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Seminar Note A: Embedding calculation
Robin Milner, 2009

The first section of this note reviews Section 11.2 in my bagkich explains how
non-parametric recursion can be modelled by a special ofassaction rules called
atomic germination rules.

The second section generalises this to parametric geriomates, showing how they
model calculation over data types. The resulting BRS may Hdedtaldata calculus.
The third section then shows how a data calculus can be eratled@ general BRS.
In particular, it allows ordinary reaction rules to maintaiata values and to use them
as preconditions for the enaction of a rule.

It can be compared with the ITU’s Platographical BRSs, whicimloine BRSs that
share (some) controls; but the emphasis here is on calmulati

1 Growth, or atomic unfolding

An atomicgermination ruleis a specialised reaction rule of the form
Kz — gk

whereK is an atomic control called seedand the namesg are distinct. We also caK; a seed.
We find it useful to require the unfolded segd: (1, {Z}) to have no idle root (it only has a single
root) and no idle names. It may contain occurrencels ahd other seeds. Thus the unfolding of
seeds can represent recursion; for example, it models a CC8efsged recursion

A(Z) = Py .

This constrained form of reaction rule allows us to derivey\strong behavioural properties, in-
cluding a harmony between unfolding and the standard w@aotiation—- .

Given a setA of germination rules with distinct seed controls, ety stand for the union
of their germination relations extended to bigraphs (net ground bigraphs) by closure under
contexts and under support equivaleecéNe omitA when it is understood. Note that, unlike the
reaction relation—-, we close— underall contexts, not merely active ones.

We then define thenfolding order< as the transitive reflexive closure 6. We denote the
symmetric closure of by =; we call itstructural congruenceAn important property of unfolding
is that it is preserved by every context — i.e. it@ngruential Second, it isdecomposablethis
means that the parts of a composition or product grow inddgety, i.e. if o < G, then
G = F for someE, F such thatl £, F') < (E, F'). Crucially, < enjoys two further properties:

0]
e < isconfluent

e If no seed occurs in the redex of any standard reaction e < respects reactignn the
following sense. Let— be the reaction relation generated by the standard rules; th
f— ffandf < g, there existg such thayy — ¢’ and ' < ¢'.
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Recall that< involves any number of unfoldings by, while f —» f’ represents a single reaction
within f. The last property is proved by induction on the number obldihg steps inf < g. The
proof requires decomposability, and also the fact thatlditfig cannot occur within the parametric
redex R of a reaction, sincé contains no seed. Note that unfoldiognoccur in the parameter
d of a reaction; but then, if the reaction precedes the umiglda single unfolding in/ can be
matched by zero of more unfoldings of the parameter insteéheer;(d), since any factor of may
be replicated or discarded by the reactton.

In the next section we generalise unfolding rules to adnmiapeters; in the final section we
show that it retains respect for reaction.

2 Parametric unfolding

We now proceed to generalise germination, allowing a segetminate differently for different
parameter patterns. A seed contois no longer atomic; instead it may have any rank 0, i.e.
Kz is an ion withk sites. The book (on page 64) describes how to derive suclehigink controls
with the help of a sorting.

In this section we are concerned with a BRS in which each redesisis of seeds with patterns;
that is, we are concerned only with unfolding, not generattien. In the next section we consider
how to embed such an unfolding BRS into a general one.

We wish to use each seed to specify a seqtatfernsfor the germination by<.> Each pattern
for K will be determined by a place graph with outer widthk, containing no seed controls.
(Later, we see thaP may be built from data constructors.) The patterns for argaseedK must
be pairwise inconsistent, i.e. for any pairQ) of patterns folK we must have

P.d# Q.e.

for all parameterd, e. Thus agroundseed, i.e. a seed supplied with parameters, takes the form of
a moleculeK;. P.d; recall that the so-calledestingoperator .’ is a derived form of composition

in which the names of the second component are exported. dlgammination rule for a seed
controlK and patternP takes the form

where P and G have inner widthsn and m/, together with (as for general reaction rules) an
instantiation map) : m’ — m determining how a parametérfor the seed is instantiated. In fact,
ford=dy®---®d,,_; we define

def
d' = dyoyll - || dymr—1) -

In the book it is said that the proof requires the reactioa talbeaffing i.e. to do no replication. This constraint
appears unnecessary for the present proof (this shoulddmett), but may be needed for later properties. However,
since unfolding may occur in the parameteof the reactionf —> f’, we are relaxing the book’s constraint that
the parameter of a redex should be discrete, merely requirto have no idle roots or names. This relaxation does
not affect the book’s theory of standard transitions, buy @ifect the theory of engaged transitions (this should be
checked).

2Recall the notion of parameter pattern from programminglages, e.g. Standard ML.
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Then the unfolding relation for this rule is generated from
Kz P.d — G.d'

by closure under all contexts.

For simplicity let us constrain a pattefh to be a place graph (i.e. to have no links). It may
be possible to relax this constraint, but it is easier togmesit for the present. There are plenty
of examples, in particular for recursive functions on dgfses, where the constructors of the data
type are place controls, i.e. they have arity 0.

Consider list processing; the list constructors @oas with rank 2 andNil with rank 0. An
arbitrary finite list whose membefg; : i € n} have disjoint name-sets is represented by

Cons.(dy @ Cons.(- - - Cons.(d,—1 @ Nil)---)) .

Notation In keeping with familiar mathematical notation, we shateof write a comma for the
tensor product, We shall write a context such &ns occurring in a parametric seéd:. P as
Cons(0J;, 0,), where the indicesand; indicate the ordinal positions of these two sites in theinne
width of P.

Note that the first site of @ons must have the sort of the list’s items while the second sige ha
the sort of a list of such items. Note also that the list itetnmay have names, which of course
can be shared or closed by imposing a suitable context.

Constructors are not seeds, but a recursive function ousrvigl be represented as a seed.
Consider the binary functio@at for concatenating two lists; it is a seed with rank 2, and its
patterns are

Peons = COHS.(@, ), and Pui = NI|, .

The evaluation ofat is represented by two unfolding rules:

Cat.(Cons.([@,d),2) < Cons.([, Cat.([,2))
Cat.(Nil,O) — 0.

Of course, other data types, such as the booleans with cdsgiae. nullary constructorgyue
and false, and the natural numbers with unary constru@oec (successor) and constaféro,
can be similarly treated. With one exception (to do with dogy see below), we have shown
how calculationalsystems can at least be specified as BRSs, though we would é¢xpetto be
implemented more efficiently.

What about the properties asserted in Proposition 11.6 dbdlo& for the unfolding relation
< £ <*? They are all retained. It isongruential(preserved by composition and tensor product);
it is confluent; and it isdecomposableprovided that we constrain contexts so that every data
constructor (e.gCons) is equipped with a ground parameter.

The exception is to do with copying data. Hitherto, we havelated that the redex of a
parametric germination is prime, and is moreover a moleotide formKz.P. This does not

3]t should be checked that this follows as in thealculus by means of the parallel moves lemma.



permit fetching copies of data, possibly even from a remedggon. Thus, for example, the unfold-
ing relation forCat replaces the moleculéat(d,, d;) by the concatenation of the list andd,,
overwriting these two lists. To avoid this overwriting wentdo add a polymorphic non-prime
germination rule of the form

Fetch, || Val,.[@ — [@ || Val,..[

which replaces thé€etch-node with a copy of the contents of thal-node without changing the
latter. This is an instance of what we shall catt@ntextualrule; see Seminar Note D, Section 2.
We strongly conjecture that with such a rule (which is indesed in Seminar Note B for encoding
the A-calculus) the unfolding relation remains confluent, buganous proof is needed.

Let us call a BRS aalculusif its controls are either data constructors or seeds (dioty
Fetch andVal), with an appropriate place sorting, whose only reactidesrare unfolding rules as
described above. How then do we equip an arbitrary BRS withaadtulus?

Digression Before we can answer this question properly, let us define Wwhaeans to be a
sub-BRSof a given BRSA = BG(X,R). First, consider the s-categoty = BG(X),* where
¥ = (K, D), a signatureC paired with asorting disciplineD. In my book the latter was called
aformation rule it determines a sub-s-category of the s-category of blggagwerK. To form a
sub-s-categorpA’ = BG(Y'), whereX = (K', D’), we take a subsét’ C K and further refine the
disciplineD to D'.

Now, to form a sub-BRS oA, including its reaction rule®, we must modify the latter. We
pick a subsefR’ C R, in which the redex and reactum of each rule are both admitye®’.
Finally, sinceA” = BG(X',R') must be a BRS in its own right, the parameters of each ground
reaction must themselves be admittedIly This completes the definition stib-BRS

3 Embedding a calculus in a BRS

We now wish to consider that the reaction rules governingtteviour in a BR3\ depend upon
calculation with data that is present. For example, an agerytbe allowed entry to a room only
if her name is in a certain list, and if the room is not alreadal/tb capacity. Already, this involves
lists, numbers and truth values, so we expect these to bealtalasC that we shall embed iA.

In general, let us declare a BRSto becalculationalif it has a sub-BRSC = BG(X¢, Rc¢)
that is a calculus, provided that certain further condiiane satisfied. We need these conditions
to ensure that calculatiomssistsother reactions, and nevpreemptghem. Let us call a control
real if it belongs to/C \ K¢, and a reaction ruleeal if it belongs toR \ R¢. We wish to be sure
that a real reaction is never preempted by a calculatioraliaan an unfolding.

To see the need for further conditions to ensure this, sugfas a real redex. If? contains
aC-node, i.e. a seed or a constructor, then an occurrenéensay be destroyed if this node can
take part in an unfolding.

4We still call it A although we have dropped its reaction rules.



We now claim that if the sorting discipline @& implies three simple conditions, then such
preemption cannot occur. The conditions are that:

e EveryC-node contains onlZ-nodes
e No C-seed occurs in a real redéx

e Any C-constructor in a real redeR lies within a real node oR.

Notice that the last two conditions apply only tparametricreal redex; thusC-nodes may occur
in the parameterfor a real reaction.

These conditions impfythat the unfolding relation in a calculational BRS respectséal
reaction relation, i.e.

if f— f"andf < g, there existg such thay —» ¢’ andf’ < ¢'.

This is the key property we require of unfolding. Unfoldifagilitatesreaction, e.g. by unfolding
seeds until a parametric redex is matched, but does notmireveduplicate reactions that are
already possible.

If A is calculational, with calculu€, we may write it asA = (X, R,C). Let us look at a
simple example. Tak€ to be a calculus for the natural numbers with the construgiotc and
constan®ero; for now, give it just one atomic seed, infinity:

00 — Succ.oo .

TakeA to be a refinement the built environment of Chapter 1 in the b&okl we include agents
(Agent) and rooms Room), with arities 2 and 0. Recall the rules B3 and B6 in the bookaiig
an agent to enter and leave a room:

And in algebraic form:

B3: Agent,, |Room.00 —> Room.(Agent,, |[J)
B6: Room.(Agent,, |0) — /yAgent,, | Room.OJ.

This allows the room to contain an unbounded number of agénteur refinement we wish to
keep count of the agents in a room, and impose a limit on it. eébaid add ta> a non-atomic
control Vacs that holds the number of vacancies in the room, decremeiitiogeach agent who
enters and incrementing it for each agent who leaves. Sy enprermitted only when th¥&acs

5The formal argument has yet to be written down



node for the room (the sorting must ensure only one per roamiains a non-zero number — i.e.
one that is a successor. . The rules become:

B3': Agent,, | Room.(Vacs.Succ.[@ | ) —> Room.(Agent,, | Vacs.[@ | )
B6': Room.(Agent,, | Vacs.[@ |@) —> /y Agent,, | Room(Vacs.Succ.[d | ) .

Notation We can write the children of a control in arbitrary order. Egample, we may write
the contextRoom(Vacs.Succ.[® | ) also asRoom.([ | Vacs.Succ.[@)). This is because we are
indexing the sites.

It is easy to see that the original reaction rule, which ai@amy number of agents in a room, is
equivalent to having assigned to its Vacs node, becausso = Succ.c0.® In the refinement, let
us suppose that the vacancy count was originally set withgeata already in the room, and that
it is altered only by the two rules we have given. Then thesesrwill ensure that the occupancy
will never exceed the original vacancy count.

Let us refine the example further. Suppose we add a rule (wiecshall not trouble to define)
allowing an administrator to change the limit, by alterihg vacancy count of a room. Suppose
he gives thé/acs node a new value — say 5 — at a time when there may be arbitraaihy agents
in the room. This will not immediately limit the occupancy3pbecause it may already exceed 5.
In fact the effect will be rules merely to limit the occuparioyds more than the current occupancy.
Consider two solutions to this problem:

1. The administrator first to assigns O to ¥&s node. This prevents any further entry, but at
some point (depending upon the stochastic rates) all duoeupants will have left. This
situation can be detected by a rule whose parametric redetyisnatched by a room empty
of agents. (This can be done by a sorting in which a site maybigaed a sortnoagents’,
forbidding any agents to occupy that site.) Using this nel@,rine administrator can then
assign assign 5 to théacs node, achieving the desired effect.

2. We change the existing rules so that insteadagt the room contains two nodeQ¢cs and
MaxOccs, respectively the current number of occupants and the atlowaximum. There
are then three rules that can change these values; the adtexirules chang®ccs, and the
administrator can chandéaxOccs. On each of these events the relevant rule can computer
afresh the value of a truth-valued nod®ac, which is then used by the entry rule to decide
whether or not to admit an agent.

Of course, the second solution requires the embedded walcwb calculate predicates, using the
data type of truth values. For our case, it must provide (ased)sthe binary predicatexceeds
over numbers. This suggests a general strategy: everyirulauf case the entry rule and the
administrator’s rule) that may affect the possible use tdirel rules should compute a predicate
over the data it holds, and store the result in a truth-vahaate. Then the entry rule can test this
value, as a pre-condition for firing.

This does a lot, but not everything. In our scenario, it wdk handle the situation in which
entry to a room depends not only on data stored in the roonmglbaton the identity of the agent

Recall that the equivalence is the reflexive closure of.
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wishing to enter. This cannot be known until she attemptsnteré Of course, the room may
contain a list of the identities of admissible agents, areagent wishing to enter must provide
identity (e.g. with a swipe card). Our general strategy thidin work, provides that entry involves
two events, i.e. the use of two rules; the first rule is for hegdhe swipe card and recording
admissibility of entry, and the second uses this predicaligey if True, to admit the agent.

But what can ensure that the admitted agent is the one who dilgecard? One solution
to this involves extending the notion of reaction rule tolugle what may be calledonditional
reaction rules, having the form

(P, R,R',n)

where the conditiorP is a boolean predicate expressed in the calculus, which bausttisfied
(i.e. must unfold tolTrue) when applied to the rule’s parameter. (In our case, thenpater would
include the identity of the agent wishing to enter.) Thusditional rule is asinglerule with two

inseparable parts: one to evaluate the condition and onertorm the action.

So our simple example has led us into subtleties of modettiagwe might not have expected.
That was the point of the example; any model must make it ptessd ask and answer subtle
guestions of this kind.

We leave details of conditional rules for further study. Bug wan note two things. First,
such rules seem quite compatible with the present behalitlweory; for example, they allow
labelled transitions to be derived and they still admit tieorem that bisimilarity is a congruence.
Second, this kind of conditional rule — imposing a calcutaptedicate on th@arameter— is
distinct from one in which a condition is imposed upoontextin which the redex is matched,
moreover, such conditions may be expressed either (asineag)ata calculus or in a logic, such
as BiLog, associated with bigraphs.

Let us make two points, putting this work in a general context

e This handling of data structures is just one example of cambibigraphs. Clearly the idea
of bigraphical modules is important, and needs careful digfin For example, is there just
one such notion, or are calculational BRSs distinct from okimeds of module?

e This treatment is surely not suitable for the end-user ofdpgs, who will need something
more user-friendly akin to a programming language. But teattnent is very close to how
data structures appear in the semantic definition of a pnagriag language such as Standard
ML. Similarly we should aim at a bigraphical programmingyegpecification language with
an analogous semantic definition.

Research at the ITU Copenhagen has pioneered work under lesthtieadings.






Seminar Note B: Localisation and binding
Robin Milner, 2009  Iast amended 27 November 2009

This note explains and illustrates the binding of links igraphs. It is based upon
Section 11.3 of the book, but its formulation and exposiseguence differ slightly.

Section 1 explains localisation of links, and how it consisadynamics. Section 2
uses localisation to model the binding of names, as a sdidingny already existing
BRS. Section 3 uses binding to encode the lambda calculus.

Citations pn] in square brackets refer to the bibliography in my book.

1 Local bigraphs

In pure bigraphs, placing and linking are completely orthrogl. This can be seen by considering
somerF’ : (m, X) —(n,Y’), decomposed as follows:

F=F,o---0oF] W|thFZIZ_1—>IZ(O<Z€]{?)
wherely = (m, X) andl, = (n,Y) .

Suppose that some namee X is open inF, so thatF(z) = y € Y, in factx = x, with
Fi(z;_1) = z; andz;, = y. Then any node i’ can be linked to the outer namein fact, for each
i (0 < i € k) any node inF; can be linked ta:;.

It is useful, for some purposes, to constrain a bigraph bitilignthe nodes and sites accessible
from certain outer names. We shall call these outer ndowed. Each local name in an interface
may be local to one or more of its sites; to represent this, weele an interfacel = (m, X)
to I = (m,loc;, X), where the binary relatiofoc; C m x X is called thelocality of 7. If
(1,x) € loc; then we say is local toi. If = is not local to any site we call global. Bigraphs with
such interfaces are calldalcal, provided they satisfy a constraint defined below.

Example Let us first illustrate the constraint with an example. Thagdam showd” : [ — J
wherel = (3, loc;, X) andJ = (2, loc;,Y), with x € X andy,y’ € Y. The only local name in
Y isy; thatis,loc; = {(0,y)}.

The fact thaty is local to region 0 ofF’ is represented by the little circle” qualifies as a local
bigraph, first because all the nodes linked,tare within regior), to whichy is local. Sincey’ is
global, it may be linked (as here) to nodes in any region. Butifere also local it would have to
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be local to both regions af'. (So there would be two more little circles, placed whereythank
enters each region.)

The second reason that qualifies as a local bigraph is that the inner namlenked to y is
local to two of the sites lying in regiof, and this linkage is represented explicitly by placinm
those sites. We shall write a site as an indexed box, anmbotatk its local names:

F = (Y/zo(T, |A,.B.0|A,.0,) | B.1.

Scoping discipline for local bigraphs We now proceed to express formally our constraint on
local bigraphs. Recall that the porisris(v) of a nodev take the formp = (v,1i), fori € ar(v).
For any local bigraptt” : I — J with nodesV we define the localities of its points and links as
follows:
locport, = {(prnt(v),p) : v € Vi, p € ports(v)}
locpoint £ Jocr W locport

=

loclink « locy .

(The relationloclink  will be extended when binding is introduced later.) ety and/ respec-
tively range over places, points and links. liet be the transitive reflexive closure of the parent
map of F', and letlink » be its link graph. Then a local bigraghmust obey the followind:

SCOPE DISCIPLINE
Whenever a link is local then all its points are local, and (see diagram)
each location of any point dflies within a location of.

loclink p
w' - ¢ (local)
A
ing : lanF
i+ locpointp
w q

We can now see why the locality of an interface is importaptyédnsmitting locality from the outer
to the inner face of a bigraph, it ensures that the scopeptiiseiis preserved by composition. Itis
also easily found to be preserved by tensor product.

What is the effect of allowing a name to be local to some, buatipof the sites in an interface?
One important effect is to exert a useful constraint uporadyics. Consider a ground reaction rule
with redexr having two regions, one of which contains a single node; @leemoves this node to
the other region. What can happen if we compose the bigfaplustrated above with a ground
bigraphg : I, whereg contains an occurrence 0P Suppose the nodeto be moved is linked ta,
and lies in region) of g. Then the rule can moveto region2 of g, sincex is local in that region,
but cannot move it to regioh

"This condition was wrongly stated in the book. By a procebuniatake | gave there a condition that works only
in the case that a name is local to at most one region. Theatamesion, as here, is given in the Corrigenda to the
book, which can be found on my website. It's worth noting ttiet two conditions are equivalent if a name can be
local to at most one region!
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To summarise: the locality of names in an interfdcean be used to confine mobility in a
bigraph whose outer face is

Notation Our notation(m, loc, X) for local interfaces is good for setting up their theory, tan
be a little tedious in practice. One alternative is to wrtstead((Xo, ..., X, 1),Y), whereX;
are the names local to site= m, andY” are the global names. Then for example

(({z, 2}, {w,2"}) {y, y'}), orjust((za’, z2"), yy')

has width 2 and name sét, 2’, 2"y, y'}, with {x, 2’} local to site 0{x, z"} local to site 1, and
{y,y'} global. With this notation, we can also omit the global namesll the local hames, if
empty; so(2, yy') has only global names ar{@zz’, x2")),or just(zz’, xz"), has only local names.
L.

Operators Composition and tensor product (justaposition) are eagfindd, and we omit de-
tails. Note only that for two disjoint interfacds= (m, loc;, X) andJ = (n, loc;,Y")

def

I ® J = (m+n,loc; & loc';, X &Y

where we define the offset localityc/, e {(m+j,vy) : (j,y) € locs}. The parallel product || J
of two interfaces is similar, with the disjoined unighw Y replaced by the unioX U Y.

Nesting requires a little adjustment. In formiGgF we make the global names bfaccessible
as before, but we allow#’ also to have local outer names, which are local inner namés @hus
let F: I — J andG: J'— K where, using our alternative notation for interfacés= ((X), X),
J' = (X)andK = ((Y),Y). We require the global nameéé of .J to be disjoint fromY’, the local

names ofK’. Then the nesting:.F : I —((Y), X UY") is given as in pure bigraphs by
G.F £ (idx || G)oF .

The proof that nesting is associative is as before.

Globalising and localising To end this section we consider the possibilities of comvertocal
names into global ones and vice versa. For the former, teeaesimple linkingy : I — J called
a globaliserby Jensen in his dissertation; it is an identity, except ghaime local i/ may be
global inJ. Itis obvious that this obeys the scope discipline.

In contrast, there is no bigraph that turns a global innerenanto a local outer name; it would
violate the discipline. But we can define a parbgkrationon bigraphs to do this. First, for any
and sitei in the interfacel, we defingz, x)I to be the result of making thelocal to:; by iterating
this, we definei, )/ to localiser at any subsetof the sites off.

Now for any bigraph?’: H — I, letz be a global name if not linked inF’ to any global name
of H. How can we make: local in 7, while obeying the scope discipline f6f? Consider all the
points of F' linked to x; each such point is either a port with a unique location, avcall inner
name with at least one location fil. From the scope discipline we can see that, to makecal
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in I, we must localise it to at least every region/ahat contains a location of a point linked:to
Denote this set of regions hy. We have thus defined thecalisation ofz in F':

@ F:H— @, 1) .

The scope discipline is still obeyed if we also locatat regions that contain no location of a point
linked tox. This leads to a stronger form of localisation, replacingy the width of/:

(x)F : H— (n,x)I wheren = width(7) .

It remains to be seen whether we need both these forms.

A special case of localisation if" is when all its inner name#& are local. Thus, by taking
H = ¢, we see that localisation is always possible for grounddplgs. This will be useful later in
the treatment of reaction rules.

2 Binding of names

You will have noticed that localising a link, e.g. lay) /', does not merely close the link @so F
does. Closing in F' creates a closed link or edgeand this makes inaccessible to any environ-
ment into which/z o F is inserted by composition.

But this is not enough. The points linked by an eddeve locality, but the edge itself has not.
Indeed, supposk! is non-atomic and’ has a global outer name then we find thaM.(/xo F') =
Jxo(M.F) (and this holds whether global or local). A diagram makes this clear:

This becomes serious if, for example, a reaction rule caofhiescontents of af-node. If we
consider the edge to be within the node, then each copy will have its own copy;oif not,
then all copies will be linked together by a link edgeBut the equation is undeniable; hence the
copying is ill-determined.

Binding So, to determine the copying of linked structures, we neeatra Df closure that has
locality. We want something th&indsa namer, i.e. both closes and confines the use ofto its
own region. So we admit a new kind of control callediading If 3 is a binding, then we might
write the binding ofr by a5-node asiz; it functions both as a place and as a link.

Formally ag-node is an atom with arity 1; it has both a place and a link. Wl slraw it as a
little circle (thus distinguishing it from other atoms). \Weght attempt to bind a global name by a
little pure bigraph3z: (1, z) — 1, drawn thus:
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Therefore it is necessary to bind onlyacal namez. For this purpose, suppogds an interface
in which the name: is located at the regions. Then define a small bigraph

fr:I— jxl

where/zI meand with namer removed;5z is the identityid; except that the link ta is replaced
by a link to a-node, and this binding node is located at all the regign€f course this is too
general for standard bigraphs, in which each node has gxaed location; so, for the present,
when bindingz we require it to be located only at a single region. (The ganesise, where a
bound link may be shared among several regions, must bedawediin the context ddeminar
C: Dags as place graphswhere children having several parents are investigated.)

Thus we have succeeded in defining a form of link closureeddinding, which has local-
ity. Often we shall wish to combine localisation with bingdijri.e. to bind a global name by first
localising it. So the following abbreviation is useful:

B F = Bro@F .

It remains to refine the scope discipline of local bigraphsdoount for bindings. For this purpose,
for F': I — J we need only extentbclink - as follows:

def

locbind p {(prnt(v),p) : v a binding node with por}

locbindp W locy .

def

loclink p

Outward and inward binding We have defined the locality of @-binding to be its parent
place; we may thus calf anoutward bindingcontrol. But we may need nodes that bwdhin
themselves. By a simple sorting discipline, as in Section thefbook, thisnward bindingcan
be achieved by nesting a number of bindings inside an orginade. These can be ordered by
using outward binding controls such@s 1, . . . . If K has arityk and we equip &-node withh
binding controls, then we have turned tenode into an inward binding control withcual arity,
written h — k. The diagram shows the cake= 2, k = 3:

B

zyz(pg)
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The w-calculus Let us now illustrate binding in the encoding of the finiteealculus. The basic
signature differs slightly from the one used in the book toasle CCS, since we must cater for the
passage of names as data. The contrelsd’ and ‘get’, previously both with arity 1, now have
dual arities writtersend: 0 — 2 andget: 1 — 1. Thus get’ becomes an inward binding control,
yielding an inward-binding ion such gst, .

Recall that the reaction rule in thecalculus is written

(Ty.P+ A) | (x(2).Q + B) — P|{Y/2}Q .

The diagram below represents this in binding bigraphs:

alt. (send,,.[9 | ) | alt. (get

B, |B) — z|[@|y/:03,

r(z)"

Note how the meta-syntactic substitutionretalculus is encoded by a substitution which is itself
a bigraph; it substitutes a global namédor the local name: in site ;. The nesting operation
in binding bigraphs is adjusted quite simply, to ensure lihedl names remain local to the ‘nest’,
while global names are still exported from it.

Reactionrules As we see in the above rule for threcalculus, the notion of a parametric reaction
rule (R, R',n) is slightly affected by localities and binding. We consiflee questions:

e Must the parametet of a rule be discrete, as in pure bigraphs?
We have to refine the notion of discrete, as in [48]Xlis a set of names, we defiddo be
discrete for X if every name inX is linked to exactly one port id. A parameterl must
not be required to be discrete for a namigound by a node ok (as in ther-calculus rule),
sincez may be arbitrarily linked within such a node.

e Can a rule have local inner names?
As illustrated above for the-calculus, we want a rule to be able to bind names. So a redex
R will have inner name&X' W 7, with Z local andX are global; then we will typically require
a parametet for the rule to be discrete fox.

e Can a rule have local outer names?
There is some freedom. Here we make the outer namésafd R’ global, but we close
the generatedroundrules under localisation. Lét, ) be a ground rule with outer fade
and namesX; then so isx)(r, ') for anyx € X. But this localisation must allow that
andr’ differ in the locations of points linked te (because for example the rule may change
the region of a node). So, takingo be the sites of within which a point ofz is located

14



by eitherr or 7/, we definew)(r, ') £ (@, or, q, x)r'). Further research must be done to
confirm that this indeed yields all the necessary groundsrule

Rules with local names are needed in Section 3, to model amx @&dhe\-calculus whose
free names are bound in its environment.

e How are the parameter’s names exported in the formation obangl rule?
As in pure bigraphs, we define a ground redex torbe (R ® idx)od, whered is the
parameter and are its global names.

e What about a rule that copies (part of) its parameter?
Here it is essential that copying a bound link creates a namdtink, rather than one shared
between the original and the copy. A good example is theaapdin rule of ther-calculus.
There it is treated as an axiom of structural congruenge=!P | ! P. But we can also treat
it as a reaction rule, or unfolding rule (as in Seminar Note A)

Master.d < d | Master.d .

For exampled may be a program script held by tMaster node, from which copies may be
repeatedly spun off for execution. Such a script will comtadund links, so binding within
a parameter is essential. As noted earlier, name closuserdeserve this purpose.

Jensen [46] adopted a different approach in his handlingn@frtcalculus. | believe both ap-
proaches are valid; the one | adopt here stays somewhat tboeat proposed in my book.

Sortings for localisation and binding Some simple enrichments of bigraphs were studied in my
book; in particularplace sortingsn which sorts are assigned to places, &nkl sortingsin which
sorts are assigned to links and points, in each case undscigldie. It was noted that in each of
these cases there is a forgetful functor of s-categories the sorted BRS to pure bigraphs.

Birkedal, Debois and Hildebrand [14] have proposed a moremgmotion of sorting; they
define a sorting to be a functdr : A — BG(K) of s-categories which is surjective on objects and
injective when restricted to each hom&&f course, we shall often waatto be some enrichment
of bigraphs, and indeed by taki®gto be local bigraphs we obtain a sorting in this wider sense.
This also works for binding bigraphs.

The advantage of the wider canvas is that one can study tipeipies of sortings in an abstract
way. For example, under what condition does a sorfing create RPOs? That is, for an arbitrary
relative bound irA, when can one construct an RPO whose image is an RP@ (/T This was
shown possible by Jensen and Milner [48] for binding bigepyhen names have unique locality,
and is easily generalised for multiple locality. By workingthe proposed wider setting one can
find general conditions on a sorting functor under which RP&she created.

8The second condition is callddithfulnessn category theory.
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3 Encoding A-calculus

Ther-calculus employs binding, and we have seen that the engadlits reaction rule in binding
bigraphs is a rather simple reaction rule. Reaction imtoalculus is more complex in two ways.
First, it substitutes an arbitrary term for a bound variaklbile ther-calculus simply replaces a
bound name by a name. Second, reaction inttealculus may occur at an arbtrarily deep level
of binding, whereas in the-calculus it can only occur at top level; this is achievedigréphs by
making theget control passive.

The standard syntax for thecalculus is

M = x|/\xM|MN

and its reduction rule is\x M )N — { N/x} M. This, in a single step, replaces the tekfor all
occurrences af within M. The right-hand side of this rule is not a term, but denotegehm that
results from performing the substitution.

Explicit substitutions We follow the Calculus of Explicit Substitutions of Abaeli aP which |
shall call ABCL. It adopts a fourth term construction

which involves theexplicit substitutionz:=N]. They also add reduction rules allowing this sub-
stitution to propagate itself throughouif, finding each occurrence afand replacing it byV.

We shall adopt ABCL’s syntax, and its strategy of performing sbstitution separately for
each occurrence of in M. But, instead of propagating the substitution, we shallgrerfit by
‘action at a distance’, reflecting the fact that each ocecweeofz may be arbitrarily deep id/.
This strategy yields a calculus calléd,,, whose reduction rules are as follows:

(AeM)N —» M [x:=N]
({z/y}M) [z:=N] — ({N/y}M)[z:=N] whereM has a unique
free occurrence af
M [x:=N] — M whereM has no free occurrence of.

In the second rulefz/y} M distinguishes a particular occurrencewd be replaced bw. (This
occurrence may even lie within another explicit substitlj The rules together achieve the result
of the standard reduction rule. To demonstrate this reguiegeful analysis, which has indeed
been carried ouf? The calculus provides a natural challenge for modellingigrdphs, where
‘wide’ reaction rules can be defined that do indeed repreaetibn at a distance’.

Bigraphs for the \-calculus We now define a bigraphical signature foy,,. Its ions are shown
in Figure 1. The node-shapes are merely to aid the eye. Thatsig is

9Abadi, M., Cardelli, L., Curien, P-L. and Levy, J-J. (199FXplicit Substitutions. Journal of Functional Program-
ming 1(4), pp375-416.
OMilner, R., Local bigraphs and confluence: two conjectuessgnded abstract), ENTCS e0175-3, Article 4, 2007.
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- ap

app var, def,

Figure 1: Bigraphical ions fok-calculus

Kyx={lam:1—0, sub:1—0, app: 0, var: 1, def : 1}

wherevar is atomic and the others are all active. The contrais andsub are inward binding
(hence their dual arities), angp is a two-place control.

We shall now translaté\,,, terms into bigraphs ovek,. Consider\z zy; First we form
app.(var, || var,), then we localise and nest the result iam; this yieldslam,,.(x)(app.(var, || vary)).
Thus a global name must be localised before a lambda abstra&performed. This suggests that
we translate every term df,;, with free variablesX into the homset —(1, X). In fact we trans-
late into each such homset all,, terms whose free names are amongwe define inductively
the translation functiong/] x, for each finite seX of names, as follows:

[%] xwa & var, | X

DazM]x = lamgy.@)[M]xuee

[MN]x = app.([M]x || [N]x)
[M[z:=N]]x = subg,.)([M]xwe|defs.[N]x) .

In the first clause, note tha&f is used to mean the ground bigraph no nodes and outef(ade .

In the second and fourth clauses, note that we must locakseamer before embedding a global
bigraph into an ion that binds. Of course, a notational convention can be defined to avpieate
ing (x) in such terms.

Note that each term o, with free namesx has a translation-image in every homset (1, X”)
such thatX C X’. This multiplicity is harmless. Also, it’s likely that, can be submitted to sim-
ple sorting discipline:,, yield a bigraphical category &>,) that excludes all junk’ from such
homsets, i.e. the translation is surjective on each suclsabnidve leave this conjecture open; you
may find it interesting to explore. One property of the tratish is worth noting (the proof is
routine): alpha-convertibld,,,-terms have equal images.
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: var

Figure 2. Parametric reaction rul®s, for BG,

Bigraphical reaction rules for A-calculus We now add three parametric reaction ruleg to

BG(X,), forming a BRS Bs,. These rules model those 4f,,,,, and are shown in Figure 2. The
rules are named, C andD for apply, copyanddestroy Note that the index of each site in the
reactum indicates the parameter factor that should ocd¢upiere are the rules in algebraic form:

A: app.(lamy).[0, || @) — suby,.([@, |def,.0)
C: var, || def .0 — [@ || def,.[d
D:  suby.(@|def,.[) —o

RuleA can create an explicit substitution whenever\ip,terms) the operatay/ of an application
M N is aA-abstraction. Rul€ is ‘action at a distance’; note that it will always be appligithin
asub node, withz bound, so it is essential that ground reaction rules aredlaader localisation.
Rule D handles the case when there is no further occurrence of thebl@ato be substituted;
indeed, the scope discipline directly requires that, fartamolecule to be ® redex, the occupant
of its first site may contain no occurrence of the variabledsbbstituted.

Certain\-calculus reduction strategies can be easily modelled.c&biby-value, one simply
creates two rules from, in which site 1 is replaced respectively byaa-ion or avar-node. For
the lazy\-calculus, one merely makes the contemh passive.

We leave it for further research to check that Bfaithfully modelsAs,,. It is also possible
that BG,, is a special instance of a BRS whose reaction relation is cariflt&me work in this
direction has already been dorap(cit) but for a different embedding of thecalculus in which
all names were taken to be local. That treatment neededrtilinte new operations on bigraphs.
Here, in addition to the notions of localisation and bindinge have only needed to introduce the
localisation operationg, ).
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Seminar Note C: Dags as place graphs
Robin Milner, 2009

The first aim of this note is to settle on the algebraic lawsdiag place graphs, and
also to settle on a working algebraic syntax which users eatoimfortable with. I've
discussed it with Michele Sevegnani, Sgren Debois and NaFiere.

Section 1 presents the algebra for dag place graphs as arsiextef what we now
have for forest place graphs. Section 2 proposes conventamotation and dia-
grams, advocatingtratifieddiagrams in favour of the familiarestingdiagrams. Sec-
tion 3 presents an application being studied by Michele Geaei. Finally, Section 4
discusses issues raised by dag place graphs, especialgafdion rules.

1 Algebraic laws

We now propose equational laws for dag place grapHairst we assume the usual laws for the
symmetriesy; ; as in my papeAxioms for bigraphical structur€ In particulary, ;, also denoted
by swap, just interchanges two sites (or roots). The other laws &b piaper are the monoid laws
for1:0— 1 andmerge : 2— 1, as follows:

mergeo (1 ®idy) = id; (unit)
monoid :  mergeo(merge ® id;) = mergeo(id; ® merge) (associative)
mergeoy1 1 = merge (commutative)

We generalisenerge to merge,,, : m — 1 by induction onm:

def
merge, = 1
merge,,,, = mergeo(id; ® merge,,)
It is readily seen from this definition thaterge, = merge.

Now split : 1 — 2 is the dual ofmerge, and is the only extra operation we need for dags. We
add the co-monoid laws fdr: 1 — 0 andsplit:

(0®idy)osplit = idy (unit)
co-monoid : (split @ idy)osplit = (idy ® split) o split (associative)
Yi1osplit = split (commutative)

and we defineplit,, : 1 — m by induction onm:

splity, = 0
split,, £ (idy @ split,, ) o split

111 am grateful to Marcelo Fiore for pointing out what we needddition to those for forests. The proof of their
completeness needs to be confirmed, but we expect no difficuiibhat.

12MSCS 15, 2005, pp1005-1032. By an oversight the paper ainitte law in Table 1; the law i$;q 7 x =
(v1,x ®@idy)o(idf ® vsK) -
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where of course (dually) we find thaglit, = split.
The question then is: how do we relaterge and split? Marcelo drew our attention to two
further axioms formerge andsplit, usingswap for vy 1:

degeneracy: mergeo split = id;
bialgebra: split o merge = (merge®@merge)o (id;@swap®idy ) o (split@split) .

There are also three axioms involving 0 and 1:
0ol =idgy Oomerge = 0® 0 splitol =1® 1.

Fiore points out that the free symmetric monoidal categanyegated by these together with the
monoidal and co-monoidal laws is known to be the categorglations between finite ordinals.

We call a node-free place graplpkacing For current pure bigraphs, a placing m —n is
just afunctionfromm = {0,1,...,m—1}ton = {0,1,...,n—1}; this is the free interpretation
of the laws for the symmetries anderge. What is the analogous free interpretation of the extra
laws we have added? Fiore points out that it is known to coosisinaryrelations¢g C m x n.

What happens when nodes are added? More precisely, we add adgebra a generator in
the form of a single node : 1 — 1. So what then is the free interpretation of the axioms? We
strongly conjectur® that a place grapl® : m — n with nodesV consists of a binaryelation
P C (mwV) x (Vuwn) that is acyclic, i.e. ift € V and(v,v) € ¢* thenk = 0. This
perfectly matches the definition of forest place graphsepikthat the relations are functions in
that case. The composition of dag place graphs is in obvinakgy with composition on forest
place graphs.

For a place grapl¥ : m — n with nodesV/, letw € mwV andw’ € V Wn. We definew to be
child of w' if (w,w") € P. Childhood is not (necessarily) transitiveyif’ in turn is a child ofuw’
it may or may not be a child af.. Define thedescendantelation P* to be the transitive reflexive
closure of P. A sorting may impose discipline on both childhood and dedeecy, e.g. that two
distinct regions of a certain sort may not share a child, or ntd share a descendant. For example,
two rooms in a building may not share a descendant, but thgeraha mobile sensor may share
a child with a room or with the range of another sensor. As lusuarequire that reaction rules
preserve the sorting discipline.

2 Diagrams and notation

The general case in which several sites of a bigi@phay ‘share’ a component df is when we
havel : I — J andG : J— K, with J' = (n/, X) andJ = (n, X). Forn’ # n we can’t form
G o F, but we can fornG o ¢ o F' allowing parts off’ to be shared by.

In generalJ’ will be non-prime, and we may have the different regionsFogplit among
different numbers of the sites @f. In that case, we must specify the placing to be used. As
an example, consider the cage = (3,z) and.J = (4, x); for specific bigraphd” and G’ we
can represento (¢, id,) o F' by astratified diagram that makes the placiag: 3 — 4 explicit, as
follows:

3\We believe the proof is routine
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We can conveniently write as a vector of three subsetsdof= {0, 1,2, 3}:

¢:3—4={{0,1,2}, 0, {3}}.

The region) of I is shared by the sités 1 and2 of G, while the regior2 of F' is inserted only at
site3 of G. The regionl of F'is ‘closed’, and haso place! But its nodes could to be linked via
and some of its inner nodes could even be shared by the otjienseof /. In general, we might
write G o (¢, idx) o F' in programming style as

shareF by ¢ in G .

If course, we may choose not to makexplicit, and be content with a nesting diagram which
represents sharing by overlapping of nodes (or of sitesgiomg). This recalls Venn diagrams,
and for the above example it is not bad:

But there are disadvantages. First, note that certain ‘nsgio the diagram, e.g. the region shared
by theB- andC-nodes but not by aA-node, are empty. Such a fictitious region means nothing. It
would mean something if it contains a site; then, via contpwsiit may come to contain nodes.
But in a stratified diagram such ‘empty’ regions do not ariseiraly. Second, a nesting diagram
does not naturally represent how a node may share a childowélof its descendants.
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place closure The closure of places — as for the middle regiort'cibove — may seem strange to
those familiar with bigraphs. But it resembles the closurkniss in link graphs; just as the latter
makes a name inaccessible to the outside, so the former raakes or region inaccessible to the
outside. Far from causing problems, | believe place closult@dd useful expressive power.

placings that both merge and split Given the samé&’ andG and in the previous example, we
could form a shared composition via a different placing

v:3—4=1{{1,2}, {2,0}, {0,1} }.

Since these subsets are not disjointinvolved merging as well as splitting. Here is a stratified
diagram analogous to the first diagram for the preceding pl&am

Go(ih,x)o F -
A

3 Application

As an experiment in the use of dags as place graphs, Michetg8ani has modelled the 802.11
CSMAJ/CA protocol. We do not report the whole model h&reut confine ourselves to reproduc-
ing (with his permission) the diagrams for the reaction thid represents the last of the five phases

Michele Sevegnani can be contacted at michele@dcs.gl&.ac.
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of the protocol. The relevant controls avefor a wireless station ansifor the range of a station’s
signal. The latter changes its stateStowhen a station’s signal is locked onto another station. The
five phases are (1) a sender senses a channel free and beeahetortransmit an RTS (request
to receive) packet; (2) it transmits this packet, in the absef collisions; (3) the receiver replies
with a CTS (clear to send) packet; (4) the data packet is sénthé receiver acknowledges with
anACkK packet.

In the fifth and last phase the sender and receiver stop trdimgnand the locks on the channel
are dropped. The following nesting diagram depicts thissphdahe sender nameds the upper
station (M), the receiver named is the lower, and the data packet is the triangular node. The
sender discards the data packet, while the receiver hdsefumansmitted the received copy to
where it will be processed. The dropping of locks is represgthoth by the loss of a link between
the two stationsN!) and by the change of state of the signal range from lockkpit¢ unlocked

(S).

This may be written as
share F' by ¢ in G — share F' by ¢ in G .

In modelling the protocol Sevegnani gives stochastic rgges Note E) to the five rules. This
opens the way to running simulations of the protocol. Therogs algebraic presentation also
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opens the way to formal analysis of the protocol, either bget@hecking or by other mathemat-
ical means. To be tractable these methods must be mediatsaftioyare tools. Projects to design
and implement such tools are under way.

4 Discussion

link graphs with aliases We have left link graphs unchanged. But having made placehgrap
self-dual we may wish to do the same for link graphs. This omans introducingliases that is,
a link can have any number of outer names. (Already, clodiowsit to haveno outer names.)

theoretical strategy We have already conjectured what the axioms of dag bigrapisld be,
and this should be not too hard to confirm. When | considerecptiang graphs — many years ago
— there were four reasons for not then adopting them:

1. I was concerned that diagramming them was not so straigbdfd.
2. They appeared unnecessary for encoding process calculi.

3. Relative pushouts (RPOs) do not always exist in the pressrday place graphs, and they
seem essential to handling behavioural equivalence impity.

4. To discover that something is necessary, see how far yogaaithout it!

The third reason is not strong: RPOs do exist for any gaif place-sharing bigraphs in which no
two roots share a descendant and no root is idle. Thus we ndhthi behavioural equivalence is
tractable for some place-sharing BRSs.

The fourth reason was strategic. As a result, we are now antfithat some applications
demanddag place graphs, and therefore we are right to include themided that they do not
create serious difficulty.

binding bigraphs We still have to analyse the impact of dag place graphs orhtéary ofbind-
ing bigraphs, where some links (those that represent nameénlginare confined to points that lie
in a certain region.

reaction rules Recall that a parametric reaction rule with redexgenerates a ground reaction
ruler = (R ®idX) od for each parametet. A reaction rule may discard or replicate factorsipf
we have to be clear how this affects factors that share nodes.

conclusion As can be seen from above, analysis is still needed for aspéptace-sharing in bi-
graphs. For this, experimental applications are valudab&g; may influence the general definition
of dynamics.
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Seminar Note D: Linked data structures
Robin Milner, 2009

In this note we represent data bgiking, rather than bynestingas in Note A. We
begin by usinghindingas in Note B. We then show how data structures that share, e.g.
two lists sharing a terminal sublist, can be simply encoddiigraphs are enriched
with aliasesfor outer names. As an application, we consider the indegingrrays

(of arbitrary data) by natural numbers; in can be done siraply efficiently with the
numbers as linked structures.

1 Disjoint data structures

In Note A, a data constructor was a control with arity zeraj aero or more sites. For example,
for list structures we hallil : 0 — 1 andCons : 2 — 1 Here instead we define a data constructor to
be an atom with arity> 1; it has a principal port, the name of the constructed datuna, z&ro or
more subsidiary ports for linking to components.

In this section we stay close to Note A in one sense: diffedaitd structures amdisjoint, i.e.
they have no nodes in comménLet us illustrate with the case of list structures. First,dedine
Nil andCons as atomic controls with arities 1 and 3 respectively.

e A

Instead of nesting constructors, we shall connect thembvatind links. For this purpose we define
an operator to create bound links:

Fo= G Z By (F|G).
Thus the spine of a list of elements namegq, . . ., p, will be

. def - T~ nIt
List,7 = Consgp ay © Consy,pog, ®2 <+ =1 Cons,, 1y o, “ Nily,

which is pictured thus, using a small circle to representunidink:
x
\ Pb1 P2 Pny

m ------- C ons j Ni

5In Section 2 we shall show how to model data structures trarestiements.
16Binding requires thaf” andG have no global inner names. The usage here will obey thisitond
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The closure of names,, ..., z,, prevents two lists sharing a terminal sublist. This effsanalo-
gous to the effect of nesting the constructors, as in Noté A.

We are now ready for seeds. In this treatment of data a pariardees not nest its parameters,
but has bound links to them. So the seed for concatenatioatjg., with principal portz, where
y andz link to the two arguments. There are three germination rules

Catyy, ¥ Consy,y —  Consgy, @ Catyy,
Catl"yz vz (Nlly ’ Conszpz’) — Consxpzl
Catyy.¥* (Nil, [ Nil,) — Nil, .

They are pictured as follows:

/
o p.Y.a. P Yy..2
i Cat Cons {  Cons Cat
L poA
| -
Cat Nil Cons :
x
L
Cat NI Nil |

Just as in the germination rules of Note A for nested datatoaetsrs, operations defined in
this way destroy their arguments. We therefore need th&yafol a calculation to make copies
of data values, perhaps from remote locations, in order &vaip upon them. So we imagine that
these copiable values are stored within an inward-bindorgrol. Recall the controlgetch and
Val with rank 1 and arity O, at the end of Section 2 in Note A. Heregne Fetch rank O and
arity 2, and we givé/al rank 1 and arityl — 1 (see Note B for binding arities); then we define a
germination rule:

Fetch,, || Valy).[@, — (¥/200,) || Val,,.[9, .

This is close to the reaction rule in Note A. However, it diffén that theVal-node and its stored
value are still present after the germination. The ruleed#fffrom previous germination rules
because its ‘seed’ is non-prime.

Of course, similar but simpler rules work for the natural m@ms, with constructorgero and
Succ with arities 1 and 2. We strongly conjecture that such geatiom rules generate an unfolding

In a later section we shall show hadiasing of outer names permits shared substructures.
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relation with the essential property that it is confluent eespects reaction. But a rigorous proof
has not been given. Note that in the case offifteh—Val rule the proof must rest strongly on the
fact that the stored value is preserved by reaction.

2 Contextual rules

In the final germination rule of the previous section, inwdyFetch, the redex and reactum share
aVal component. We would like to write it as

This is a special case of@ntextualreaction rule (in this case germination rule), as proposed a
the end of Section 11.1 of my book. It adds no power to rulesessuch a rule can also be written
out with the context on both sides. But it distinguishes the pha redex that changes from the
part which is just a required context for the change. In tlagipular case we have chosen the
symbol ‘||-’, since the context is a parallel product; when it is a primedpict we shall use|-'.
Contextual germination rules will occur often in the followisections.

It is important theoretically to make a rule’s context egjplibecause the proof that unfolding is
confluent and respects reaction will depend crucially orfalbethat a context persists unchanged
through a reaction.

3 Shared structures

McCarthy’s Lisp was a ground-breaking advance in non-numerical progragumirhose who
have used Lspwill not be satisfied with the non-shared lists of the pregisaction. We proposed
non-shared structures partly because they are closelggmas to the nested ones of Note A, and
partly because sharing — at least in an elegant form — seedemandaliasing of names, which
allows a link to have any finite number of outer names.

By the way, aliasing in link graphs is the analogue of dags asepfjraphs; see Note C. Just as
a link with outer name: may also have outer naméas analias, so a node in a place may also
have another place’ as aralibi.

We shall not develop the theory of aliases hérbut will state their obvious properties and
constructions as we need them. To begin with, the quintéssahas is writtenc=y, and all other
aliasing — such as aft-node with two outer names, can be derived by parallel or @pmoducts,
e.g.A, |z=y:

1850me of it was done in an early tech report on bigraphs. Lateses were excluded because they were were
not needed for encoding many process calculi, and theyitalghe theorem that RPOs (whialereneeded) always
exist in bigraphs. But from a more modern perspective they tana out to be valuable. In any case, bigraphs without
alibis and/or without aliases can be represented by a dpemiing, and in general we expect the theories of sorted
BRSs to refine, or strengthen, the unsorted theory.
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Now let us reconsider linked lists. We take the same constrsiNil andCons, but we connect
them differently. The reason is that, even if tons-nodes are connected by a link that is not
open, the link may later be opened in order that a user canagaiess to it and thereby share a
terminal sublist. It is therefore pointless for the link te lbound instead, we shall justloseit.
Indeed, with aliasing it is accurate to think of a closurenot as closing a link, but as removing
the namer from it; if x has aliases then the link is still open, but with one name fewe

To represent a structure (e.g. a list) with closed but nonddinks, we define an operator
analogous td v~ G:

For=G = fefy--- (F|G).

Thus the spine of a list of elements nameg, . . ., p, now becomes
Lists = Consyp,y, 7 CONSypyy, 7 -+ Tt Consy, 7 Nil

Y
\P1 \P2 \Pn

\
\ AN \ "
Cons E;Q/ ------- tons j Ni :

Note that there is no little circle on the closed links. Wheistis$ first created, probably all its
links except the first will be closed, as here. But sharing cae as the result of operations.

We now give germination rules for concatenation, in whiahfihst list is copied but the second
is shared by the result. We give the rules first in non-contaXorm.

Catyy. | Cons,,, —  Cons,,, | Cons,y,r ' Catyry,
Catyy, | Nil, — z=z|Nil, .

1

Loy A % o
e yy by 2 \C’)\\/
: ’ Cat

Cons

. i Y ) . . W 1 o .
Cat Nil - w
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This definition raises many interesting points:

In both redexes, the link from Cat to an element of the first list is an open link, allowing
for the possibility that the list — or its terminal sublistsnay be shared.

The first rule copies the first list, element by element, aredrtew copy has closed links
(which may become shared after further use). On the otheai,lthe second rule merely
creates a link from the end of the first list to the start of theosid. The aliasing=x is
useful for this purpose, though it can be avoided by copyimegstecond list, as we did for
lists with bound links.

So far, we have not excluded multiple links fromiens element to different ensuing sublists.
But this would make the concatenation non-deterministic.efisure that these links are
unique, we impose a simple sorting to ensure that each suchdntains at most one target
port, where dargetis the left-hand port of &ons or Nil.

From the point of view of Lsp all we have done is to capture what goes ompume L ISP,
where there are nplaca andrplacd operations for assigning a new head or tail to a list
cell. But for exampleplaca is simple; it is only necessary to re-connect a ceHlgk.

It is revealing to see the text and diagrams for the above inleontextual form:

Finally, there are alternative contextual rules usiflg”instead of *
yield list structures that are straddled across many ragiaut that seems to create no difficulty.

Consy,, |- Catyy, — Consxpx/7(:atx/y/z
Nil, |- Catyy, — z=x.
/ /
vy ks Y, 2 ol Yyly
gL oo/
Cons Cat i Cons Cat

ot By,
-
i Cat

—’. Such ‘wide’ rules can

Indexing

A simple shareable linked structure is the natural numb¥®fs.wish to consider a calculational
BRS in which there is aniquesuch structure, and in which natural numbers, especiablyeused
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for indexing, can be represented simply by links into thigque structure. We leave aside the
question of whether such a BRS can be defined as a sorting; bitaNesal with unfolding rules
that preserve this unicity as an invariant.

So, analogous to the definition Béro andSucc from Note A, let us redefine them as construc-
tors with arities 1 and 2, ansb as a seed with arity 1. Then define

— def
00, — Succ,, ¥ 0o, , Nat, = Zero, | 0o, .

Nat, looks like this, with all its links closed except one:

Il‘

oo

i Zero ucc Succ

Our unfolding rules will work with a unique such structureoiMover, the rules will preserve as an
invariant that the only instances Béro andSucc are within this unique structure. However, they
will allow aliases to be created for closed links, thus opgrthem. For example, this can be done
by the seed (not constructd¥ext,,, with the germination rule

Succy, |- Next,, — =z .

which may be pictured thus:

This does what would be written in a programming languagéasassignments := x + 1”.

It is convenient to introduce a special infinite class of ngntikenumerals0,1,2,.... We then
insist that we work with a unique structuNat, for the natural numbers, whose links have been
opened by unfoldindNext, g || Succy ., thenNext,; || Succ; . and so on, as far as needed. The
numerals must be subject to a special discipline, to en$attethieir links into the structurlat,
remain fixed. We omit details of this discipline; it will besisted by a sorting (as already proposed
for linked lists) but it remains to be seen whether the emwliseipline can be expressed as a sorting.

The reader may enjoy defining simple functions of natural Iners as seeds. For example
Plus, 2 3, linked intoNat, by the numerals 2 and 3, should create the alias. The germination
rules for such functions are quite simple, especially fasthwho know primitive recursive arith-
metic, but care is needed to treat the case in which two naredsmked to the samBucc-node.

We now turn to arrays. The cells of an array will be indexedh®y iumerals. We introduce
atomic controlsArr : 3 andCell : 3. An array of sizen, with namea and elements of arbitrary
sort s, will be represented byrr,,,,, wherea is its name,n its size andy is linked ton cells
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Celly1p,, - . ., Cell,,,,, Wwhere eaclp; has sors and names an array element. Thus the array structure
IS
Altany ¥ (Cellyip, | - -+ [ (Cellynp, )

which can be pictured thus:

oL 2 p2 0 o

Cel

What reaction rules are needed for arrays? First, one mugilbéaassign a new element to
any cell. This is a state-changing operation, and therefa@nnot be treated as an unfolding. It
is easy enough to define a reaction rule for a cortssign : 3, so that the atomssign,,,,,, assigns
the namey of a new datum to then'" cell of an array named. We shall ignore this rule, and
focus on germination rules that do not change the state af datl are therefore likely to yield an
unfolding relation that is confluent and respects reaction.

The first such rule is for fetching an array element. For thigopse we introduce the atomic
seedFetch : 3, with germination rule

Artony | Cellyy, |- Fetchgpg — q=p;

thusFetch,,,, makes the namean alias for then'™ element in the array named

More ambitiously, suppose that we wish to iterate a binamgrajor over the elements of an
array. We represent it as a se@g : 3, such thaOp,,,, applies the operator to values (namgd)
andq and names the result'® We suppose that the array elements — of whatever sort — dte bui
by constructors, and that there are germination rule®foover these constructors. We need not
detail these rules; we shall merely define how to itef@beover the array structure, unfolding it
into a structure 0Dp-nodes, which will cause further unfolding when the arraydure is linked
to its elements.

We introduce two seedserop : 3 andAppop : 4 that respectively iterat®p over an array and
apply it to each individual element:

e Given an array named, the seedterop,,,, initiates the iteration with a starting valyeand
delivers the final result at

e Given an array of size linked aty to its elements, the seépop,,,,,, appliesOp to each
elementp and accumulated valug delivering the result at. It usesn to terminate.

Here are the germination rules:

Arr‘l”y ||_ lteroparq - AppopyrqO
Arrany H_ Appopyrqn — =q o
(Arrany | Cellyynp) [ SucChmm  [= APPOPygm > APPOP, qm T OPypq -

®We assume the operator to be associative and commutatweirad the order of iteration to be freely chosen.
20ysing binding, one can define generic sekdsandApp that are parametric i@p; we ignore the details.
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It is worth drawing a picture of third rule, which does all therk:

I, N (R4

Arr Cell Succ AppoD

Note two things especially. First, the unfolding Aspop is unambiguous, since the its two rules
cannot both apply to a given occurrence; fomif= n then there can be no cell of the given array
that is linked tom. Second, the rules work properly even when the data nameddy. . are
themselves natural numbers, iigq, ... are links intoNat,. In this caseOp could bePlus for
example, and we are summing an array of natural numbers.

5 Conclusion

This seminar, representing data by linking, is more conjattthan Note A — especially in Sec-
tion 4 where the data structures can be shared. This is getiguse aliasing of outer names is
used, though this was indeed studied in an early technipalt®&y me, and omitted in later work
because RPOs do not always exist in the presence of aliésing.

Another reason is that it is unclear whether the disciplimeshared data structures can be
fully expressed as a sorting; it should be not hard to sdttkeguestion. Finally, work is needed
to establish that the unfolding relation induced by the nameenturous germination rules of this
seminar is indeed confluent and respects reaction. | syyaegbmmend this as a challenging
project, perhaps for PhD study; it will greatly clarify thercept of a calculational BRS.

21Bigraphical reactive systems: basic thedrgchnical Report 523, University of Cambridge Computdsdratory,
2001. There are sufficient conditions for RPOs to exist, &iede are satisfied by the encodings of process calculi, so
there is no strong reason to preclude aliases; only thahtwy is a little harder in their presence.
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Seminar Note E: Measuring space and time
Robin Milner, 2009

In this note we look first, in Section 1, at how superpose s&tespace on our regions,
which are hitherto only structured by containment and cjuty.

Next, in Section 2 we introduce stochastic behaviour, incwta non-deterministic
BRS is refined into one whose reactions have exponential tatesadmitting proba-
bilistic analysis and simulation.

Finally, in Section 3 we look at time and clocks. We also sstipew to approximate
differential equations, whose independent variable ig tiny difference equations that
step time by a (small) non-zero amount, and how such equsatiam control reaction.

1 Measured regions

Consider situations in which we need to measure physicalitpcaven when a bigraphical region
models a part of physical space, it may be concrete or absttas concrete if it is a room, or a
biological cell. It is abstract if it is an imaginary divisiof a physical space; for example, it may
be the work space or the attention space of an individual iwgrik a room, or it may be the range
of a wireless station (as in Note C), or it may be a terrestégian defined only by the nature of
the terrain — e.g. forest, mountains, desert or pastuire either case some behaviour may depend
on details of cartesian space, other behaviour only on conent or contiguity, and some on both
together.

So let us see how to superpose cartesian space on a bigrapbreoexactly on a given region —
alocale. LetPoint : 3 be a binary constructor of numerals, so thaint,,, gives the name to the
point(z,y) in discrete 2-D cartesian space. We supposextlaaidy point into the shared structure
Nat, of natural numbers from Note D. Supposing that tleale contains a set of neighbouring
points, we draw it like this:

where we have detailed just one point. The points are archage grid, to suggest that they are
indeed neighbours in cartesian space. So this is just anamdbigraph.

22The latter idea comes from the paper by Steve Benéoral, sl Life on the Edge: Supporting Collaboration in
Location-based Experiences, CHI 2005, Portland, USA, fp730.
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As an example, suppose we want a reaction rule for an everrettpaires two agents to be not
only in the same locale, but close enough to each other. | lead@enford’s Savannah game (see
the cited paper), in which children pretend to be lions. kiomam the savannah, considered to be
divided into locales. The lions are hunting for prey. A liomyrsight a deer that is not only in the
same locale but also near enough together, say within andestaf 50 metres.

So we need a reaction rule that is subject to a calculableiboman its redex. This seems to
demand a refined form of reaction rule. Let us formulate whaeeded in this special case, to get
a better idea of what kind of refinement is needed in general.

Begin with a crude reaction rule that allows a lion to sight dagr in the same locale:

Lion, | Deer,, — Lionalert,,® Deerseen,y, .

a/

Lionalert
: Deerseen

The new closed link represents the sighting. But we want toedhis so that it can only happen
if the pointsa anda’ are near. We therefore define a contextual germination rule

Point,, | Point,,,, |[— Near,, < Less, 507 Dist,yy.ry -

together with germination rules f@ist andLess. we omit them, but they are easily defined; one
calculates the distance between two points, and the otlmepaees two arbitrary numbers. Then

we refine the crude reaction rule into a conditional reactide, as defined at the end of Note A,

by adding as the conditioR the predicate expression

Pointaxy ’ Pointa/x/y/ ’ Near,,

which must unfold tdlrue to enable the reaction.

We could have defined two separate reaction rules, one taaeahe predicate and the other
to enact the sighting. But then there would be no guaranté@thar reactions — perhaps the deer
moving out of range — would not intervene between the enacidhese two rules.

Let us briefly consider abstract notions such as the attespace of a person, or the range of a
radio transmitter or sensor. Such a region can naturally ddefted as a set of cartesian points, or
as a node that contains such a set. Then if we adopt sharedisegi.e. dags as place graphs —as
in Note C, we can expect to model the overlapping attentionespaf two people (allowing them
to interact), or the overlapping ranges of sensors by treeafid motorway. We can also attempt to
model the movement of a person’s attention space as she rniweegh a crowd of people, or the
movement of a car from one sensor range to another as it$ramehe motorway. It is challenging
to model this kind of mobility in a BRS equipped with a calcutatl sub-BRS.
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2 Stochastic behaviour

Jane HillstoR® pioneered the attribution of stochastic rates to the ttimmsi of a process calculus;
this led to the PEPA toolkit for performance analysis andusation. Later Corrado Priarffi
extended this work to the-calculus. Inspired by these advances, and by the challengpply
bigraphs to biological behaviour, Jean Krivine, Angeloimeoand | have developed a generic
stochastic treatment for bigrapfss.

Our approach differs in one sense. Behaviour in CCSrandlculus is expressed directly in
the form of labelled transitions, while basic behaviour igiraphs consists of reaction rules, which
are essentiallynlabelledtransitions. We thereforéefinestochastic rates only for reaction rules;
then the rates of labelled transitions candgyived as we shall see.

We begin by assigning to every reaction rRle- (R, R',n) arate p > 0, yielding the rule

R= (Ra Rla 7, p)

where the significance of is that, if applicable, the rule will be delayed by at leastdit with
probability e~**; a Poisson distribution. Thus rules with high rate are mikedyl to occur earlier.
The infinite ratep = oo means immediate occurrence, but if two applicable rules Ina#inite rate
then it is undetermined which will occur first (thus possiphecluding the other).

The Poisson distribution of delay is that it is ‘memoryledsiat is, if a rule with ratep is
delayed by any time, but remains applicable, then its ddiayetafter will also have a Poisson
distribution with ratep. This leads to tractable simulation and analysis usinge§lie’s method®

Given the ratex for a ruleR, we derive a rate

rater|g, g'] = pr - countg[g, ¢

for the reactiony — ¢, wherecountg|g, ¢’| is the number of distinct occurrences of the redex

in g that give rise to the reactiop— ¢’ via the ruleR. This is not entirely trivial. To get the right
count we first fix a concretion @f, i.e. an assignment of support elements to its nodes anggedge
then we count only the occurrences®fin ¢ whose supports are different, limiting our count to
those that indeed deliver the resglt Then, given a seR of rules, the rate of —» ¢’ is defined as

raterlg, ¢'] = Srerrater|g, 9]

and, denoting this rate lyy, we writeg—, ¢'.

We now turn to labelled transitions. In bigraphs these taleeforma - a’, where there is
an underlying reaction rul®& = (R, R',n, pr) Which generates a ground reaction rule— 7’
satisfying the commuting diagram

Z3A Compositional Approach to Performance Modelli@ambridge University Press, 1996.
24The stochastia -calculus the Computer Journal 38(6), 1995, pp578-589.

25Stochastic bigraph&lectronic Notes in Computer Science, 2008, pp73-96.

26\We need assume no familiarity with this method.
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where some concretion of the square is an idem-pushout ([H@) we derive a rate
rateg[a, L,a'] < pg - countg[a, L, d']

where, as for a reactiop—- ¢, we fix a concretion of. o and we count its distinct occurrences
of the parametric redex, limiting the count to those that indeed deliver the resll= Dor’.
Then, given a seR of rules, the rate of —» o’ is defined as

ratera, L, a'] £ Yrerrater|a, L, d']

and then, denoting this rate bywe writea £+, a’.

This treatment of rates is reported in the paper (cited gbawtd Krivine and Troina. In
particular the paper shows, by a simple sanity check, howetes derived for labelled transitions
are consistent with those assigned to reaction rules. Anatimple check is that a transition
a9+ o’ with identity label, which corresponds to the reactior— o/, does indeed receive the
same rate as the reaction.

There appears to be a disparity with Hillston’s original kwor which the rates of transitions
labelled (say): may be freely varied by the user from instance to instance ekample, in CCS
one can assign a rageto anz-transition by writing the alternation

(QT,p)P—F )

and in another alternation arnlabelled transition can be assigned a different yateHere, by
contrast, it may appear that the rate is fully determinechieyunderlying reaction rule.

However, variation is possible. Recall that one factor inrtte of a reaction or transition is the
number of distinct redex occurrences that yield it. So, twaase the rate of the abavdransition
by a factor of 100, one need only include 100 copies of it inalernation; and to save writing a
long expression one can write

(,100).P + --- |

where 100 is no longer a rate, but a multiplier for the ratehef ainderlying reaction rule. One
may object that this multiplier can only be a natural numBett it is relative rates that matter, not
absolute rates, so a process description using rationadbersas rating multipliers can be exactly
mimicked by using natural numbers instead.

Are there interesting stochastic variants of the behawiotongruences, such as bisimilarity?
First, without considering stochastics, one can limit tedviour of a bigraphical agentto the
transitions based upon any sub%etof the reaction rules. In this generalisation, a process is
essentially a pair which we may writd’R. There is an obvious definition of bisimilarity between
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such constrained processes, and itis easily shown to begaumorce — in the sense thdiR ~ b[S
implies(C'oa)[R ~ (Cob)|S for any contexC.

It is then an easy step to refine this congruence by stockastar example, the rule$ may
have on the whole higher rates than thos®irand this may then yield a precongruencewhere
alR < b]S means that everiR-based transition af is matched by a faste&f-based transition of
b, and every transition in the latter class is matched by ael@me in the former. So stochastics
may lead to a richer generic theory of bigraphical behaviour

3 Measured time

Many applications will need either a global clock, or clodésal to particular regions, or both.
Here, we briefly explore how stochastic rates yield a possilaly to handle global time.

Let us adopt the shareable natural numbers of Section 3 & DofThis assumed aliasing, for
convenience, but there are alternative treatments thad aliasing). Assume the discipline that
there is a distinguished global nam#or time, pointing into the unique structuNat,. Introduce
the contextual reaction rule

Succyy |- t=r —> t=y

which we can calticking. It may be drawn as follows:

This looks like the germination rule fdtext in Section 3. But it i;nota germination rule; indeed,
it has no seed! It is a change of state — an advance of the clock.

We need some way to relate the use of other rules to the clomkexample, we would like
ticking to trigger certain rules, ensuring that they areli@dpmmediately, before the next clock
advance. A simple way to achieve this is to use stochasesrdtet us give ticking a finite non-
zero rate, say 1. Rules that should be triggered by ticking lmeigiven infinite rate; so they will
be applied on every tick provided that they can be matched.

In this way, we can approximate ODEs (ordinary differenéiguations) whose independent
variable is the time. One way is to represent the dependent variables, and e#obiiodierivatives
occurring in the equations, by a family of controls indexgdtlre real numbers. The rules that
model the ODEs will step each such control by a small incréamehere it is assumed that each
tick means that time is stepped by such an incremeBly giving these ODE rules infinite rates,
we ensure that each variable and derivative is stepped oy gvle

Certain values of the variables and their derivatives can beeused to trigger events, repre-
sented by rules whose rates may or may not be infinite. For gbeaifrsuch a value is a boundary
condition, then it may cause a new set of ODEs to replace therws.

We will take this no further here. Clearly it is an importargearch project to evolve a standard
way to represent ODEs in bigraphs, and thereby ease thesegptadion hybrid systems. In doing
this we must exploit the wide research literature that exXt hybrid systems.
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Seminar Note F: Categories and motion
Robin Milner, 2009

In this seminar we begin by outlining how bigraphical themyrganised by a vari-
ety of categories, and especially by means of the functonsds:n them. My book
explains this organisation in detail, but it is helpful tovsuarise it here.

These categories only organise the static theory: the fingravithout their reactions.
So we go on to recall how reaction rules are added, to yielthplgcal reactive sys-
tems (BRSs). The book explains this, but stops short of aslomgthe static functor
between two BRSs may be enriched to relate their dynamics. eTisemore than
one answer; each answer yields a cated®R6S whose objects are BRSs, and whose
arrows are dynamically-enriched functors between them.

We end by posing a question for research: How do we formuleartodularity of
BRSs, explaining how to assemble a BRS from sub-BRSs whose sigsatiay be
partly shared? Does the categorical structure help here?

1 S-categories

Let us recall some of the basic categorical notions of bigsaplhese details need not be fully
understood for what follows, but they justify some of theigegiecisions taken for bigraphs.

First, asymmetric partial monoidalspn) category is a standard kind of category except for
one thing: it is onlypartially monoidal. This partiality derives from the choice to draw tltames
in a bigraph from an infinite alphabét, rather than to represent them more abstractly by finite
ordinals. The choice is a pragmatic one; it enables a usardily treatment of linkage in bigraphs,
including a direct derivation of the parallel compositiamtbinators that are familiar from process
calculi.

In turn, ans-categoryis just an spm category, except for one thing: given arréws/ — .J
andG : J — K, the compositiorG o F' : [ — K exists only if  andG have disjointsupport sets
this disjointness is also required for a monoidal prodiict G to be defined. A support set is a
finite set associated with each arréw I — J. A familiar example of support is in ordinary graph
theory, distinguishing a concrete from an abstract grapdret a concrete graph has the identities
{v1,...,v,} of nodes as its support, and to combine two graphs we typicduire their node-sets
to be disjoint. An abstract graph is an equivalence classgpéphs that differ only by a bijection
of supports.

Similarly a concrete bigraph has support consisting ofatdas and edges, while an abstract bi-
graph is a support-equivalence class of concrete ones. cidmesete bigraphs form an s-category,
while abstract ones — being support-equivalence classasnefete ones — form an spm category,
which is a just an s-category whose support sets are emptytively, support plays for bigraphs
the role thatabelling plays in theA-calculus; it is useful for distinguishing or counting thecur-
rencesof an entity.
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2 Wide s-categories of bigraphs

Each kind of bigraphs forms an s-category; some kinds haygyesapport, so are spm categories.
This section is concerned only with how s-categories oggattie static structure of bigraphs, not
their dynamics. At the end of the section we see what a ‘widmtegory is, and the central role
that it plays.

The kinds can be arranged in a diagram showing the functaveelea them; we shall explain
the role played by each functor.

WIDE S-CATEGORIES:

forget forget
sorting signature
‘BG(K, D) —= BG(K) ——= 'BG
Hinas = signatureC
forget SOriNg== 1 gisciplineD
support

BG(K,D) —— BG(K) ——= BG

\{jGCt
realise .
projec width

PG ———= NAT

BG(K',D') ——= Bo(K') LG

Let us begin with B(K), in the middle of the diagram. This is the spm category ofrals
bigraphs over a signature, which is a set of controls, eath itg arity. Each node is assigned a
controlK, whose arity determines the number and order of its porterélts an obvious forgetful
functor that forgets the signature; its target B just bigraphs whose nodes lack controls. Much
theory is done first in B; it is then less cluttered, and is preserved by retrofittivegdontrols.

Since a bigraph is a combination of a place graph and a linglhgrthere are two obvious
functors projecting each bigraph onto these two constituemhis allows some theory of place
graphs and link graphs to be done separately, then combinater we shall discuss the width
functor to NaT.

Moving to the left, asorting > consists of a signaturE together with adiscipline D that
constrains the bigraphs ovér that are admissible. This enriched and constrained categor
denoted by B(X), whereX = (K, D). Hitherto, almost every application of bigraphs has inedlv
a sorting. For example, in the simple case of CCS, the saxijngequires that the nesting of nodes
should interleaveend- andget-nodes withalt-nodes. In a built environment, say a building, one
would naturally require no room to contain another room ouidding.

It is not fully settled what the general definition of a sogtid = (X, D) should be, beyond
requiring that there be a forgetful functor froneB:) to BG(K) for some/C. But Birkedal, Debois
and Hildebrandt have proposed that it consist of any functor that is bothestije on objects and
faithful (i.e. injective on each homset). This definitiorslihe merit that it allowbinding bigraphs

27Sortings for reactive systeria Proc. CONCUR'’06, Lecture Notes in Computer Science 42006, pp248—262.
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(see Note B) to be expressed as a sorting. The spirit of theititafins that, while it determines
only the target of this functor to be a bigraphical categtitg,source category is less determined —
it may be any wide spm category.

Consider now the bottom row of the diagram. Bigraphs may be ts@dodel a system at
different levels of detail. This recalls homomorphismsligklras, in which an algebré s refined
to an algebrad’ by realising each single operator df by a compound operation built from the
operators ofd’. Here, then, we would represent edtiion of BG(X) by a compound bigraph in
BG(EI).ZB

We now come to the top row. Hitherto we have dealt with abstrgaphs, wehere we choose
not to identify different ‘occurrences’ of the same contfolHowever, there are situations in which
we may wish to do so. The first such situation was in derivirdgelied transitions for an agent.
This derivation depends critically on identifying nodesotdexR that occur in an agent so that
the derived labeL of a transitionn £+ o’ may be constructed from the other nodesRofAnother
need for node identity arises when we wish to ask “hmanyways does a redek occur in a
given bigraph?”. This has been crucial in defining the stetibaate of a reaction, as explained in
Note C.

There is one final feature of our diagram to be explained: dheeaf NAT, the category of finite
ordinals and maps between them. Recall that each finite drdina the set of its predecessors,
i.,e.m = {0,1,...,m—1}; also recall that the objects inGPare finite ordinals. The functor
width : PG — NAT is defined as the identity on objects, while for any place gr&p m — n we
takewidth(P) to be the mapoot : m — n, whereroot(:) € n is the unique root (region) o that
contains the siteé € m.

Such a functor, then, is possessed by all bigraphical cagsgim our diagram; this is why we
call themwide s-categories. Indeed an s-categorgédinedto be wide just when it is equipped
with a functor to MT. This functor is vital to the enrichment of s-categorieswitaction rules,
as we see in the next section.

3 Wide reactive systems (WRSS)

We now embark on an overview of the dynamics of bigraphs. stthened out that much of bi-
graphical theory, static and dynamic, is best done at the meneral level of s-categories. Having
outlined how some of the static theory can be organised swhaly, we now look at organising the
dynamic theory.

In Definition 7.1 of the book, aeactive systerfRS) is defined as an s-category equipped with
reaction rules of the forntr, '), redexandreactum?® Such a set of rules generates a reaction
relation —> between agents;,—-> o’ means that some occurrence of a red@xa is replaced by
the corresponding reacturhto yield a’.

Then in Definition 7.2 avidereactive system (WRS) is defined as an RS equipped with a so-
calledwidth functor to NaT, and a way to use this functor to determimkerewithin an agent: a

28|ons typically have rank 1, i.e. a single site, but a sortiag give them any rank.
29some detail is suppressed here, especially how these reletoaed under support equivalence.
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reaction rule is applied to yield a reactian—-a’. The first importance of this has been to ensure
that, at the general level of WRSs, bisimilarity and other behaal equivalences are congruential.
The short proof of this theoreihis one of the deeper results in bigraphical theory.

Here we focus upon a different aspect of dynamics: How may nveele the static functor
between two WRSs into a morphism that imposes a conditionnieguheir reaction relations to
be compatible? This would yield a category of WRSs whose arevev$hese morphisms.

Let (A, R) be a WRS having consisting of a wide s-categdrgquipped with reaction rules
R). Let (B, S) be another such, with a functét : A — B. Each WRS then has a reaction relation
——> over its agents. A natural compatibility condition, to ehriF into a morphism of WRSs, is
to require

CONDITION 1 : a—v>a’ implies Fa— Fa' .

This will clearly be satisfied itS = {(Fr,Fr’) | (r,7') € R}. Condition 1 is preserved by
composition of functors, so it could be taken as the definitd morphisms in a category of
WRSs. But it is too weak to be of much use. For example we mighttatfigy the functors that
forget sorting discipline or signature, or for the two patjen functors; but then the converse of
Condition 1 is far from holding, so we are not likely to gainigig into the dynamics of the source
WRS in each case.

We could indeed strengthen our condition to require the esa:

a—>a’ implies Fa—> Fad' ;

CONDITION 2 { Fa—->0b"implies that, for some’, a —>a’ andt’ = Fa' .

Interestingly enough, this is satisfied by the forgetfuldiani/ : ‘BG(X) — BG(X), provided that
the rulesR’ in the concrete BRSBG(X, R') are taken to be all concretions of the rufesn the
abstract BRS B(X, R). This plays an important role in the proof that bisimilaiigya congruence
for abstract BRSs.

Now consider realisations of one BRS by another. Met BG(X,, R) andB = BG(%;, S)
be BRSs for which there is a realisation func#r. BG(X 4) — BG(Xz). What condition would
we like to impose in the two reaction relations, for the r&ation to be useful in practice? We
suppose that it takes many reactiongsitio realise a single reaction id; but for any agent in
A we also want every reaction &fa in B to be a step towards realising a reactiomah 4 . We
may therefore adopt

a—>a’ impliesFa—*Fa';

CONDITION 3 { Fa—> 1V implies that, for some’, a —»a' andt/ —*Fa' .

It is easy to check (and well-known in other contexts) that tiondition is preserved by the com-
position of morphisms.

Since condition 2 is stronger than condition 3, we may novser the categorVVRS of both
concrete and abstract WRSs, with realising morphisms setgsfyondition 3. As a sub-category,
it has a candidate for our proposed categoR.S

30worked out with Jamey Leifer
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But is Condition 3 strong enough? Intuitively, it says that &éinst reaction of the agenta
in B canbe extended to a sequence of reactions that realises sogte sactionn —a’ in A.
But it still allows that subsequent reactions3n after the first,can divergefrom that sequence,
preventing its completion.

We leave open the problem of strengthening Condition 3. Alampiroblem may have been
solved in another context, and indeed there appears to be than one solution. A solution
may already exist in TeReSe, the definitive text on rewritipgtems! A good solution will be
important for modelling complex systems at different levet detail, each level realised by the
one below.

4 Modularity of BRSs

Realisations are one way to relate BRSs to each other; assgrBftifs from sub-BRSs is a very
different concern. In Notes A and D we have discussed emhgddilculation (itself a BRS) in
another BRS, and research at ITU Denmark has explored othesfof assembly. | do not yet
have more to say on this, but | regard it as an essential idsegpic if we are going to modularise
large applications — and a large application will be uniigddle unless it is indeed assembled from
modules, in a way that allows analysis of the whole to be lomlanalysis of the parts.

So it is to be hoped that some forms of assembly can be modeitath the category3RS
that we have discussed here.

31TeReSe (JW Klot al), Term Rewriting Systemsambridge Tracts in Theoretical Computer Science 55, Cam-
bridge University Press, 2003.
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