
Learners’ languages

David I. Spivak

Abstract

In “Backprop as functor”, the authors show that the fundamental elements of
deep learning—gradient descent and backpropagation—can be conceptualized
as a strong monoidal functor Para(Euc) → Learn from the category of param-
eterized Euclidean spaces to that of learners, a category developed explicitly to
capture parameter update and backpropagation. It was soon realized that there is
an isomorphism Learn � Para(SLens), where SLens is the symmetric monoidal
category of simple lenses as used in functional programming.

In this note, we observe that SLens is a full subcategory of Poly, the category
of polynomial functors in one variable, via the functor A 7→ AyA. Using the fact
that (Poly, ⊗) ismonoidal closed, we show that amapA→ B inPara(SLens)has a
natural interpretation in terms of dynamical systems (more precisely, generalized
Moore machines) whose interface is the internal-hom type [AyA , ByB].

Finally, we review the fact that the category p-Coalg of dynamical systems
on any p ∈ Poly forms a topos, and consider the logical propositions that can be
stated in its internal language. We give gradient descent as an example, and we
conclude by discussing some directions for future work.

1 Introduction

In the paper “Backprop as functor” [FST19], the authors show that gradient de-
scent and backpropagation—as used in deep learning—can be conceptualized as a
strong monoidal functor L : Para(Euc) → Learn from the category of parameterized
euclidean spaces to that of learners, a category developed explicitly to capture pa-
rameter update and backpropagation. Here, Para is a monad on the category of
symmetric monoidal categories. It sends (C, I , ⊗) to a category with the same objects
Ob Para(C) B ObC, but with hom-sets that include a parameterizing object

Para(C)(c1 , c2) B {(p , f) | p ∈ C, f : c1 ⊗ p → c2}/∼

where the parameterizing object p is considered up to an equivalence relation ∼.1 The
composite of c1 ⊗ p1 → c2 and c2 ⊗ p2 → c3 in Para(C) has parameterizing object

1The equivalence relation ∼ is generated by regarding (p , f) ∼ (p′, f ′) if there exists an epimorphism
1 : p � p′ with f � 1 # f ′. As Bruno Gavranović points out in a recent presentation, https://www.
youtube.com/watch?v=ji8MHKlQZ9w, it is often preferable to dispensewith the equivalence relation and
instead conceive of Para(C) as a bicategory. This is what we shall do as well.

1

https://www.youtube.com/watch?v=ji8MHKlQZ9w
https://www.youtube.com/watch?v=ji8MHKlQZ9w

p1 ⊗ p2 and is given by the ordinary composite

c1 ⊗ (p1 ⊗ p2) → c2 ⊗ p2 → c3.

The domain of the backpropagation functor, Para(Euc), is thus the Para construction
applied to the Cartesianmonoidal category of Euclidean spacesRn and smoothmaps.

But it was soon realized that Learn is in fact also given by a Para construction,
namely there is an isomorphism Learn � Para(SLens), where SLens is the symmetric
monoidal category of simple lenses as used in functional programming. The objects
of SLens are sets Ob(SLens) � Ob(Set), but amorphism consists of a pair of functions

SLens(A, B) B {(f1 , f]) | f1 : A→ B, f] : A × B→ A}. (1)

Thus a map A → B in Para(SLens) consists of a set P and functions f1 : A × P →
B and f] : A × B × P → A × P. The authors of [FST19] developed this structure
in order to conceptualize the compositional nature of deep learning as comprising
a parameterizing set P (often called “the space of weights and biases”) and three
functions:

I : A × P → B implement
U : A × B × P → P update
R : A × B × P → A request (2)

The implement function is a P-parameterized function A → B, and the update and
request functions take apair (a , b)of “trainingdata” andbothupdates theparameter—
e.g. by gradient descent—and returns an element of the input space A, which is used
to train another such function in the network. This last step—the request—is not just
found in deep learning as practiced, but is in fact crucial for defining composition.2

But by this point, the notation (P, I ,U, R) of Learn has become heavy and the
structure seems to be getting lost. Even knowing Learn � Para(SLens) seems ad-hoc
since the morphisms (1) of SLens are—to this point—mathematically unmotivated.
This is where Poly comes in.

In this note, we observe that SLens is a full subcategory of Poly, the category
of polynomial functors in one variable, via the functor A 7→ AyA. Using the fact
that (Poly, ⊗) is monoidal closed, we will reconceptualize Para(SLens) in terms of
polynomial coalgebras, which can be understood as dynamical systems: machines
with states that can be observed as “output” and updated based on “input”. In
particular, a morphism A → B in Learn will be recast as a coalgebra on the internal
hom polynomial [AyA , ByB], and we will explain this in terms of dynamics.

This viewpoint allows us to substantially generalize the construction in Learn, a
construction which also appears prominently in the theory of open games [Gha+16].

2The reader can check that given only (P, I ,U) : A → B and (Q , J,V) : B → C, one can construct a
composed parameter set P ×Q, and one can construct a composed implement function A × P ×Q → C,
but one cannot construct an associative update operation A × C × P ×Q → P ×Q. In order to get it, one
needs the request function B × C × Q → B. By endowing morphisms with the request function, as in
Learn (2), composition and a monoidal structure is easily defined.

2

Perhaps more interestingly, it allows us to use we the fact that the category p-Coalg
of dynamical systems on any interface p ∈ Poly forms a topos. A topos is a setting in
which one can do dependent type theory and higher-order logic. In fact, the topos of
p-coalgebras is in some ways as simple as possible: it is not only a copresheaf topos
p-Coalg � SetC for a certain category C, but in fact the site C is the free category
on a directed graph that we’ll call Treep . This makes the logic of p-coalgebras—and
hence of dynamical systems, learners, and game-players—quite simple. However, the
particular graph Treep associated to p is highly-structured, and we should find that
this structure is inherited by the internal language of p-Coalg.

The point is to consider logical propositions that can be stated in the internal
language of p-Coalg and to use these propositions in order to constrain the behavior
of learners and game-players (categorified as discussed above), and of interaction
patterns between dynamical systems more generally. For example, “gradient descent
and backpropagation” is a property we can express in the internal language.

Plan for the paper

In Section 2wewill discuss various relevant constructions in the categoryPoly of poly-
nomial functors in one variable. In particular, we will review its symmetric monoidal
closed structure (Poly, y, ⊗, [−,−]), its composition monoidal structure (y, /), and the
notion of coalgebras. We explain how morphisms in Learn can be phrased in terms
of coalgebras on internal hom objects, and we reconstruct Para(SLens) in these terms.

In Section 3, we first show that the category p-Coalg of p-coalgebras for the end-
ofunctor p : Set → Set is a presheaf topos. We then discuss the internal logic of
p-Coalg, and we conclude by giving several directions for future work.

Notation

Wedenote the category of sets by Set; we generally denote sets with upper-case letters
A, B, etc. Given a natural number N ∈ N, we write N B {1, . . . ,N}, so 0 � �, 1 � {1},
2 � {1, 2}, etc. Given sets A, B, we often write AB B A × B to denote their Cartesian
product. We will denote polynomials with lower-case letters, p , q, etc.

Acknowledgments

We thank David A. Dalrymple, Dai Girardo, Paul Kreiner, David Jaz Myers, and
Alex Zhu for useful conversations. We also acknowledge support from AFOSR grant
FA9550-20-10348.

2 Constructions in Poly

In this sectionwe review the category Poly, for which [GK12] is an excellent reference;
we also discuss its symmetricmonoidal closed structure. Thenwe discuss polynomial

3

coalgebras and reconceptualize the category Learn and Gavranović’s bicategorical
variant, in that language.

2.1 Background on Poly as a monoidal closed category

For any set A, let yA : Set→ Set be the functor represented by A; that is, yA applied to
a set S is Set(A, S) � SA. In particular, y B y1 is (isomorphic to) the identity functor
S 7→ S and 1 B y0 is the constant functor S 7→ 1. Note that yA(1) � 1A � 1 for any A.

The coproduct of functors F and G, denoted F + G, is taken pointwise; this means
there is a natural isomorphism

(F + G)(S) � F(S) + G(S)

where the coproduct F(S) + G(S) is taken in Set. Similarly, for any set I and functors
Fi , one for each i ∈ I, their coproduct is computed pointwise(∑

i∈I

Fi

)
(S) �

∑
i∈I

Fi(S).

Definition 2.1. A polynomial functor p is any coproduct

p B
∑
i∈I

yp[i]

of representable functors, where I ∈ Set and each p[i] ∈ Set are sets. We denote the
category of polynomial functors and natural transformations between them by Poly.

We note that if p �
∑

i∈I y
p[i] then p(1) � I; hence we can write any p ∈ Poly in

canonical form
p �

∑
i∈p(1)

yp[i]. (3)

We refer to each i ∈ p(1) as a position in p and to each d ∈ p[i] as a direction at i.

Example 2.2. We can consider any set S as a constant polynomial
∑

s∈S y
0.

We can consider a polynomial p ∈ Poly as a set (or discrete category) p(1) equipped
with a functor p[−] : p(1) → Set. Then a map of polynomials ϕ : p → q can be
identified with a diagram as follows

p(1) q(1)

Set

ϕ1

p[−]

⇐
ϕ]

q[−]
(4)

That is, ϕ can be decomposed into a function ϕ1 : p(1) → q(1) on positions, and for
every i ∈ p(1) with j B ϕ1(i), a component function ϕ]i : q[j] → p[i] on directions.
This follows from the Yoneda lemma and the universal property of coproducts. We
will sometimes use this (ϕ1 , ϕ]) : p → q notation below.

4

Example 2.3. Amorphism A1y
A2 → B1y

B2 can be identified with a function ϕ1 : A1 →
B1 and a function ϕ] : A1 × B2 → A2. That is,

Poly(A1y
A2 , B1y

B2) � BA1
1 AA1B2

2 . (5)

Proposition 2.4. The composite of polynomial functors p , q ∈ Poly, which we denote p / q,
is again polynomial with formula

p / q �
∑

i∈p(1)

∑
j : p[i]→q(1)

y
∑

d∈p[i] q[jd] (6)

The composition operation / is a (nonsymmetric) monoidal structure on Poly, with unit y.

Proof. See page 12. �

Example 2.5. If p � y2 and q � y + 1, then p / q � y2 + 2y + 1 whereas q / p � y2 + 1.

Example 2.6. Applying a polynomial p to a set S is given by composition: p(S) � p / S.

Proposition 2.7 (The symmetric monoidal category (Poly, y, ⊗)). The category Poly has
a symmetric monoidal structure with unit y and monoidal product ⊗ on objects given by the
following formula

p ⊗ q B
∑

i∈p(1)

∑
j∈q(1)

yp[i]×q[j]

Proof. See page 13. �

Proposition 2.8 (Internal hom [−,−]). The ⊗ monoidal structure on Poly is closed; that
is, for every p , q ∈ Poly there is a polynomial

[p , q] B
∑

ϕ : p→q

y
∑

i∈p(1) q[ϕ1(i)] (7)

for which we have a natural isomorphism

Poly(r ⊗ p , q) � Poly(r, [p , q]). (8)

Proof. See page 13. �

Example 2.9. Given sets A and B, we use Eqs. (5) and (7) to compute that the internal
hom between AyA and ByB is

[AyA , ByB] � BAAAByAB .

The counit of the adjunction (8) is a natural map eval : p ⊗ [p , q] → q called
evaluation. In very much the same way, it induces two sorts of morphisms we will use
later:

[p1 , q1] ⊗ [p2 , q2] → [p1 ⊗ p2 , q1 ⊗ q2] and [p , q] ⊗ [q , r] → [p , r]. (9)

5

2.2 Coalgebras, generalized Moore machines, and learners

Coalgebras for endofunctors F : Set→ Set form amajor topic of study [AM82; Adá05;
Jac17]. In this section we recall the definition and explain the relevance to dynamical
systems (generalized Moore machines) and learners.

Definition 2.10 (Coalgebra). Given a polynomial p, a p-coalgebra is a pair (S, β)where
S ∈ Set and β : S → p / S. A p-coalgebra morphism from (S, β) to (S′, β′) consists of a
function f : S→ S′ such that the following diagram commutes:

S p / S

S′ p / S′

β

f p/ f

β′

(10)

We denote the category of p-coalgebras and their morphisms by p-Coalg.

Proposition 2.11. A p-coalgebra (S, β) can be identified with a map of polynomials

SyS → p. (11)

Proof. One finds an isomorphism Poly(S, p / S) � Poly(SyS , p) by direct calculation.
�

Warning 2.12. Looking at Proposition 2.11, one might be tempted to think that a map
of p-coalgebras as in (10) can be identified with a commuting triangle

SyS S′yS′ p?

but this is not the case; for one thing, the marked arrow does not arise from a function
f : S → S′. The point is, (11) can be misleading when it comes to maps, and hence we
will depart from the so-called Para construction for 2-cells. For us, the correct sort of
map between p-coalgebras is the usual one, as shown in (10).

Proposition 2.13. For any p , q ∈ Poly there is a functor

p-Coalg × q-Coalg→ (p ⊗ q)-Coalg

making •-Coalg a lax monoidal functor Poly→ Cat.

Proof. See page 13. �

The relevance of coalgebras to dynamics was of interest in the earliest of references
we know of, namely [AM82], where they are referred to as codynamics. We will
proceed with our own terminology.

Definition 2.14 (Moore machine). For sets A, B, an (A, B)-Moore machine consists of
• a set S, elements of which are called states,
• a function r : S→ B, called readout, and

6

• a function u : S × A→ S, called update.
It is further called initialized if it is equipped with an element s0 ∈ S.

With an initialized (A, B)-Moore machine (S, r, u , s0), we can take any A-stream
a : N→ A and produce a B-stream b : N→ B inductively using the formula

sn+1 B u(sn , an) and bn B r(sn).

Proposition 2.15. An (A, B)-Moore machine with states S can be identified with a map of
polynomials SyS → ByA, and hence with a ByA-coalgebra S→ ByA /S by Proposition 2.11.

Proof. The identification uses ϕ1 B r and ϕ] B u. �

Replacing ByA with an arbitrary polynomial p ∈ Poly, we think of p-coalgebras as
generalized Moore machines. We will refer to them as p-dynamical systems and call p
the interface. Mathematically, given β : S→ p / S, we also get the two-fold composite

S
β
−→ p / S

p/β
−−→ p / p / S

and indeed the n-fold composite S→ pCn / S for any n ∈ N. The idea is that for every
state s ∈ S, we get a position r(s) ∈ p(1), and for every direction d ∈ p[r(s)] there, we
get a new state u(s , d). We thus think of p as an interface for the dynamical system:
p(1) says what the world can see about the current state—i.e. its outward position
i B r(s)—and p[i] says what sort of forces or inputs the state can be subjected to.

A map of polynomials ϕ : p → p′ is a change of interface. We can transform a p-
dynamical system into a p′-dynamical system that has the same set of states. Indeed,
simply compose any S→ p / S with ϕ / S : p / S→ p′ / S.

More generally, a map ϕ : p1 ⊗ · · · ⊗ pk → p′ allows us to take k-many dynamical
systems S1 → p1 / S1 through Sk → pk / Sk and use Proposition 2.13 to combine them
into a single dynamical system

S→ (p1 ⊗ · · · ⊗ pk) / S
ϕ
−→ p′ / S

with interface p′ and states S B S1 × · · · × Sk .

Example 2.16. Wiringdiagrams are onewayof combiningdynamical systems as above.

ϕ � Plant

Controller

A

B
C

Controlled_Plant

(12)

In the wiring diagram (12) three boxes are shown: the controller, the plant, and the
system; we can consider each as having a monomial interface:

Plant � CyAB Controller � ByC Controlled_Plant � CyA . (13)

7

The wiring diagram itself represents a morphism

ϕ : CyAB ⊗ ByC → CyA

in Poly. Defining ϕ requires a function ϕ1 : C×B→ C and a function ϕ] : C×B×A→
A×B×C; the first is projection and the second is an isomorphism. Together these sim-
ply say how the wiring diagram shuttles information within the controlled plant. In-
deed, thewiring diagram lets us put together dynamics of the controller and the plant
to givedynamics for the controlledplant. That is, givenMooremachines SyS → Plant
and TyT → Controller, we get a Moore machine STyST → Controlled_Plant.

More generally, we can think of transistors in a computer as dynamical systems,
and the logic gates, adder circuits, memory circuits, a connected keyboard ormonitor,
etc. each as a wiring diagram comprising these simpler systems.

Example 2.17. In Example 2.16 the wiring pattern is fixed, but as we show in [Spi20],
Poly also supports wiring diagrams for dynamical systems that can change their
interaction pattern based on their internal states.

We now come to learners. As mentioned in the introduction, the category Learn
from [FST19] is better understood as a bicategorywhichwe’ll denoteLearn. Its objects
are sets, Ob(Learn) � Ob(Set), a 1-morphism (learner) from A to B consists of a set
P and maps I : A × P → B and (R,U) : A × B × P → A × P, and a 2-morphism—a
morphism between learners—is a function f : P → P′ making the following squares
commute:

A × P B

A × P′ B

I

A× f

I′

A × B × P A × P

A × B × P′ A × P′

(R,U)

A×B× f A× f

(R′,U′)

(14)

We denote the category of learners from A to B as Learn(A, B) ∈ Cat.

Proposition 2.18. For sets A, B, there is an equivalence of categories

Learn(A, B) � [AyA , ByB]-Coalg.

Proof. See page 14. �

Wewill now give a definition that generalizes the bicategoryLearn, give examples,
and discuss intuition. In particular, we define a category-enriched operadOrg, which
includes Learn as a full subcategory.

Definition 2.19 (The operad Org). We define Org to be the category-enriched operad
defined as follows. The objects of Org are polynomials: Ob(Org) B Ob(Poly). For
objects p1 , . . . , pk , p′, the category of maps between them is defined by

Org(p1 , . . . , pk ; p′) B [p1 ⊗ · · · ⊗ pk , p′]-Coalg.

For any object p, the identity on p is given by the [p , p]-coalgebra 1 → [p , p](1) �
Poly(p , p) that sends 1 7→ idp .

8

Given objects p1,1 , . . . , p1, j1 , . . . , pk ,1 , . . . , pk , jk , the composition functor

[p1,1 ⊗ · · · ⊗ p1, j1 , p1]-Coalg × · · · × [pk ,1 ⊗ · · · ⊗ pk , jk , pk]-Coalg
× [p1 ⊗ · · · ⊗ pk , p′]-Coalg→ [p1,1 ⊗ · · · ⊗ pk , jk , p

′]-Coalg

is given by repeated application of the maps in (9) and Proposition 2.13.

How do we think of a morphism (S, β) : (p1 , . . . , pk) → p′ inOrg? It is a dynamical
system which has a set S of states. For every state s ∈ S, we can read out an
associated element β1(s) : p1 ⊗ · · · ⊗ pk → p′; we can think of this as a wiring diagram
as in Example 2.16 or a generalization thereof. That is, the current state s dictates
an organization pattern β1(s): how outputs of the internal systems are aggregated
and output from the outer interface, and how feedback from outside is distributed
internally.

But so far, this is only the readout of β. What’s an input? An input to this system
consists of a tuple of outputs i B (i1 , . . . , ik) ∈ p1(1) × · · · × pk(1), one output for each
of the internal systems, together with an input d ∈ p′[β1(i)] to the outer system.

Imagineyou’re theofficer in chargeof anorganization: you’re in chargeofhowyour
employees and other resources are arranged, how they send information to each other
and the outside world, and how the feedback from the outside world is disbursed to
the employees and resources. You see what they do, you see how the world responds,
and you update your internal state and the organization’s arrangement however you
see fit. In this image, you as the officer are playing the role of (S, β), i.e. a morphism
in Org. But even a simple logic gate or adder circuit in a computer—something that
doesn’t have a changing internal state or update how resources are connected—counts
as amorphism inOrg. Again, the only difference in that case is that the state set S � 1,
the way the internal resources are connected—is unchanged by inputs.

Example 2.20. For any operad, there is an algebra of 0-ary morphisms. In the case of
Org, this algebra sends p 7→ p-Coalg, the category of dynamical systems on p, since
the unit of ⊗ is y and [y, p] � p.

Next we’ll give a mathematical language for describing dynamical systems as in
Example 2.20 as well as the generalized learners (or officers) described above.

3 Toposes of learners

We ended the previous section by defining the (category-enriched) operad Org and
explaining how it generalizes the bicategory Learn. In this section we mainly discuss
the internal language for each learner. That is, given p , p′ ∈ Ob(Poly) � Ob(Org),
where perhaps p � p1 ⊗ · · · ⊗ pk , we discuss the category Org(p; p′) of such learners.

Our first job is to show that every such category is a topos; this will give us
access to the Mitchell-Benabou language and Kripke-Joyal semantics—the so-called
internal language of the topos and its interpretation. We then explain the sorts of
things—propositions—that one can express in this language, e.g. the proposition “I
will follow the gradient descent algorithm” is a particular case.

9

3.1 The topos of p-coalgebras

In this section, we show that for any polynomial p, there is a category Cp , called the
cofree category on p, for which we can find an equivalence

p-Coalg � Cp-Set

between p-coalgebras and functors Cp → Set. In fact, the category Cp is free on a
graph, making it quite easy to understand in certain respects.3

Following [nLa21], we define a rooted tree to be a graph T whose free category has
an initial object, called the root; the idea is that for any node n, there is exactly one
path from the root to n. We denote the nodes of T by T0, the root by rootT ∈ T0, and
for any node n ∈ T0 we denote the set of arrows emanating from n by T[n]. Note that
at the target n′ of any arrow a ∈ T[n], there sits another rooted tree with root n′; we
denote this tree by codT(a).

Definition 3.1 (The graph Treep of p-trees). For a polynomial p ∈ Poly, define a p-tree
to be a tuple (T, φ1 , φ]), where T is a rooted tree, φ1 : T0 → p(1) is a function called
the position function, and φ]n is a bĳection

φ]n : p[φ1(n)]
�−→ T[n]

for each node n ∈ T0, identifying the set of branches in the tree T at node n with the
set of directions in the polynomial p at the position φ1(n).

We denote by Treep the graph whose vertex set is the set of p-trees, and for which
an arrow a : T → T′ is a branch a ∈ T[rootT]with T′ � codT(a).

Example 3.2. If p � yA for a nonempty set A then there is only one p-tree: each node
has the unique label p(1) � 1 and A-many branches.

If p � {go}y1+{stop}y0 � y+1 then counting the number of nodes gives a bĳection
between set of p-trees and the set N ∪ {∞}

stop
• ,

go
• →

stop
• ,

go
• →

go
• →

stop
• , ... ,

go
• →

go
• →

go
• → · · ·

Theorem 3.3. For any polynomial p there is an equivalence of categories

p-Coalg � Treep-Set

where Treep is the free category on the graph Treep of p-trees.

Proof. See page 14. �

3The name “cofree category” comes from the fact that—up to isomorphism—comonoids in Poly are
categories; see [ahman2016directed]. So we’re really taking the cofree comonoid on p.

10

• •

•

•
•

•
•
• •
•
• •

•
•
• •
•

•
•
•
• •
•
• •

•

Figure 1: Left: a dynamical system, i.e. coalgebra, for the polynomial p B {•, •}y2 +

• � 2y2 + 1. Right: the p-tree corresponding to the node •.

3.2 The internal language of p-Coalg

For any category C, the category C-Set of functors C → Set forms a topos. In
particular, this means that mathematicians have already developed a language and
logic that faithfully represents the structures ofC-Set, andwe can import it wholesale;
see [FS19, Chapter 7] or [MM92, Chapter VI]. Now that we know from Theorem 3.3
that p-Coalg is a topos for any p ∈ Poly, we are interested in corresponding language
for the topos Learn(A, B) � [AyA , ByB]-Coalg of learners, for any sets A, B; hence
the title “learners’ languages.” However since most of the relevant abstractions work
more generally for p-Coalg, we’ll mainly work there.

Not assuming the reader knows topos theory, we will proceed as though we are
defining the few relevant concepts from scratch, when in actuality we are merely
“reading them off” from the established literature. For example Definition 3.4 simply
unpacks the topos-theoretic definition of a logical proposition as a subobject of the
terminal object in the topos p-Coalg.

Definition 3.4. A logical proposition (about p-coalgebras) is defined to be a set P ⊆ Treep

of p-trees satisfying the condition that if T ∈ P is a tree in P, then for any direction
d ∈ T[rootT], the tree codT(d) ∈ P is also a tree in P.

Proposition 3.5 gives us an easy way to construct logical propositions about p-
coalgebras, and hence learners. Namely, it says if we put a condition on the p-
positions that can show up as labels, and if we put a condition on the codomain map
(how directions in the tree lead to new positions), we get a logical proposition. Of
course, these aren’t the only ones, but they form a nice special case.

Recall from Definition 3.1 that a p-tree is a rooted tree T equipped with a position
function φ1 : T0 → p(1); we elide the bĳections (earlier denoted φ]n : T[n] � p[φ1(n)])
in what follows.

Proposition 3.5. Given p ∈ Poly, suppose given subsets

Q ⊆ p(1) and R ⊆
∏
i∈Q

∏
d∈p[i]

Q.

Then the following set of trees is a logical proposition:

PR
Q B {T ∈ Treep | ∀(i : T0).φ1(i) ∈ Q ∧ ∀(d : T[i]). codT(d) ∈ (Rid)}.

11

Proof. The result is immediate from Definition 3.4. �

Example 3.6 (Gradient descent). The gradient descent, backpropagation algorithm
used by each “neuron” in a deep learning architecture can be phrased as a logical
proposition about learners. The whole learning architecture is then put together as in
[FST19], or aswe’ve explained things above, using theoperadOrg fromDefinition2.19.

So suppose a neuron is tasked with learning a function Rm → Rn , and it has a
parameter space Rk , i.e. we are given a smooth function f : Rk × Rm → Rn . We will
define a corresponding logical proposition using Proposition 3.5. Define p ∈ Poly by

p B [RmyR
m
,RnyR

n] �
∑

1 : RmyR
m→RnyR

n

yR
m×Rn

.

Define Q ⊆ {(11 , 1]) | 11 : Rm → Rn , 1] : Rm ×Rn → Rm} by saying that 11(x)must be
of the form f (a , x) for some a ∈ Rk in the parameter set and that 1]x is given by “pulling
back gradient vectors” using themap on cotangent spaces defined by composingwith
the derivative of 11 at x, in the usual way.

Now given (11 , 1]) ∈ Q, we continue with the setup of Proposition 3.5 by defining
R(11 , 1]) : Rm×Rn → Q to say how the learner updates its current parameter value a ∈
Rk given an input-output pair; this again is specified by the deep learning algorithm.
Typically, it uses a loss function to calculate a cotangent vector at f (a , x) which is
passed back to a cotangent vector at a, and a dual vector of some “learning rate” ε is
traversed.

The details are important for implementation, but not for understanding the idea.
The idea is that as long as we say what sorts of maps are allowed (smooth maps with
reverse derivatives) and how they update, we have defined a logical proposition.

The logical propositions that come from Proposition 3.5 are very special. More
generally, one could have a logical proposition like “whenever I receive two red tokens
within three seconds, I will wait five seconds and then send either three blue tokens
or two blues and six reds.” As long as this behavior has the “whenever” flavor—more
precisely as long as it satisfies the condition in Definition 3.4—it will be a logical
proposition in the topos.

3.3 Future work

There are many avenues for future work. One is to give more syntactic language—
beyond the logical symbols true, false,∧,∨,⇒,¬, ∀, ∃ that exist in any topos—
for building logical propositions in the p-Coalg toposes specifically. Another is to
understand various modalities in these toposes.

The sort of morphisms between toposes that seem to arise most naturally in this
context are not the usual kind—adjoint functors E � E′ for which the left adjoint
preserves all finite limits, called geometric morphisms—but instead adjoint functors
E � E′ for which the left adjoint preserves all connected limits. Thus another avenue

12

for future research is to consider how logical and type-theoretic statements move
between toposes that are connected in this way.

A Proofs

Proof of Proposition 2.4. It is well-known that composition of functors is a monoidal
operation, so it suffices to see that the polynomial (6) is the composite of functors p , q.
To show this, we use the fact that for any set A we have a bĳection yA �

∏
a∈A y to

calculate the composite

p / q �
∑

i∈p(1)

∏
d∈p[i]

y /
∑

j∈q(1)

∏
e∈q[j]

y

�
∑

i∈p(1)

∏
d∈p[i]

∑
j∈q(1)

∏
e∈q[j]

y

�
∑

i∈p(1)

∑
j : p[i]→q(1)

∏
d∈p[i]

∏
e∈q[j(d)]

y �
∑

i∈p(1)

∑
j : p[i]→q(1)

y
∑

d∈p[i] q[jd]

where the first isomorphism is (3), the second is substitution, the third is the distribu-
tive law, and the fourth is properties of exponents. �

Proof of Proposition 2.7. With the formula given, it is clear that the ⊗-operation is
associative (up to isomorphism), and that y, which has y(1) � 1 and y[1] � y, is
a unit. One can also check that the formula is functorial in p and q, completing the
proof. �

Proof of Proposition 2.8. The natural isomorphism is given by rearranging terms:

Poly(r ⊗ p , q) �
∏

k∈r(1)

∏
i∈p(1)

∑
j∈q(1)

∏
e∈q[j]

r[k] × p[i]

�
∏

k∈r(1)

∑
ϕ1 : p(1)→q(1)

∏
i∈p(1)

∏
e∈q[ϕ1(i)]

r[k] × p[i]

�
∏

k∈r(1)

∑
ϕ1 : p(1)→q(1)

©«
∏

i∈p(1)

∏
e∈q[ϕ1(i)]

p[i]ª®¬ × ©«
∏

i∈p(1)

∏
e∈q[ϕ1(i)]

r[k]ª®¬
�

∏
k∈r(1)

∑
ϕ : p→q

∏
i∈p(1)

∏
e∈q[ϕ1(i)]

r[k]

� Poly

(
r,

∑
ϕ : p→q

y
∑

i∈p(1) q[ϕ1(i)]
)
� Poly(r, [p , q]).

In order, these isomorphisms are given by: unfolding the definition of morphisms in
Poly, distributivity, products commuting with products, definition of morphisms in
Poly, rules of exponents, and Eq. (7)’s definition of [p , q], respectively. �

Proof of Proposition 2.13. Weneed to give not only the functor λ : p-Coalg×q-Coalg→
(p ⊗ q)-Coalg, for any p , q ∈ Poly but also a functor {1} → y-Coalg, which we can
identify with a y-coalgebra; we take the latter to be the unique function 1 → y / 1.

13

For the former, one could proceed abstractly using the fact that there is a duoidal
structure on Poly

(p / s) ⊗ (q / t) → (p ⊗ q) / (s ⊗ t).

Indeed, since for sets S, T we have S ⊗ T � S × T, the result will follow from the
properties of duoidal structures (applied in the case where s B S and t B T are
constant polynomials). However, for the reader’s convenience, we will give the map
λ : p-Coalg × q-Coalg→ (p ⊗ q)-Coalg more explicitly.

Given β : S→ p / S and γ : T → q / T, we define a function

ST → (p ⊗ q) / (ST) �
∑

i∈p(1)

∑
j∈q(1)
(ST)p[i]×q[j]

(s , t) 7→
(
i B β1(s), j B γ1(t), (d , e) 7→ (β]i (d), γ

]
j (e)

)
.

This is natural in S, T, whichmakes λ a functor for any p , q. One can check that all the
axioms of a lax monoidal functor are verified, in the sense that the required diagrams
commute up to natural isomorphism. �

Proof of Proposition 2.18. On one hand, an object in Learn(A, B) as described in (2)
consists of a set P and functions A × P → B and A × B × P → A and A × B × P → P.
On the other hand, we have [AyA , ByB] � BAAAByAB by Example 2.9, so a coalgebra
P → [AyA , ByB]/P consists of a function P → BA, a function P → AAB, and a function
P → PAB. The two descriptions can be identified by currying. The [AyA , ByB]-Coalg
morphisms

P BAAABPAB

P′ BAAAB(P′)AB

are easily seen to coincide with those shown in (14). �

Proof of Theorem 3.3. It is well-known that C-Set is equivalent to the category of dis-
crete opfibrations over C via the category-of-elements construction. When C is free
on a graph G, the category of elements for any functor h : C → Set is also free on a
graph, say H. In this case the opfibration can be identified with a graph homomor-
phism π : H → G with the property (“opfib”) that for any vertex h ∈ H, the function
on arrows H[h] �−→ G[π(h)] induced by π is a bĳection. Under this correspondence,
a morphism h → h′ of copresheaves is identified with a graph homomorphism
f : H → H′ for which π � π′ ◦ f .

Thus we have reduced to showing that there is an equivalence between p-Coalg
and the category of those graph homomorphisms π : H → Treep that have the opfib
property. Supposegivena p-coalgebra β : S→ p/S; it includes a function β1 : S→ p(1)
and for each s ∈ S a function β]s : p[β1(s)] → S. We define the corresponding graph
GS,β to have vertex set S, and each s ∈ S to have p[β1(s)]-many outgoing arrows;
the target of each outgoing arrow d ∈ p[β1(s)] is defined to be β]s(d). The graph
homomorphism π : GS,β → Treep is defined inductively: for any s ∈ S, the p-tree π(s)
has root labeled β1(s), and for each outgoing branch d ∈ p[β1(s)] the target vertex is

14

assigned the label β1(s′), where s′ B β]s(d), and for each outgoing branch d′ ∈ p[β1(s′)]
the target vertex is assigned the label β1(s′′) where s′′ B β]s′(d′), and so on. It is clear
that π satisfies the opfib property, since it assigns to each vertex s in the graph GS,β a
vertex in Treep (the p-tree π(s)) with the same set p[β1(s)] of outgoing arrows.

Conversely, given a graph homomorphism π : G→ Treep with the opfib property,
let SG be the set of vertices in G. The required coalgebra map β : SG → p / SG consists
of a function β1 : SG → p(1) and a function β]s : p[β1(s)] → SG for every s ∈ SG. We
take the function β1 to send vertex s to the root label φ(rootπ(s)) for tree π(s). Since
we have a bĳection p[β1(s)] � G[s], we can take β]s to simply be the target function
G[s] → SG for the graph G.

It is a straightforward calculation to check that these twoconstructions aremutually
inverse, and to check that graph homomorphisms over Treep correspond bĳectively
to morphisms of p-coalgebras. �

References

[Adá05] Jirı Adámek. “Introduction to coalgebra”. In: Theory and Applications of
Categories 14.8 (2005), pp. 157–199 (cit. on p. 6).

[AM82] Michael A Arbib and Ernest G Manes. “Parametrized data types do
not need highly constrained parameters”. In: Information and Control 52.2
(1982), pp. 139–158 (cit. on p. 6).

[FS19] Brendan Fong andDavid I. Spivak.An Invitation to Applied Category Theory:
Seven Sketches in Compositionality. Cambridge University Press, 2019 (cit.
on p. 10).

[FST19] Brendan Fong, David I. Spivak, and Rémy Tuyéras. “Backprop as Functor:
A compositional perspective on supervised learning”. In: Proceedings of
the 34th Annual ACM/IEEE Symposium on Logic in Computer Science. ACM.
2019. eprint: arXiv:1711.10455 (cit. on pp. 1, 2, 8, 11).

[Gha+16] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. “Compo-
sitional game theory”. In: Proceedings of Logic in Computer Science (LiCS)
2018 (2016) (cit. on p. 2).

[GK12] NicolaGambino and JoachimKock. “Polynomial functors and polynomial
monads”. In:Mathematical Proceedings of the Cambridge Philosophical Society
154.1 (Sept. 2012), pp. 153–192 (cit. on p. 3).

[Jac17] Bart Jacobs. Introduction to Coalgebra. Vol. 59. Cambridge University Press,
2017 (cit. on p. 6).

[MM92] Saunders MacLane and Ieke Moerdĳk. Sheaves in Geometry and Logic: A
First Introduction to Topos Theory. Springer, 1992 (cit. on p. 10).

[nLa21] nLab authors. tree. http://ncatlab.org/nlab/show/tree. Revision 26.
Feb. 2021 (cit. on p. 10).

15

arXiv:1711.10455
http://ncatlab.org/nlab/show/tree
http://ncatlab.org/nlab/revision/tree/26

[Spi20] David I. Spivak. Poly: An abundant categorical setting for mode-dependent
dynamics. 2020. eprint: arXiv:2005.01894 (cit. on p. 8).

16

arXiv:2005.01894

	Introduction
	Constructions in
	Background on as a monoidal closed category
	Coalgebras, generalized Moore machines, and learners

	Toposes of learners
	The topos of p-coalgebras
	The internal language of p-Coalg
	Future work

	Proofs
	References

