
By permission of the Royal Society this paper is reproduced from Phil. Trans. R. Soc.
A (2008),366: From computers to ubiquitous computing, by 2020.

Understanding Ubiquitous Computing

How can you hope to understand a ubiquitous system, whether you are a user em-
bedded in it, or an engineer building it, or a scientist analysing it? Never before have
such huge systems be envisaged. We have to lift the scientificstatus of informatics to
provide this understanding. It can only be done by building acoherenttower of mod-
els. We cannot and need not apply uniform constraints to the nature of models; they
must cope with the enormous variety of concepts used to describe ubicomp systems—
from quasi-human properties like goals, self-awareness, reflectivity, negotiation at the
top of the tower to formal machines at the bottom.

When we build a model, it is toexplainsomething: either a natural phenomenon as
in natural science, or a physical artefact as in engineering. Or it may explain another
model. This last case applies especially in informatics; our ultimate real artefacts are
so complex that they can only come about through several levels of modelling. Hence
‘tower of models’.

In natural science the reality precedes the model; in informatics the model often
comes first, e.g. it is a specification. But thenotionof model is the same. In each case
realities live at the base of the model tower; we can think of areality as an extremal
model that explains nothing else.

Realities may be heterogeneous; e.g. to model aircraft flight we modelnatural
phenomena—the weather—by meteorology, and the artefact—the plane—by combin-
ing an electro-mechanical model with embedded software. Combination of models
reflects combination of realities. The plane’s software is itself a model (of circuit di-
agrams and their behaviour, in turn realised by an initialised computer). French in-
formaticians recently explained the software for the Airbus at one level higher in the
tower—by logical formulae. The explanation was evidenced byabstract interpretation.

So often one model Aexplainsor specifiesanother, i.e. B; in turn we say Brealises
or implementsA. These different verbs denote the same relationship. Thisrelationship
must beevidenced. If B is a reality, the evidence is by observation. When both A and
B are models, the evidence may even be a mathematical proof. Such a proof can be by
human or machine—in the latter case perhaps bymodel-checking.

It follows, inescapably, that a model has two parts:
(i) a class of entities (e.g. syntactic forms), and
(ii) how these entities behave.

Then, when A is realised by B, the realisation is evidenced byan argument showing
how the behaviour of B-entities correctly matches that of the A-entities they realise.
A model need not be formal for this to be done; a beautiful informal model is the
report that described ALGOL60 nearly 50 years ago, and its implementation by a stack
machine can be evidenced by careful informal reasoning.

Ubicomp will be a nightmare unless a tower of models is, by increments, built and
used. Conversely, in building it we seize the chance to justify the claim that—against
public perception—there is deep scientific content in understanding software.

Robin Milner,University of Cambridge, UK


