Hence operational semantics can be specified by Th.Cat→ T, and translations ought to respect this
structure. We generalize to define “structure” as any λ -theory morphism into T.

Definition 6. A structured λ -theory is a λ -theory with equality T equipped with a morphism τ : S→T
in λThy=. The 2-category of structured λ -theories is the (strict) arrow 2-category [I,λThy=], where I is
the interval category.

By distinguishing behavior as internal structure, we can ensure that translations induce the proper
homomorphisms of rewriting systems. In §A we exhibit a translation of the name-passing λ -calculus
into the π-calculus which respects their operational semantics.

While behavior is our primary example of structure, the concept is very general. Other examples
are sorting, e.g. refining the ρπ-calculus with sorted channels to send and receive certain kinds of data;
embedding a language into a networked environment; or encoding programs of one language into another.

Because native type theory is functorial, the structure τ : S→ T translates types of T into types of
S. For including behavior, this simply distinguishes the “behavioral” types; for more complex structures,
the translation may be highly expressive.

We note that the 2-category of structured λ -theories is naturally indexed over the 2-category of λ -
theories. Just as an arrow category [I,C] has co/domain op/fibrations over C, an arrow 2-category is
equipped with 2-op/fibrations [14].

Proposition 7. The 2-category of structured λ -theories is 2-op/fibered over λ -theories, by the domain
and codomain 2-functors δ0,δ1 : [I,λThy=]→ λThy=.

Because λThy= has pushouts and pullbacks, δ0 and δ1 are in fact bifibrations. However, it is not
locally cartesian closed; though this may be true for complete CCCs.

The domain fiber λThy0(S) := δ ∗0 (S) is the 2-category of S-structured λ -theories. The codomain
fiber λThy1(T) := δ ∗1 (T) is the 2-category of structures on T.

From a structured λ -theory we derive a native type system, using the presheaf construction, and
demonstrate how it can be used to reason about the structure and behavior of terms.

3 The Logic of a Presheaf Topos

Topos theory [23] expands the domain of predicate logic and intuitionistic type theory [25] beyond sets
and functions. Most useful is the fact that every category embeds into a topos. For any λ -theory, the
internal language of its presheaf topos is its native type system.

Let T be a λ -theory. The category of presheaves is the functor category [Top,Set], which we denote
P(T). This defines a 2-functor to elementary toposes and geometric morphisms

P : λThyop= → Topos P(F) = (∃F a F∗) : [Top,Set]→ [Sop,Set].

where ∃F is left Kan extension and F∗ is precomposition by F : S→ T.
A presheaf is a context-indexed set of data on the sorts of a theory. The canonical example is a

representable presheaf, of the form T(−,S), which indexes all terms of sort S. The Yoneda embedding
y : T→ P(T) :: S 7→ T(−,S) preserves limits and internal homs.

A subobject classifier is an object Ω with a natural isomorphism c : [−,Ω]' Sub(−). We may denote
Ω as Prop; this is its role in the type system: a predicate is a morphism ϕ : A→Ω, and the comprehension
of ϕ is the subobject c(ϕ) := {a : A | ϕ(a)}� A.

A topos is a λ -theory with equality with a subobject classifier. For presheaves, the hom and subobject
classifier are defined [P,Q](S) = P(T)(y(S)×P,Q) and Ω(S) = {ϕ� y(S)}.



6 Native Type Theory

The values of Ω can be understood as Ω(S)' {sieves of sort S}. A sieve of sort S is a set of terms of
sort S that is closed under substitution. A simple example is a principal sieve 〈f〉 : Ω(T) generated by a
term f : S→ T, defined 〈f〉(R) := Σu:R→ S.f◦u.

Example 8. The ρπ-calculus (ex. 5) can express recursion without the replication operator of the π-
calculus. On a name n : 1→ N we define a context which replicates processes.

c(n) := in(n,λx.{out(n,∗x) | ∗ x}) !(−)(n) := out(n,{c(n)|−}) | c(n).

One can check that !(p)(n)  !(p)(n) | p for any process p. The sieve 〈!(−)(n)〉 : Ω(P) consists of
processes which replicate on the name n by the above method.

For simpler formulae, we denote the values of a presheaf by AS := A(S), and the action of u : R→ S

by − · u := A(u) : A(S)→ A(R). For ϕ : A→ Prop we denote ϕa
S := ϕ(S)(a); more generally for any

p : P→ A we denote pa
S := p−1

S (a) as the fiber over a (§3.2).

3.1 The predicate fibration

There is a category over P(T) for which the fiber over each presheaf is the complete Heyting algebra
(CHA) of its predicates. Quantification gives change-of-base adjoints between fibers; we show that
moreover the domain is cartesian closed, complete and cocomplete. The fibration encapsulates higher-
order predicate logic.

We use ΩA to denote the complete Heyting algebra of predicates. The predicate functor of P(T) is
defined Ω(−) : P(T)op→ CHA. For f : A→ B, precomposition of predicates corresponds to preimage of
subobjects. This is written as substitution ϕ[ f ] := Ω f (ϕ) and understood as pattern-matching.

Example 9. For a ρπ-calculus predicate ϕ : y(P)→ Prop, substitution by in : N× [N,P]→ P is the basic
query “inputting on what name-context pairs yield property ϕ?”

ϕ[y(in)]S = {S ` (n,λx.p) : N, [N→ P] | ϕ(in(n,λx.p))}

The complete Heyting algebra structure of ΩA: predicates are ordered by entailment, meet and join
are defined by pointwise intersection and union, > = A and ⊥ = (S 7→ /0), implication is defined (ϕ ⇒
ψ)a

S := ∏u:R→Sϕa·u
R ⇒ ψa·u

R , and negation is ¬(ϕ) := (ϕ ⇒⊥).
We can assemble the image of Ω(−) into one category with the Grothendieck construction.

Definition 10. The category of predicates of P(T) is denoted ΩP(T): an object is a pair 〈A : P(T) , ϕ :
ΩA〉, and a morphism is a pair 〈 f : A→ B , ϕ ⇒ Ω f (ψ)〉. The projection πΩ : ΩP(T)→ P(T) is the
predicate fibration; the fiber over A is ΩA, and the fiber over f : A→ B is Ω f : ΩB→ ΩA, known as a
change-of-base functor.

A fibration is a functor with a well-behaved notion of preimage, used in type theory for indexing; a
reference is [20, Ch. 1]. The predicate fibration is highly structured; each change-of-base functor has
adjoints which give dependent sum and product.

Proposition 11. πΩ : ΩP(T)→ P(T) has indexed sums and products [20]: for each f : A→ B, the
functor Ω f : ΩB→ΩA has left and right adjoints ∃ f aΩ f a ∀ f .

∃ f (ϕ)
b
S := Σ(a:AS).Σ( fS(a) = b).ϕ(a) ∀ f (ϕ)

b
S := Π(u:R→ S).Π( fR(a) = b ·u).ϕ(a)

The left adjoint ∃ f is called direct image, because on subobjects it is composition by f ; we call the
right adjoint ∀ f secure image. While Ω f is a morphism of complete Heyting algebras, ∃ f and ∀ f are
only morphisms of join and meet semilattices, respectively.



C. Williams & M. Stay 7

Example 12. Let Th.Gph→ T be a λ -theory with a graph, and ϕ : y(V)→ Prop be a predicate on
terms. Then ϕ[y(s)] : y(E)→ Prop are rewrites with ϕ(source), and ∃y(t)(ϕ[y(s)]) are the targets of these
rewrites. Hence there is a step-forward F! : [y(V),Prop]→ [y(V),Prop].

The secure step-forward is a more refined operation: F∗(ϕ) := ∀y(t)(ϕ[y(s)]) are terms u for which
(t u)⇒ ϕ(t). For security protocols, this can filter agents by past behavior.

The change-of-base adjoints satisfy the Beck–Chevalley condition: this means that quantification
commutes with substitution, and implies that Ω(−) : P(T)op→ CHA is a first-order hyperdoctrine [24]
and a higher-order fibration [20, section 5.3].

This concept leaves implicit additional structure: there is an internal hom of predicates.

Proposition 13. ΩP(T) is cartesian closed, as is πΩ. Let ϕ : A→Prop, ψ : B→Prop, and let 〈π1,π2,ev〉 :
A× [A,B]→ A× [A,B]×B. Then [ϕ,ψ] : [A,B]→ Prop is defined [ϕ,ψ] := ∀π2(ϕ[π1]⇒ ψ[ev]).

The cartesian closed structure of ΩP(T) is significant, because the category of predicates on T is
itself a λ -theory, the refinement of the language. We explore applications in §5.2.

Definition 14. The predicate theory of T, denoted ωT, is the pullback of the predicate fibration along
the embedding y : T→ P(T); it is a λ -theory fibered over T.

Note. We emphasize the idea of having “lifted” the language by an abuse of notation: for any
operation f : S→ T, we may denote ∃y(f) : [y(S),Prop]→ [y(T),Prop] simply by f, and ∀y(f) by f∗.
Similarly, we may write y(S) as S, when the context is clear.

Example 15. As an example of contexts which ensure implications across substitution, we can construct
the “magic wand” of separation logic [26]. Let Th be the theory of a commutative monoid (H,∪,e),
plus constructors for the elements of a heap. If we define (ϕ–∗ψ) := [ϕ,ψ][λx.x∪−], then (ϕ–∗ψ)(h1)
means that ϕ(h2)⇒ ψ(h1∪h2).

There is a more expressive way to form hom predicates, which provides predicate binding.

Proposition 16. Let A,B :P(T), and let LA,B : [[A,B],Prop]→ [[A,Prop], [B,Prop]] be curried evaluation.
There is a right adjoint which we call reification. The predicate RA,B(F), denoted χ.F , determines
f : [A,B] whose images are contained in those of F :

[χ.F ] f
S = Πχ:[A→ Prop]. ∃ f (y(S)×χ)⇒ F(χ).

Using reification, separation logic can be generalized from pairs of predicates to functions of predi-
cates. We are not aware if this has been studied.

In addition, the category of predicates has all limits and colimits, by a result of [35]. These can be
used to form modalities, inductive and coinductive types, and more.

Proposition 17. ΩP(T) is complete and cocomplete, and πΩ preserves limits and colimits. They are
computed pointwise; letting π, ι represent the cone and cocone:

limi〈Ai,ϕi〉= 〈limi(Ai), limi(Ω
πiϕi)〉 colimi〈Ai,ϕi〉= 〈colimi(Ai),colimi(Σιiϕi)〉.

To summarize the rich structure present, we allude to a term from category theory: a cosmos is a
monoidal closed category which is complete and cocomplete [34].

Proposition 18. The predicate fibration πΩ : ΩP(T)→P(T) is a higher-order fibration which is cosmic:
cartesian closed, complete and cocomplete.



8 Native Type Theory

3.2 The codomain fibration

Predicates ϕ : A→ Prop correspond to subobjects c(ϕ)� A. More generally, any p : P→ A can be
understood as a dependent type. Like subsets to indexed sets, this expands the fibers over A from truth
values to sets, and the fibers over P(T) from posets to categories.
Proposition 19. Let CCT be the category of co/complete toposes and logical functors. There is a functor
∆ : P(T)op→ CCT that maps A to P(T)/A and f : A→ B to pullback.

We can denote pullback by substitution, p[ f ]aS := ∆ f (p)a
S = p fS(a)

S . Dependent sum Σ f and dependent
product Π f are given by the same formulae as those for predicates, and these satisfy the Beck-Chevalley
condition. The Grothendieck construction of ∆ determines a category over P(T).
Definition 20. The category of dependent types of P(T), denoted ∆P(T), is equivalent to the arrow
category of P(T). The codomain fibration is the projection π∆ : ∆P(T)→ P(T).

Proposition 21. The codomain fibration π∆ is a closed comprehension category [20, Sec 10.5] which is
cosmic, i.e. cartesian closed, complete and cocomplete.

The two fibrations are connected by an adjunction c a i : π∆� πΩ: comprehension interprets a pred-
icate as a dependent type, and factorization takes a dependent type to its image predicate. This fibered
adjunction is a higher-order dependent type theory [20, Sec. 11.6]. These form a sub-2-category of
adjunctions in the 2-category of fibrations.

Geometric morphisms of toposes preserve pullbacks, inducing morphisms of predicate and codomain
fibrations. But they are not locally cartesian closed, nor do they preserve the subobject classifier; it
is future work to consider theory translations which induce locally connected morphisms of presheaf
toposes [21, C 3.3].

We denote by HDTΣ the 2-category of higher-order dependent type theories and morphisms of ad-
junctions of fibrations.
Theorem 22. The construction which sends a topos to its internal language L(E) = 〈πΩE,π∆E, iE,cE〉,
consisting of the predicate and codomain fibrations connected by the image-comprehension adjunction,
defines a 2-functor L : Topos→ HDTΣ.

We note that 2-functors preserve monads and comonads, so the native types construction LP :
λThyop= → HDTΣ extends to λ -theories equipped with “notions of computation” [31].

4 Native Type Theory

We present the native type system LP(T) of a λ -theory with equality T (§2). As y : T→ P(T) is full
and faithful, LP(T) is a conservative extension of T.

The system is higher-order dependent type theory [20, Sec. 11.5] “parameterized” by T. We do
not present Equality and Quotient types. We encode Subtyping, Hom, Reification, and Inductive types,
which we use in applications.

The type system has predicates x:Γ ` ϕ : Prop and types x:Γ ` A : Type, interpreted as ϕ : Γ→
Ω and p : A→ Γ. A term judgement is of the form x:Γ,a:A ` N : B[M], interpreted as a morphism
〈M,N〉 : (A→ Γ)→ (B→∆) in the total category of the codomain fibration.

For details on the semantic interpretation of the type system, in particular handling coherence when
interpreting substitution as pullback, see Awodey’s natural models [11].

We present the type system as generated from the λ -theory T, so a programmer can start in the
ordinary language and use the ambient logical structure as needed.



C. Williams & M. Stay 9

Y Representables are given in the type system as axioms.

JS : TK
TS

yS : Type

JS1 ` f : S2K
TO

x:yS2 ` yf : Type

JS1 ` f= g : S2K
TE

x:yS2 ` yf= yg

The type yS indexes all terms of sort S. Because the Yoneda embedding preserves limits and
internal hom, we have y(S1,S2) = (yS1,yS2) and y[S→ T] = [yS→ yT].

Σ Dependent Pair is an indexed sum generalizing existential quantification.

Γ ` A : Type Γ,x:A ` B : Type
ΣF

Γ ` Σx:A.B : Type

Γ ` a : A Γ ` u : B[a/x]
ΣI

Γ ` 〈a,u〉 : Σx:A.B

Γ,z:Σx:A.B ` C : Type Γ,a:A,u:B ` Q : C[〈a,u〉/z]
ΣE

Γ,z : Σx:A.B ` (z as 〈a,u〉 in Q) : C

〈M,N〉 as 〈a,u〉 in Q = Q[M/a,N/u] (Σβ )
P as 〈a,u〉 in Q[〈a,u〉/z] = Q[P/z] (Ση)

Π Dependent Function is an indexed product generalizing universal quantification.

Γ ` A : Type Γ,x:A ` B : Type
ΠF

Γ ` Πx:A.B : Type

Γ,x:A ` t : B
ΠI

Γ ` λ x:A.t : Πx:A.B

Γ ` f : Πx:A.B Γ ` u : B
ΠE

Γ ` f(u) : B[u/x]

(λ x:A.t)(a) = t(a) (Πβ )
f = λ x:A.f (Πη)

We derive existential ∃ from Σ and universal ∀ from Π by image factorization. The rest of predicate
logic ⊥,>,∨,∧,⇒,¬ is also encoded in terms of Σ and Π.

{} Comprehension converts a predicate to the type of its satisfying terms. The rules which convert a
type to its image predicate can be derived from Σ and Equality.

Γ,x:A ` ϕ : Prop
cF

Γ ` {x:A | ϕ} : Type

Γ,x:A ` ϕ : Prop Γ `M : A Γ ` ϕ[M/x]
cI

Γ ` i(M) : {x:A | ϕ}

Γ ` N : {x:A | ϕ}
cE

Γ ` o(N) : A

o(i(M)) = M (cβ )
i(o(N)) = N (cη)

Γ1,x:A,Γ2,ϕ ` ψ
c◦E

Γ1,a : {x:A | ϕ},Γ2[o(a)/x] ` ψ[o(a)/x]

⊆ Subtyping of predicates is defined (ϕ ⊆ ψ) := ∀a:A. ϕ(a)⇒ ψ(a).

→ Hom type (def. 13) of A1 ` B1 : Type and A2 ` B2 : Type is defined Πx:A1.B1[π]⇒ B2[ev].

R Reification (def. 16) χ.F : [A,B]→ Prop is defined Πϕ:[A→ Prop].ϕ ⇒ F(ϕ[−]).

µ Inductive type of F : [A,Prop]→ [A,Prop]: the least and greatest fixed points are defined µϕ.F(ϕ) :=
∃ϕ:[A,Prop]. (ϕ ⊆ F(ϕ))⇒ ϕ and νϕ.F(ϕ) := ∀ϕ:[A,Prop]. (F(ϕ)⊆ ϕ)⇒ ϕ . These are used
to form data structures and modalities; we can generalize to W-types [30].

These rules constitute the native type system LP(T), abridged for a first presentation. We include
rules for functoriality, so that translations of λ -theories induce translations of native type systems.



10 Native Type Theory

F Translation is given by precomposing types and “whiskering” terms.

JF : T1→ T2K Γ ` A : Type2
FTy

Γ◦F ` A◦F : Type1

JF : T1→ T2K x:Γ,y:A ` N : B[M]
FTm

x:(Γ◦F),y:(A◦F) ` N ·F : (B◦F)[M ·F]

We include rules that F∗ : P(T2)→ P(T1) is a functor which preserves substitution, dependent
pair, and limits and colimits. To further research we leave the question of the rules for the colax
preservation of Π and Prop, and the rules for the two covariant functors ∃F,∀F : P(T1)→ P(T2)
given by left and right Kan extension.

As a small demonstration, suppose we have a program f : S→ T, and we want to construct the predicate
which checks whether a term of sort T has been processed by f.

yT ` yf : Type yT,yf ` yS : Type

yT ` 〈f〉 := Σg:yf.yS : Type

yT ` g : yf yT,x:yf ` u : yS[g/x]

yT ` 〈g,u〉 : 〈f〉.

This is the principal sieve 〈f〉 (ex. 8), which determines terms of the form g= f◦u for some u : R→ S.
We can then write protocols based on this precondition in the native type system.

5 Applications

Native type systems are highly expressive and versatile. We demonstrate a few small examples. Notation
is simplified by identifying sorts and constructors of T with their image in P(T).

5.1 Rewrite subsystems, modalities, and behavioral equivalence

In section §2 we motivated structured λ -theories by demonstrating that an internal category Th.Cat→T
can be used to represent the operational semantics of T. We now apply this idea with a slight change:
for using lists of basic rewrites, we do not want composition. Instead we simply use a graph G := 〈s, t〉 :
E→ V,V and implicitly consider the free category, i.e. we use pullbacks to construct lists of edges.

Let Th.Gph→ T be a λ -theory with internal graph G. Then yG : P(T) is the (dependent) type of
rewrites over terms. The fiber over each pair is the set of rewrites between terms.

S,a:V,b:V ` G(a,b) : Type G(a,b) = {S ` e : a b}

This object is the space of all computations in language T. The native type system can be used to
construct predicates which specify subgraphs of computations.

Example 23. Let Th.Gph→ Th.ρπ be the structured λ -theory of the ρπ-calculus (ex. 5), without
composition of rewrites. In the presheaf topos P(Th.ρπ), suppose we have a name predicate α : N→
Prop, a process predicate ϕ : P→ Prop, and F : [N→ Prop]→ [P→ Prop]. Then comm(α,ϕ,χ.F) :
[E,Prop] determines the communications

comm(a, p,λx.c) : out(a, p) | in(a,λx.c) c[@p/x]

on channels in namespace α , sending data in codespace ϕ , and continuing in contexts λx.c : [N,P] such
that χ(@p)⇒ F(χ)(c[@p/x]). Then Σe:G.comm(α,ϕ,χ.F) is the graph of these computations. This
can be used to condition protocols or identify parts of a network.



C. Williams & M. Stay 11

We can express temporal modalities to reason about past and future behavior. Applying the “step”
operators of ex. 12 to a predicate ϕ : V→ Prop on terms, B!(ϕ) are terms which possibly rewrite to ϕ ,
and B∗(ϕ) are terms which necessarily rewrite to ϕ . By iterating, we can form each kind of modality.

B◦! (ϕ) := ∃n:N.Bn
! (ϕ) can become ϕ B•! (ϕ) := ∀n:N.Bn

! (ϕ) always can become ϕ

B◦∗(ϕ) := ∃n:N.Bn
∗(ϕ) will become ϕ B•∗(ϕ) := ∀n:N.Bn

∗(ϕ) always will become ϕ

Similarly for F, we can condition past behavior. These modalities can also be restricted to subsystems.

Example 24. We can use modalities to express system requirements, such as the capacity to receive and
process input on certain channels, or the guarantee to only communicate on certain channels.

live(α) := B•∗(in(α, [N→ P]) | P)) safe(α) := B•∗(¬[in(¬[α], [N→ P]) | P])

By proving in(n,λx.c) : in(N,χ.safe), we know the program will be secure on the channel it receives.

Our rewrite graphs are deterministic, because each edge specifies all data in the term vertices. In
operational semantics, rewrites are “silent reductions” which occur in a closed system, while transitions
allow for interaction with the environment. This can be expressed using substitution as pattern-matching,
to construct a nondeterministic labelled transition system in which to derive behavioral equivalence.

Example 25. Processes in the ρπ-calculus interact in parallel −|−. The basic actions are input and
output. To construct the transition system of these observable behaviors, we define interaction contexts.

obs := [λx.x]∨ [λx.(in(N,N→ P) | x)]∨ [λx.(out(N,P) | x)] : [P→ P]→ Prop

We can then define the labelled transition system act : P, [P→ P],P→ Prop as

p:P,λx.c:[P→ P],q:P ` act(p,λx.c,q) := G(ev[p,obs(λx.c)],q)

the predicate which is usually written as p λx.c−−→ q we define to be ∃e : G. e : c[p/x] q. We can now
construct new modalities relative to this observational graph, denoted with (−)act.

From this relation, many kinds of behavioral equivalence can be written explicitly as types. For
example, bisimulation is the inductive type Bisim := µϕ.S(ϕ) for

S(ϕ)(p,q) := ∀y:P. ∀λx.c:[P,P]. act(p,λx.c,y)⇒∃z:P. act(q,λx.c,z)∧ϕ(y,z) ∧
∀z:P. ∀λx.c:[P,P]. act(q,λx.c,z)⇒∃y:P. act(p,λx.c,y)∧ϕ(y,z)

By constructing bisimilarity as a native type, we can reason up to behavioral equivalence.

5.2 Refined binding and reasoning about contexts

Hom types provide refined binding: using predicates to condition what can be substituted into a context.
To do this, we restrict rewrite rules to require that a term satisfies the predicate which the context binds.

Example 26. In the ρπ-calculus, an input process in(n,λx.c) receives whatever is sent on the name n.
We can refine input to receive only data which satisfies a predicate.

Consider the predicate theory (def. 14) of the ρπ-calculus. For each namespace α , define

commα : N,α[@], [α → P]→ E commα(n, p,λx.c) : outα(n, p)|inα(n,λx.c) c[@p/x]

where α[@] is the preimage of α under @ : P→ N. This extends to polyadic communication.



12 Native Type Theory

The refinement of the ρπ-calculus is defined to be the subtheory ρπω ⊂ ωTh.ρπ in which the only
rewrite constructors are commα for each namespace. In this theory, inα : N, [α → P]→ P constructs
processes which only receive data on α .

The namespace α : N→ Prop could be a predicate on structured data, a set of trusted addresses, or
the implementations of an algorithm. Then in(n,λx:α.p) can be understood as a query for α . In the
refined language, we can search by both structure and behavior.

A common question in software is “what contexts ensure this implication?” For example, “where
can this protocol be executed without security leaks?” Hom types provide this expressive power for
reasoning contextually in codebases.

By composing the hom type with modalities, we can extend contextual reasoning over term behavior.
In particular, ϕ Bψ := [ϕ,B◦∗(ψ)] are contexts for which substituting ϕ can eventually lead to some
condition, desired or otherwise.
Example 27. An arrow can be used to detect security leaks: given a trusted channel a : N and an untrusted
n : N, then the following program will not preserve safety on a.

λ p.(p | out(a,in(n,λx.c))) : safe(a)B¬[safe](a)

We can detect if a program may not remain single-threaded: if s.thr := ¬[0]∧¬[¬[0] | ¬[0]], then
λ p.out(a,(p | q)) : s.thrBact¬[s.thr], where Bact is the arrow for the act transition system (ex. 25).

In this way, the process of finding bugs can be automated as a form of type-checking. The query time
depends only on the system complexity and the efficiency of the type checker. Moreover, with subtyping
this reasoning expands to collections of programs.

5.3 Translating across language paradigms

The native types construction is functorial, allowing us to reason across translations. We sketch a simple
example of the benefits of relating across programming paradigms.
Example 28 (Translations). In the appendix §A, we give a translation τ : Th.Nλ →Th.π from the name-
passing λ -calculus into the π-calculus. This induces a functor P(τ) : P(Th.π)→ P(Th.Nλ ), which in
turn induces a translation of the native type systems.

A π-calculus predicate ϕ : P→ Prop contains processes which may involve highly nondeterminis-
tic interaction between agents in a network. In the translation, it is mapped to a λ -calculus predicate
P(τ)(ϕ) : T→ Prop by preimage; this has the effect of restricting ϕ to its “functional” processes.

Because λ -terms have no side-effects and execute deterministically, restricting to functional terms
allows significant optimization in network computing; e.g. agents trying to reach consensus about side
effects. Similar to how a compiler can optimize a tail call in a functional language, a compiler could
recognize that a π-term can be implemented functionally and run the consensus protocol on not the
details of the execution but only the result.

These are a few small examples, which hardly scratch the surface of native type theory. Native types
are practical because they are basic: they are made by logic from the languages we already use. We
encourage the reader to explore what native types can do for you.

6 Conclusion

Native type theory is a method to generate expressive type systems for a broad class of languages. The
authors believe that integrating native type systems in software can provide a shared framework of higher-
order reasoning in everyday computing. Most of the tools necessary for implementation already exist.



C. Williams & M. Stay 13

References

[1] Flow: A Static Type Checker for Javascript. Available at https://flow.org/.

[2] Google Closure Compiler. Available at https://developers.google.com/closure/compiler.

[3] Hoogle. Available at https://hoogle.haskell.org/.

[4] K Framework. Available at http://www.kframework.org/.

[5] KJS: A Complete Formal Semantics of JavaScript. Available at https://github.com/kframework/
javascript-semantics.

[6] Microsoft TypeScript. Available at https://www.typescriptlang.org/.

[7] RChain. Available at https://www.rchain.coop/.

[8] A Spatial Logic Model Checker. Available at http://ctp.di.fct.unl.pt/SLMC/.

[9] Samson Abramsky (1991): Domain theory in logical form. Annals of Pure and Applied Logic 51(1-2), pp. 1–
77, doi:10.1016/0168-0072(91)90065-t. Available at https://doi.org/10.1016%2F0168-0072%2891%
2990065-t.

[10] Steve Awodey (2010): Category Theory, 2nd edition. Oxford University Press, Inc., USA.

[11] Steve Awodey (2016): Natural models of homotopy type theory. Mathematical Structures in Computer Sci-
ence 28(2), pp. 241–286, doi:10.1017/s0960129516000268.

[12] H. P. Barendregt (1984): The Lambda Calculus: Its Syntax and Semantics. Elsevier.

[13] Gérard Boudol (1997): The π-calculus in direct style. In: Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages - POPL '97, ACM Press, doi:10.1145/263699.263726.
Available at https://doi.org/10.1145%2F263699.263726.

[14] Mitchell Buckley (2014): Fibred 2-categories and bicategories. Journal of Pure and Applied Algebra
218(6), pp. 1034–1074, doi:10.1016/j.jpaa.2013.11.002. Available at https://doi.org/10.1016%2Fj.
jpaa.2013.11.002.

[15] John Cartmell (1986): Generalised algebraic theories and contextual categories. Annals of Pure and
Applied Logic 32, pp. 209–243, doi:https://doi.org/10.1016/0168-0072(86)90053-9. Available at https:
//www.sciencedirect.com/science/article/pii/0168007286900539.

[16] Thierry Coquand & Gérard Huet (1988): The calculus of constructions. Information and Computa-
tion 76(2-3), pp. 95–120, doi:10.1016/0890-5401(88)90005-3. Available at https://doi.org/10.1016%
2F0890-5401%2888%2990005-3.

[17] Roy L. Crole (1994): Categories for Types. Cambridge University Press, doi:10.1017/CBO9781139172707.

[18] Robert Harper (2016): Practical Foundations for Programming Languages, 2 edition. Cambridge University
Press, doi:10.1017/CBO9781316576892.

[19] André Hirschowitz, Tom Hirschowitz & Ambroise Lafont (2020): Modules over monads and operational
semantics.

[20] B. Jacobs (1998): Categorical Logic and Type Theory. Elsevier, Amsterdam, doi:10.1016/s0049-
237x(98)x8028-6.

[21] Peter T. Johnstone (2002): Sketches of an Elephant: A Topos Theory Compendium: 2 Volume Set. Oxford
University Press UK.

[22] J. Lambek & P. J. Scott (1986): Introduction to Higher Order Categorical Logic. Cambridge University
Press, USA.

[23] Saunders Mac Lane & Ieke Moerdijk (1994): Sheaves in Geometry and Logic. Springer New York,
doi:10.1007/978-1-4612-0927-0. Available at https://doi.org/10.1007%2F978-1-4612-0927-0.

[24] F. William Lawvere (1969): Adjointness in Foundations. dialectica 23(3-4), pp. 281–296, doi:10.1111/j.1746-
8361.1969.tb01194.x. Available at https://doi.org/10.1111%2Fj.1746-8361.1969.tb01194.x.

https://flow.org/
https://developers.google.com/closure/compiler
https://hoogle.haskell.org/
http://www.kframework.org/
https://github.com/kframework/javascript-semantics
https://github.com/kframework/javascript-semantics
https://www.typescriptlang.org/
https://www.rchain.coop/
http://ctp.di.fct.unl.pt/SLMC/
http://dx.doi.org/10.1016/0168-0072(91)90065-t
https://doi.org/10.1016%2F0168-0072%2891%2990065-t
https://doi.org/10.1016%2F0168-0072%2891%2990065-t
http://dx.doi.org/10.1017/s0960129516000268
http://dx.doi.org/10.1145/263699.263726
https://doi.org/10.1145%2F263699.263726
http://dx.doi.org/10.1016/j.jpaa.2013.11.002
https://doi.org/10.1016%2Fj.jpaa.2013.11.002
https://doi.org/10.1016%2Fj.jpaa.2013.11.002
http://dx.doi.org/https://doi.org/10.1016/0168-0072(86)90053-9
https://www.sciencedirect.com/science/article/pii/0168007286900539
https://www.sciencedirect.com/science/article/pii/0168007286900539
http://dx.doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016%2F0890-5401%2888%2990005-3
https://doi.org/10.1016%2F0890-5401%2888%2990005-3
http://dx.doi.org/10.1017/CBO9781139172707
http://dx.doi.org/10.1017/CBO9781316576892
http://dx.doi.org/10.1016/s0049-237x(98)x8028-6
http://dx.doi.org/10.1016/s0049-237x(98)x8028-6
http://dx.doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1007%2F978-1-4612-0927-0
http://dx.doi.org/10.1111/j.1746-8361.1969.tb01194.x
http://dx.doi.org/10.1111/j.1746-8361.1969.tb01194.x
https://doi.org/10.1111%2Fj.1746-8361.1969.tb01194.x


14 Native Type Theory

[25] Per Martin-Löf (1998): An intuitionistic theory of types. In: Twenty Five Years of Constructive Type Theory,
Oxford University Press, doi:10.1093/oso/9780198501275.003.0010. Available at https://doi.org/10.
1093%2Foso%2F9780198501275.003.0010.

[26] Paul-André Melliès & Noam Zeilberger (2015): Functors are Type Refinement Systems. ACM SIG-
PLAN Notices 50(1), pp. 3–16, doi:10.1145/2775051.2676970. Available at https://doi.org/10.1145%
2F2775051.2676970.

[27] L. G. Meredith & Matthias Radestock (2005): Namespace Logic: A Logic for a Reflective Higher-Order Cal-
culus. In: Trustworthy Global Computing, Springer Berlin Heidelberg, pp. 353–369, doi:10.1007/11580850 -
19. Available at https://doi.org/10.1007%2F11580850_19.

[28] L.G. Meredith & Matthias Radestock (2005): A Reflective Higher-order Calculus. Electronic Notes in
Theoretical Computer Science 141(5), pp. 49–67, doi:10.1016/j.entcs.2005.05.016. Available at https:
//doi.org/10.1016%2Fj.entcs.2005.05.016.

[29] Robin Milner (1993): The Polyadic π-Calculus: a Tutorial. In: Logic and Algebra of Specification, Springer
Berlin Heidelberg, pp. 203–246, doi:10.1007/978-3-642-58041-3 6. Available at https://doi.org/10.
1007%2F978-3-642-58041-3_6.

[30] Ieke Moerdijk & Erik Palmgren (2000): Wellfounded trees in categories. Annals of Pure and Applied Logic
104(1-3), pp. 189–218, doi:10.1016/s0168-0072(00)00012-9. Available at https://doi.org/10.1016%
2Fs0168-0072%2800%2900012-9.

[31] Eugenio Moggi (1991): Notions of computation and monads. Information and Computation 93(1), pp. 55–
92, doi:10.1016/0890-5401(91)90052-4. Available at https://doi.org/10.1016%2F0890-5401%2891%
2990052-4.

[32] Davide Sangiorgi (2000): Communicating and Mobile Systems: the π-calculus,. Science of Computer Pro-
gramming 38(1-3), pp. 151–153, doi:10.1016/s0167-6423(00)00008-3. Available at https://doi.org/
10.1016%2Fs0167-6423%2800%2900008-3.

[33] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau & Théo Winterhalter (2019): Coq Coq
Correct! Verification of Type Checking and Erasure for Coq, in Coq. Proc. ACM Program. Lang. 4(POPL),
doi:10.1145/3371076. Available at https://doi.org/10.1145/3371076.

[34] Ross Street (1974): Elementary cosmoi I. In Gregory M. Kelly, editor: Category Seminar, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 134–180.

[35] Andrzej Tarlecki, Rod M. Burstall & Joseph A. Goguen (1991): Some fundamental algebraic tools for
the semantics of computation: Part 3. indexed categories. Theoretical Computer Science 91(2), pp. 239 –
264, doi:https://doi.org/10.1016/0304-3975(91)90085-G. Available at http://www.sciencedirect.com/
science/article/pii/030439759190085G.

[36] D. Turi & G. Plotkin: Towards a mathematical operational semantics. In: Proceedings of Twelfth Annual
IEEE Symposium on Logic in Computer Science, IEEE Comput. Soc, doi:10.1109/lics.1997.614955. Avail-
able at https://doi.org/10.1109%2Flics.1997.614955.

A Appendix

Origin and related work

The present work began with Greg Meredith seeking a method to generate logics for concurrent lan-
guages, motivated by Abramsky’s Domain Theory in Logical Form [9]. In 2005 Meredith developed
Namespace Logic [27], an expressive logic for data and code in the ρ-calculus, just as Cardelli was
developing Spatial-Behavioral logic [8] for the π-calculus.

Intuiting a general method, Meredith later began collaboration with Stay, who explored approaches
in category theory. In 2018 they brought in Williams and after extensive discussion of the vision, it

http://dx.doi.org/10.1093/oso/9780198501275.003.0010
https://doi.org/10.1093%2Foso%2F9780198501275.003.0010
https://doi.org/10.1093%2Foso%2F9780198501275.003.0010
http://dx.doi.org/10.1145/2775051.2676970
https://doi.org/10.1145%2F2775051.2676970
https://doi.org/10.1145%2F2775051.2676970
http://dx.doi.org/10.1007/11580850_19
http://dx.doi.org/10.1007/11580850_19
https://doi.org/10.1007%2F11580850_19
http://dx.doi.org/10.1016/j.entcs.2005.05.016
https://doi.org/10.1016%2Fj.entcs.2005.05.016
https://doi.org/10.1016%2Fj.entcs.2005.05.016
http://dx.doi.org/10.1007/978-3-642-58041-3_6
https://doi.org/10.1007%2F978-3-642-58041-3_6
https://doi.org/10.1007%2F978-3-642-58041-3_6
http://dx.doi.org/10.1016/s0168-0072(00)00012-9
https://doi.org/10.1016%2Fs0168-0072%2800%2900012-9
https://doi.org/10.1016%2Fs0168-0072%2800%2900012-9
http://dx.doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016%2F0890-5401%2891%2990052-4
https://doi.org/10.1016%2F0890-5401%2891%2990052-4
http://dx.doi.org/10.1016/s0167-6423(00)00008-3
https://doi.org/10.1016%2Fs0167-6423%2800%2900008-3
https://doi.org/10.1016%2Fs0167-6423%2800%2900008-3
http://dx.doi.org/10.1145/3371076
https://doi.org/10.1145/3371076
http://dx.doi.org/https://doi.org/10.1016/0304-3975(91)90085-G
http://www.sciencedirect.com/science/article/pii/030439759190085G
http://www.sciencedirect.com/science/article/pii/030439759190085G
http://dx.doi.org/10.1109/lics.1997.614955
https://doi.org/10.1109%2Flics.1997.614955


C. Williams & M. Stay 15

became clear that categorical logic offered a powerful method of generating type systems for λ -theories,
including most concurrent languages.

Native type theory is an entire world to explore, both in theory and practice. Yet there are desiderata
for a comprehensive logic for concurrency which may not be addressed by the language of toposes, and
the project continues to expand.

Translation of structured λ -theories

The translation of the name-passing λ -calculus into the π-calculus.
Example 29. Name-passing λ -calculus [13]

V variables T terms E rewrites of terms (+Th.Cat)

lam : [V→ T]→ T var : V→ T C : V,T,T→ T

app : T,V→ T def : T, [V→ T]→ T

β : [V→ T],V→ E β (Q,y) : app(lam(Q),y) Q(y)
φ : V,T,T→ E φ(x,Q) : C(x,Q,var(x)) Q

appe : E,V→ E appe(ρ,N) : app(s(ρ),N) app(t(ρ),N)
defe : T, [V→ E]→ E defe(M,λx.ρ) : def(M,λx.s(ρ)) def(M,λx.t(ρ))

def(Q,λx.R) = def(Q,λx.C(x,Q,R))
C(x,Q,def(R,λy.S)) = def(R,λy.C(x,Q,S))
C(x,Q,app(R,y)) = app(C(x,Q,R),y)

The name-passing λ -calculus uses references to avoid copying large data structures. It is a restriction
of the λ -calculus in that terms may only be applied to variables; while it is an enrichment in that it
introduces an environment def that records binding. There is also a carrier C, which serves to transport
the recorded binding from its declaration to its use.

The usual β reduction splits into two reductions. The first, denoted β , replaces variables in a term
with other variables. The second, denoted φ (for “fetch”), replaces a variable in head position with the
term to which it is bound in the environment.

The edge constructors appe and defe describe the propagation of reduction contexts into the term:
reductions may only occur in the head position of an application or under a def.
Example 30. Polyadic asynchronous π-calculus [32]

N names P processes E rewrites between processes (+Th.Cat)

0 : 1→ P ink : N, [Nk→ P]→ P

−|− : P,P→ P outk : N,Nk→ P

! : P→ P ν : [N→ P]→ P syntactic sugar: νx.p means ν(λx.p)

commk : N,Nk, [Nk→ P]→ E commk(n,~ai,λ~yi.Q) : outk(n;~ai)|ink(n,λ~yi.Q) Q[ai/yi]
parl : E,P→ E parl(〈p,e〉,q) : p|q t(e)|q

νe : [N→ E]→ E νex.ρ : νx.s(ρ) νx.t(ρ)

!Q = !Q|Q
(P, |,0) commutative monoid
νx.νy.Q = νy.νx.Q
νx.0 = 0
Q|νx.R = νx.(Q|R) “scope extrusion”



16 Native Type Theory

The π-calculus [29] models concurrent processes which compute via communication, or the ex-
change of “names”. It is like the ρπ-calculus of this paper, without reflection and with two added
constructors. The replication operator ! makes infinitely many copies of a process. The ν operator intro-
duces a new scope in which a fresh name has been made available to the contained process. Scopes can
expand via scope extrusion to absorb other processes running in parallel with the scope.

Proposition 31. There is a translation J−K : Th.Nλ → Th.π , given below.

sorts
JVK = N

JTK = [N→ P]
JHomVK = HomP

constructors
JvarK : N→ [N→ P]
Jvar(x)K = λu.out1(x,u)

JlamK : [N→ [N→ P]]→ [N→ P]
Jlam(λx.Q)K = λu.in2(u,λx.JQK)

JappK : [N→ P],N→ [N→ P]
Japp(Q,x)K = λu.νv.(JQK(v)|out2(v;x,u))

JdefK : [N→ P], [N→ [N→ P]]→ [N→ P]
Jdef(Q,λx.R)K = λu.νx.(JRK(u)|!in1(x,JQK)))

JCK : N, [N→ P], [N→ P]→ [N→ P]
JC(x,Q,R)K = λu.(JRK(u)|in1(x,JQK))

The translation preserves equations and rewrites; we give the computation for β -reduction.

rewrites
Jβ K : [N→ [N→ P]],N→ E

Jβ (Q,x)K : Japp(lam(Q),x)K
= λu.νv.(Jlam(Q)K(v)|out2(v;x,u)) JappK
= λu.νv.(Jlam(λy.Q(y))K(v)|out2(v;x,u)) extensionality
= λu.νv.(in2(v,λy.JQ(y)K|out2(v;x,u)) JlamK
 λu.νv.JQ(x)K(u) comm2
= λu.(JQ(x)K(u)|νv.0) scope extrusion
= λu.(JQ(x)K(u)|0)
= λu.JQ(x)K(u)
= JQ(x)K extensionality


	Introduction
	Motivation and implementation
	Organization and contribution

	Structured -theories
	The Logic of a Presheaf Topos
	The predicate fibration
	The codomain fibration

	Native Type Theory
	Applications
	Rewrite subsystems, modalities, and behavioral equivalence
	Refined binding and reasoning about contexts
	Translating across language paradigms

	Conclusion
	A

