
Lecture notes on

Bigraphs: a Model for Mobile Agents

Robin Milner, November 2008

These notes are designed to be read in conjunction with the slides for six Lectures on bigraphs,
with the above title. They aim to be useful for people teaching the subject to themselves or to
others. The notes are numbered compatibly with the slides.

The Lectures are based on my bookThe Space and Motion of Communicating Agents, to
be published by Cambridge University Press early in 2009 . They treat thetopics in a different
order, dictated by intuitions. The slides and notes can be studied without the book, but contain
copious references to it (in footnotes, in order not to break the flow).

1

2

Introduction

Computing is transforming our environment. Indeed,
the term ‘computing’ describes this transformation
too narrowly, since traditionally it means little more
than ‘calculation’. Nowadays, artifacts that both cal-
culate and communicate pervade our lives. It is better
to describe this combination as ‘informatics’, which
covers both the passive stuff (numbers, documents,
. . .) with which we compute, and also the activ-
ity of informing, or interacting, or communicating.
The term ‘ubiquitous computing’ is used for a sys-
tem with a population of interactive agents that man-
age some aspect of our environment.

These communicating artifacts will be everywhere.
They will control driverless motorway traffic via sen-
sors and effectors at the roadside and in vehicles;
they will monitor and treat our health via devices
installed in the human body and software in hospi-
tals. The vision of ubiquitous computing is becom-
ing real.

This realisation will make informatic behaviour
into just one of the kinds of phenomena that impinge
upon us, from a world in which we may no longer
easily distinguish the natural from the artificial. Other
kinds are physical, chemical, meteorological, biolog-
ical, . . . , and we have good understanding of them,
thanks to an evolved scientific culture. But under-
standing still has to evolve for the behaviour of a pop-
ulation of informatic entities; we do not know how to
dictate the appropriate concepts and principles once
and for all, however well we understand the individ-
ual artifacts that make up the population.

These lectures do not aim to identify all the con-
cepts involved in building models that will help ev-
eryone to understand the behaviour of ubiquitous sys-
tems. But the goal to understand them is just as com-
pelling as the goal to understand (say) biological sys-
tems. The term ‘everyone’ here includes not only the
informaticians who build such systems, but also the
users embedded in them.

In these lectures I try to lay the basis for such
conceptual understanding. It involves a low-level model
for the structure and dynamics of such systems. This
low level is utterly different from the low level at
which we understand sequential computing. Typi-

cally a ubiquitous system, such as a body-area net-
work that monitors and reports on a human’s health,
and may even administer medication, will comprise
hundreds – or even millions – of mobile interactive
agents, including sensors and effectors. The low-
level model of such a system must represent the space
in which they move and interact.

This mobile interaction is not only physical; it
is also virtual. For such populations will include
virtual—i.e. software—systems. These consist of soft-
ware agents that move and interact not only in phys-
ical but also in virtual space; they include data struc-
tures, messages and a structured hierarchy of soft-
ware modules. It appears that our low-level model
must consist of a conflation of physical and virtual
space, and therefore a combination of physical and
virtual activity.

Models that can help to build and analyse such
physico-virtual populations of agents will be as cen-
tral to informatics in the 21st century as were the
fundamental models of computing, by von Neumann
and others, in the 20th. Forerunners of such models –
for example process calculi – already exist, and these
Lectures build upon them.

The argument for such a unified theory is de-
tailed in the Prologue of my bookThe Space and
Motion of Communicating Agents, to be published
by Cambridge University Press early in 2009. The
present Lectures are based upon the theory in that
book. These notes consist of a commentary on the
slides for the Lectures. The slides are atwww.cl.

cam.ac.uk/ ˜ rm135/Bigraphs-Lectures.pdf ,
and these notes are at. . ./Bigraphs-Notes.pdf .
The notes are numbered compatibly with the slides,
and are not meant to be read independently of them.

I shall modify the slides and the notes as time
goes on. I shall therefore be grateful for comments
and criticism of them, and of the book, sent to me at
rm135-at-cam.ac.uk .

Robin Milner
Cambridge University, 2008

3

THE LECTURES

1. The first five lectures introduce bigraphs, with
examples, as a self-managing structure suitable for
ubiquitous systems. Some of the mathematics of bi-
graphs is developed, or at least represented graphi-
cally; this will allow a reader appreciate how the ex-
amples can be handled rigorously. It also prepares a
willing reader for a detailed study of the book; with
this in mind, I have provided many pointers to the
book’s definitions and theorems.

The sixth and final lecture outlines a strategy for
modelling complex informatic systems hierarchically.
Bigraphs are a candidate for lowest level in this tower
of models; they are proposed as aUbiquitous Ab-
stract Machine. This term is meant to indicate that
they not only constitute a low level of modelling, but
also provide formal language for both specifying and
programming ubiquitous systems. There is a close
analogy with how the von Neumann machine has un-
derpinned the analysis and programming of sequen-
tial systems.

I How agents are linked and
placed independently

Bigraph structure

3. Here is a mixture of physical and virtual space.
It shows how nodes can be linked, no matter ‘where’
they are, and also how a system may reconfigure it-
self.1

The top left large node may be Canada, and the
lower right large node Australia. Sam (S) in Canada
has sent a messageM to Rachel (R) in Australia,
which hasn’t yet reached her. ButM carries a key
K which it inserts in a lockL, thus accessing a vir-
tual agentA which will help M on its journey. This
unlocking is represented by the ‘reaction rule’ shown
at the bottom.

Meanwhile,R may move to China (top right), so
M will have to chase her. Other reaction rules would
representR’s move and the resulting chase.

1the Prologue

4. The next few slides are about structure only. They
illustrate the ‘bi’ quality of a bigraph. The bare bi-
graphĞ hasnodesv0, . . . , v5 andedgese0, . . . , e2.
Ğ is exactly represented by two constituents: a forest
which is its placing (the node-nesting), and a hyper-
graph which is its linking (the edges). Conversely,
every forest and hypergraph with the same node-set
constitute a bare bigraph.2

This ‘bi’-structure is vital, but we also want to
build bigger bigraphs from smaller ones. So far, we
call our bigraphs bare because they are not equipped
with means to assemble them. To clothe a bigraph,
we shall give it twointerfacesor faces3.

5. This picture highlights in red a set of nodes and
edges that we want to consider to be a sub-bigraphF̆
of Ğ. An interface will be needed to join it up with
the rest ofĞ.

6. Here isF̆ , with its own (trivial) forest and its
own hypergraph. Note that it has some links ‘bro-
ken’ where it was torn out of̆G; also, its three nodes
were torn out of different places in̆G. We need to
clothe a bare bigraph likĕF with linking and placing
information.

7. For that purpose, we first define an interface
I = 〈m, X〉 to have awidth m and aname-setX.
We clotheF̆ by choosing〈3, {x, x′}〉 for its outer
face andǫ

def
= 〈0, ∅〉 as itsinner face. This yields a

bigraph F : ǫ→〈3, {x, x′}〉. Width 3 means thatF
has threeroots or regions4, shown by dotted rectan-
gles, whilex andx′ are theouter namesof F . (We
shall soon discuss inner faces).

Likewise we clothĕG into a bigraphG : ǫ→〈2, ∅〉.
Note that we have also made the forest and hyper-
graph ofĞ into aplace graphGP : 0→ 2 and alink
graph GL : ∅→∅ respectively. These are thecon-
stituentsof the bigraphG.5

But we still have to describe the embedding ofF
into G.

2Chapter 1
3Definition 2.3
4Figure 1.2
5Definitions 2.1–2.3

4

8. WhenF is torn out ofG it leaves a bigraph
H : 〈3, {x, x′}〉→〈2, ∅〉. It has threesites6 andinner
namesx andx′; thus its inner face is the outer face
of F . WecomposeH with F at their common face,
yielding G = H ◦F . Thus we are building bigraphs
algebraically.

The bigraphH has its own constituents, the place
graphHP and link graphHL. So we can also form
G by composing place graphs and composing link
graphs, and then combining the results.7

Built environment, Signature

9. For any application we need to define different
controls, which are kinds of node. This is done by
a basic signature8 that also determines how many
ports a node has. Here is the signature, and a typical
state, for a built environment where movement and
communication happen. The right-hand region ofG
consists of a room, but not the building that contains
it.9

In blue is shown the algebraic expression forG.
If K is a control with arity 3, say, then eachK-node
is written Kxyz, giving the names of the links im-
pinging on it. Aclosure like /x gives scope to a link
name. This algebra will be defined later.10

10. Thecontextual bigraphH, composed withG,
puts the right-hand room in a building. The two sites
of H appear asid1 in the algebraic expression.

11. Here is the composite,H ◦G. Note that the five
A-agents are connected, perhaps in a conference call
on their mobile phones. Also, each agent in a room
is logged in to a computer, which is part of the local-
area network for the building.

12. So far we have dealt only with static struc-
ture. For dynamics, there will bereaction rules11

that change placing or linking or both. Here is a

6Figure 1.2
7Definition 2.5
8Definition 1.1
9Example 1.2

10Chapter 3,Definition 3.2
11Example 8.1, Definition 8.5

reaction that changes linking: one agent leaves the
conference call.

13. Here is a reaction that changes placing: an agent
enters a room —

14. — and this enables another linking reaction: the
computer logs in the agent. Note that this linking
reaction has a placing precondition: for logging in,
the agent must be in the room.

15. Here are the reaction rules underlying these re-
actions. Consider rule (2); it is parametric12—the
room may contain other occupants, e.g. other agents.
It doesn’t alter the linkage (if any) of the agentA.

Anatomy

16. Here are the important ingredients of a bigraph.
Note the difference between anopenlink, which has
a single outer name (e.g.y0) and aclosedlink, also
called an edge (e.g.e0), which may linkpoints—i.e.
ports and inner names.13

II How to build complex systems
from simple ones

Algebra

17. In this Lecture we develop the algebra of bi-
graphs. We continue to illustrate this for ‘realistic’
systems like the built environment; also, using CCS
(Calculus of Communicating Systems) we illustrate
how familiar models of processes can fit into bigraphs.
We are still concerned only with static structure, not
with dynamics.

The emphasis is on algebraic representation. One
reason for this is the belief that a theoretically under-
stood model should be the basis for designing a pro-
gramming language, especially for complex appli-
cations such as ubiquitous systems, rather than that
languages should be designed first and have theory
retrofitted to them. Algebra is a powerful tool for

12Definition 8.5
13Figure 1.2

5

modular construction, essential if complex program-
ming is to be well-understood.

We also use mathematical constructions fromcat-
egory theory. We do not explore the deeper abstrac-
tions of categories, and we do not presume any pre-
vious knowledge of them. But we show in partic-
ular that the constructions of asymmetric partial
monoidal (spm)category are a perfect basis for the
more familiar operations of process calculi, and that
they apply equally to a wider range of systems. Thus
bigraphs become a framework for complex distributed
systems.

A caveat for people who follow up the references
to the book: As it explains14, the book definescon-
crete bigraphs15 first, and thenabstract bigraphs in
terms of them. In these Lectures we reach the intu-
itions sooner, though less rigorously, by defining the
abstract ones first. We shall reach concrete bigraphs
in Lecture V.

Elementary bigraphs

18. We begin withelementary placingsand link-
ings 16. These are the elements from which all node-
free bigraphs can be built, using the categorical op-
erationscomposition(◦) andtensor product (⊗) to
be introduced shortly.

You can think of a placing either as a place graph
whose interfaces are finite ordinals (m, n, . . .), or as
a bigraph whose interfaces are of the form〈m, ∅〉—
including an empty name-set. Similarly for linkings
(mutatis mutandis).

The only other element, neither a placing nor a
linking, is a discrete ion—a single node with dis-
tinctly named links for its ports17. The ion has a sin-
gle site.

Basic operations

19. The notation〈P, L〉 is convenient for combining
a place graph and a link graph (with the same nodes
and edges), just as we form an interface〈m, X〉.

14Introduction to Chapter 2
15Definition 2.3
16Definitions 3.1 and 3.2
17Definition 3.4

We ‘define’ composition here graphically, hav-
ing seen examples of it in Lecture I. The formal defi-
nition18 is important, because a secure theory cannot
be based on pictures!

Just as we define composition of bigraphs in terms
of composing their constituents, so we shall find later
that many operations and properties on bigraphs can
be defined separately on place graphs and link graphs
and then combined. For example, a bigraph is an epi
or a mono iff its constituents are epi and mono in
their respective categories19.

20. We now define how to place two bigraphs side-
by-side to make a larger one, provided that their inner
names—likewise their outer names—are disjoint. The
juxtaposition is called(tensor) product; again, the
formal definition20 is important for rigour.

Bigraphs then form apartial monoidal (pm) cat-
egory21, a standard notion that places us in an un-
derstood theoretical frame. We are notquite stan-
dard, since juxtaposition requires disjoint names (as
above), but the difference causes no difficulty.

21. Here, in pictorial form, are the equations that a
pm category satisfies; they are easily verified for bi-
graphs. The one on the right is called thebifuncto-
rial property of product (⊗); this simply means that
the order of product and composition can be inverted,
allowing great flexibility in manipulation. With our
graphical intuition, it is rather an obvious property.

22. Here we summarise what has been said above.
Note that pm is a property of place graphs and link
graphs just as it is of bigraphs.

23. We have not quite completed our categorical
frame. We earlier defined the elementary bigraph
swap : 2→ 2 for swapping two places. it terms of
this we can defineγI,J : I⊗J → J⊗I, called asym-
metry; it swaps two adjacentblocksof places, those
of I and J . This enriches our frame to become a
symmetric partial monoidal (spm) category, pro-

18Definition 2.5
19Definition 5.1, Proposition 5.2
20Definition 2.7
21Definition 2.10

6

vided that the symmetries satisfy the equations on
this slide22.

24. Here again we summarise what has been said—
and again, it applies to place graphs and link graphs,
as well as to bigraphs.

25. Placings and linkings are important for ‘house-
keeping’ in bigraphs. It is nice that a node-free bi-
graph comprises one of each. We can blur the dis-
tinction betweenφ : X →Y , which is a link graph,
and idm ⊗ φ : 〈m, X〉→〈m, Y 〉 which is a bigraph
with a trivial place graph constituent.

We shall now see a role for the node-free bi-
graphs; they will help us to derive familiar operations
of process calculi.

Derived operations

26. Let us take a hint from process calculi. They
often have aparallel composition operator, written
P ‖Q or P |Q, where the processesP andQ may
share named channels. Such processes have no inner
face, but we can contrast this operator with our ten-
sor product (⊗) where sharing of names in the outer
face is forbidden. The great advantage of the pro-
cess operators is that they allow many processes to
be combined, all sharing certain channels.

These operators—basic in process calculi—can
be derived in bigraphs, using tensor product assisted
by substitutions. We shall call themparallel prod-
uct andmerge product23. They have nice algebraic
properties24. The definition given here is not so gen-
eral as in the book, but is enough for the purpose of
these Lectures.

Process calculi also have operators forsequen-
tial composition. In CCS this consists of prefix-
ing an actionµ to a processP , yielding µ.P . Here
this is generalised to anestingoperator25, which has
much wider application than for CCS. Like the de-
rived products, the nestingG.F allows F andG to
share their outer names.

22Definition 2.11
23Definitions 3.11 and 3.15
24Propositions 3.12 and 3.16
25Definition 3.13

27. By defining these products on interfaces, we
make it clear that the outer interfaces in derived prod-
uct or nesting can share names. At the end of this
Lecture, using these operators, we shall give a quite
direct translation of CCS into bigraphs,

Sorting

28. Bigraphs over a given signatureK allow arbi-
trary nesting of nodes, and arbitrary linking among
ports. Often, in a particular application, some nest-
ings and linkings do not make sense. So we may
wish to reject certain interfaces and bigraphs from
the category BG(K). This can be done by asorting
Σ. In a place sorting26 we assign sorts to places,
i.e. to roots, sites and nodes.Link sorting 27 does
something analogous for linkage, and of course we
can combine the two. In all cases, because we wish
to work in an spm category, we insist that the forma-
tion rule of Σ does indeed confine us to a sub spm
category—i.e. the formation rule is obeyed by iden-
tities and symmetries and preserved by both compo-
sition and tensor product.

29. As an example, we consider what may be a suit-
able place-sorting for the built environment28. We
first introduce a sort for each control. In terms of
these we impose the constraint that rooms can con-
tain either agents or computers, but not other rooms
or buildings. Similarly, buildings can contain rooms
or agents. To ensure that the formation rule is pre-
served by composition we have to introduce disjunc-
tive sorts likeâr.

Translating CCS

30. We now begin the representation of finite CCS in
bigraphs; this example will run throughout the Lec-
tures. Here is the usual CCS syntax29. Note that
there are two syntax classes:processesdenoted by
P, Q, . . ., andchoicesoralternationshaving the form
µ1.P1 + · · · + µn.Pn. (The casen = 0 is written
0.) This will be reflected in a sorting for bigraphs.

26Definition 5.1
27Definition 5.10
28Example 1.2
29Definition 5.3

7

We are not yet concerned with dynamics in bigraphs
(this will come in Lecture III), but this slide recalls
the essence of CCS reactions.

The structural congruence≡30 relates expres-
sions that intuitively represent the same process or
alternation; the equations for≡ arise because linear
syntax is unable to reflect this relationship. But bi-
graphs are a non-linear syntax; so we expect that,
under our translation, structurally congruent expres-
sions become identical bigraphs.

31. Here we see the sortingΣccs
31. It is an instance

of an important class of sortings. The formation rule
requires not only that the two sorts of node alternate
in nesting, but also that whenever a root has sortθ,
all its children (including sites) have sortθ. It is a
good exercise to prove that the formation rule is thus
indeed preserved by composition and product.

Although the bigraph for a translated CCS pro-
cess is tedious to draw, it is not hard to understand;
and the corresponding algebraic expression is rea-
sonably terse. The null process is represented by the
empty choice.

32. Finally, we give the translation32. It reveals
many points of interest. First, a minor point: in trans-
lating the empty choice0, X is used to denote the
bigraph having only the idle namesX.

Second, note how all CCS processes with free
names⊆X are translated to the samehomsetǫ→〈1:
pr, X〉. (In a category, a homset consists of all the ar-
rows between two given objects.) Thus each CCS
expression has an image in infinitely many homsets!
This causes no difficulty, and there is a reason for it.
Under a bigraphical reactiong ⊲ g′, a link named
x in g may well become empty ing′; but the formal
treatment of reaction is simpler if the source and tar-
get of a reaction have identical interfaces.

Third, perhaps surprisingly, the merge product|
represents both parallel composition and alternation.
Both are structural operations, but at different sorts.
They are distinguished dynamically because of the
bigraphical reaction rule for CCS, which operates at

30Definition 5.4
31Definition 5.5
32Definition 5.6

the sort of processes.
The theorem33 represents the best possible static

properties we could expect for the translation. Part
(1) is achieved because the sorting formation rule has
forbidden all bigraphs which do not represent a pro-
cess. Part (2) indicates how structural congruence,
when it was first conceived, foreshadowed the kind
of non-linear syntax that is now realised by bigraphs.

The CCS running example is continued in Lec-
ture III, where it will illustrate dynamic behaviour.

III Dynamical theory,
illustrated for CCS

33. We have spent much effort on the structure of
bigraphs. Its primary purpose is to support a simple
but powerful dynamical theory. Treatments of dy-
namics abound in informatics. In bigraphs we are
influenced by term-rewriting systems, by structured
operational semantics of programming languages, by
graph-rewriting, by Petri nets, and by process cal-
culi. The book contains some description of these
influences34. We have succeeded in one respect: we
define only one notion of a reaction rule, which sup-
ports all our dynamical ramifications.

General formulation of reaction

34. First, as an example of existing process calculi,
we recall the reactions of CCS as originally formu-
lated. The single axiom in this slide shows how two
processes in parallel, capable of respectively a pos-
itive and a negative action on the same channelx,
can handshake on this channel and simultaneously
discard their alternative actions. There are then two
rules that declare reaction to be preserved by parallel
composition and restriction, and a third rule declar-
ing it to be preserved by structural congruence.

The important point is that reaction is preserved
by all constructions except the prefixing of an action.
Thus, in the axiom, reaction cannot occur withinP
or Q initially, but can do so after this initial reaction.

33Theorem 5.7
34the Prologue, and Chapter 12

8

This reaction regime is specific to CCS; for ex-
ample, CSP has a different regime. So it is not obvi-
ous how to generalise them for bigraphs.

35. Just as prefixing prevents reaction in CCS, so
in a bigraphical reactive system (BRS)35 we shall
allow certain controls to prevent reaction, and oth-
ers to permit it. We therefore further enrich a signa-
ture to becomedynamic36, by having it assignac-
tive/passivestatus to controls. This allows us say
when a compositional contextD preserves reaction.

In this definition we only considerground re-
action rules, i.e. those with a groundredex andre-
actum. This constraint will be relaxed on the next
slide.

By equipping a BRS with an arbitrary set of rules,
we allow a wide range of reactive disciplines. For ex-
ample, any number of nodes can take part in a ‘hand-
shake’ constituting a single reaction. This allows
bigraphs to encode the communication discipline of
CSP, where many agents may participate in an action
on a single channel.

36. A parametric reaction rule37, as here defined,
is a way to generate a whole family of ground rules.
There are many ways to define such families; this
way is simple and powerful. The power lies in the
instance mapη; for it may be neither injective nor
surjective, allowing the factors of theparameter d
of the redexR to be discarded or replicated in form-
ing theinstanceto be nested in the reactumR′. Thus
there are two degrees of freedom in reaction; the re-
configuration ofR into R′ and the instantiation38 of
d into d′.

Parameters are required to bediscrete 39 is for
technical ease; this imposes no constraint, because
any shared links can be created by the external con-
textD of a reaction.

37. It is not surprising to find that reaction in CCS
can be expressed by a single parametric rule as shown

35Definition 8.6
36Definition 8.2
37Definition 8.5
38Definition 8.3
39Definition 3.8

here40. Note thatR andR′ areprime41, with a sin-
gle root of sortpr. The parameter sites 0 and 2 ofR
have sortpr, while the sites 1 and 3 have sortch.

The theorem42 speaks for itself. Without it we
could not claim to represent CCS in bigraphs.

Raw transitions and behavioural equivalence

38. For forty years or so it has been a vexed ques-
tion what meaning is intended by a process expres-
sion. One thing is well accepted: if two processes
expressions mean the same, then they should be in-
terchangeable in any larger context—i.e. the mean-
ing of an expression should not change when a sub-
expression is replaced by one with the same mean-
ing. by the other. Algebraically, this property is ex-
pressed by saying that equivalence of meaning is a
congruence.

The slide shows that ‘having the same reactions’
is not a congruence. What is lacking is what may be
called aconditional reaction; we should characterize
a process not only by the reactions it may perform
without assistance, but also by the ways in which it
may contribute to a reaction made with the assistance
of its environment.

These conditional reactions are calledlabelled
transitions43, and were defined for CCS in 1980.

39. Here, the labelled transitions for CCS are de-
fined in the same style as reactions were defined.
The labels that describe (i.e. are witnesses of) con-
ditional reactions areµ ∈ {x, x}, and the labelτ
means an unassisted reaction. The focal rule is the
one for communication, which yields an unassisted
reaction from two conditional ones.

Many differentbehavioural congruencescan be
defined in terms of these transitions.

40. A tractable and important behavioural congru-
ence isbisimilarity 44, achieved by David Park in
1980-81 as a correction to Milner’s work of 1980.
It has a beautiful mathematical theory. It also yields

40Example 8.1
41Definition 3.8
42Proposition 10.2
43Definition 7.8
44Definition 7.9

9

stronger and weaker behavioural congruences which
are valuable for different purposes.

The notion is based upon defining what isa (not
the) bisimulation. A prominent and elegant feature is
that the union of any set of bisimulations is again a
bisimulation; this is what entitles us to define bisim-
ilarity as the largest one!

The proof of the theorem for CCS is not hard.
But the labelsµ are very specific to CCS, because it
assumes that every reaction is a communication be-
tween just two participants.

41. To justify the general treatment of BRSs, we
have to find a general form of behavioural witness—
i.e. a form of transition labelL that can be defined
in all BRSs. This will lead in turn to a uniform be-
havioural theory. Of course, the bisimilarities for in-
dividual BRSs (e.g. other process calculi) will have
specific properties; but to have them as instances of
a common notion will help us to compare them.

Contextual transitions and behavioural
equivalence

42. Let us call a transition or its labelraw45 if
this label is defined without bigraphical means. Thus
the CCS transition system is raw. By contrast, for a
BRS we shall usecontextual labels. The diagrams
in this slide show the close relationship between re-
actions and contextual transitions. Both are based on
a ground reaction rule; but a contextual transition has
a commuting square involving the labelL.

This created a sharp technical challenge that took
years to resolve: How to limit the size of this square
so thatL is no larger than needed to complete a tran-
sition. The answer lies in an elegant concept from
category theory.

43. Without answering this minimality question46

in general—we shall do so in Lecture V—let us see
what in means for CCS, as we have encoded it in
bigraphs. The diagram shows a CCS agenta and a
ground redexr, and you can see that they can overlap
in different ways. How many ways?

45Definition 7.8
46Definition 7.13

44. One possibility is thata andr share theirleft-
handsend-nodes. In that case or they also share their
right-handget-nodes, so the labelL must supply the
get-node ofr, and (to makeL minimal) that’s all.
To make the diagram commute,D has to supply the
get-node ofa.

45. Another possibility is thata shares itsright-hand
send-node with the left-handget-node ofr. Then it
shares the rest ofr too, so (for minimality) bothL
andR are node-free, butD has to adjust the linkage
a bit.

Thus you can see that, givena andr, there can be
different minimal transitions, not a unique minimum
transition.

46. Having gained an intuition about minimal con-
textual transitions, we can now assert a completely
general theorem about the corresponding bisimilar-
ity47.

In the course of reaching these results, it became
obvious that the full structure of bigraphs was not
needed to prove it. In fact, it holds for the much
wider class ofwide reactive systems48, provided only
that they possess a notion of minimal transition sys-
tem. We shall prove this in Lecture V.

Compare raw and contextual equivalence
for CCS

47. We must be sure that, in defining contextual tran-
sitions, we arrive at a behavioural theory that matches
existing theories. We now do this for CCS. We dis-
cover a slight mismatch, revealing a feature of bi-
graphs that refines CCS. By ignoring this feature, we
get a perfect match between the two notions ofraw
andcontextualbisimilarity.

Raw transitions in CCS were defined inductively,
with simple rules. But it is easy to characterize them
syntactically (up to structural congruence)49.

This is done in the table. Looking at case 1, we
see that anx transition is possible fors if and only if,
at top-level (i.e. not under a prefix), it has an alterna-
tion with a summandx.p, and otherwise an arbitrary

47Corollary 8.8, Corollary 8.10
48Definition 7.2
49Figure 10.2

10

processq (which may ber empty) running in paral-
lel. The componentsp and q may share restricted
namesZ, not includingx itself. In case 3 we may
havex ∈ Z, since a communication can occur on a
channel whether restricted or not.

48. The same thing can be done for the minimal con-
textual transitions derived for CCS in bigraphs50. To
obtain this characterization requires a detailed inves-
tigation, which we omit. Note that the derived labels
are not complex. Corresponding to the raw labelx
in CCS, indicating that the process can ‘output’ on
x, we have a labelL which indicates that the context
must ‘input’ onx for the communication to occur.

The Corollary51 follows from our general theo-
rem about bisimilarity for derived contextual transi-
tions. On the other hand the Theorem52 holds only
if we drop case 4 of the contextual transitions. The
reason is that case 4 allows the environment to per-
form a substitution on the agentg, and CCS has no
raw label with this effect. In fact congruence of raw
bisimilarity, as originally defined for CCS, does not
imply that substitution preserves the equivalence.

Thus our results shed a new light on the exist-
ing theory, and reveal the need to make precise what
congruence should mean.

IV Stochastic dynamics,
e.g. for membrane budding

49. We can imagine that bigraphical systems such as
our built environment can be made much more com-
plex, and hence more realistic. The closer they claim
to reflect a possible reality, the more we become con-
cerned to simulate this reality closely, by somehow
representing the probability of any given sequence of
reactions. If this is done then a simulator may exe-
cute different sequences of actions each time it is run,
but the collection of its runs will respect the relative
probabilities.

For about a decade, stochastic process calculi have
achieved this rather well. It is therefore natural to at-

50Figure 10.1
51Corollaries 10.3 and 10.4
52Theorem 10.6

tempt it uniformly in bigraphs. These slides repre-
sent the obvious attempt, and illustrate it using on-
going work in modelling biological cells.

This also enables us to contrast the application of
bigraphs to process calculi and to biology. Some dif-
ferences appear, at least at first sight: process calculi
are more concerned with behavioural equivalence,
and are also concerned to admit links that cross place
boundaries. On the other hand, biology seems more
concerned with large populations of identical agents,
e.g. protein molecules. This does not immediately
suggest any variation in the definition of bigraphs.
But the large difference of character between possi-
ble applications provides excellent opportunities to
assess the bigraph model experimentally.

Rates of reactions

50. We wish to base our stochastic treatment en-
tirely on attributing rates to reaction rules. This en-
tails enriching each reaction rule by adding a strictly
positive rateρ to each rule. This is interpreted as the
parameter of an exponential distribution of the ex-
ecution time for reactions based upon the rule. As
is well-known, given a set of possible reactions with
different rates, whichever occurs first leaves the oth-
ers (those remaining possible) with the same relative
rates. Thus simulation, based upon continuous-time
Markov chains, becomes tractable. This is usually
expressed by saying that the exponential distibution
is memoryless.

The rate of a given reactiong ⊲ g′ depends not
only on the underlying rule, but also on the number
of distinct occurrences of the ground redexr in g,
such thatg′ arises by substituting the ground reac-
tum r′ for r in g. Hence the importance of counting
occurrences. This point will be discussed later.

The proposition is rather obvious, and depends
on the fact that the rates on rules are strictly positive.

Membrane budding

51. We now examine a simplified model of a biolog-
ical phenomenon. It exploits the placing of bigraphs
in a way that is not available in theπ-calculus.

Inside a cell, whose wall is a membrane, is a
population of particles (shown in red). Outside are

11

protein molecules (shown in blue). Budding is in-
duced when these coat proteins gather on the mem-
brane. As the bulge increases, some of the red par-
ticles enter it. Fission occurs when enough proteins
have gathered, creating a new cell. The process may
be repeated.

The model has to deal realistically with the ques-
tion: which (red) particles will belong to the new
cell, and which will remain in the old one?

52. The diagram on this slide shows a bigraph rep-
resenting a cell with two buds. The lower bud has
separated, but is still linked to the coat proteins that
caused its formation. The upper bud is under for-
mation; so far only one coat protein linked to it. The
presence of the two gates, connected across the mem-
brane boundaries, means that fission has not yet oc-
curred; they represent a virtual channel by means of
which particles can migrate back and forth between
cell and bud.

The place sorting constrains the place graph of
the system. It resembles the place sorting for the built
environment53. Note that the whole bigraph has a
single region (root) of sort̂bc, so it can contain only
branes, buds and coat proteins.

53. There are essentially four reaction rules. In the
first rule, the attachment of a single coat protein initi-
ates a bud formation, creating the gated channel. The
second rule allows more coat proteins to attach. The
third rule allows particles to migrate along the chan-
nel in either direction. Economy is gained by using a
redex with width 2; the rule does not have to mention
a bud or brane. The final rule dictates that fission can
occur when there are at leastn coat proteins on the
bud, wheren is some fixed value.

Note that three of the rules are parametric; the
parameter represents ‘don’t care’ contents of a bud
or brane.

We have not specifed rates for these rules. We
imagine varying the rates in an computerised exper-
iment, in the attempt to find out which rates best
model reality. We may well wish to have two ver-
sions of particle migration, since the rates of migra-

53Exercise 5.2

tion into and out of the bud may differ.

54. We carried out one such experiment using the
stochastic model-checker PRISM. We wanted to find
how the number of particles in a separated bud would
depend upon the rates of protein coating and parti-
cle migration. The slide shows how the experiment
turned out.

Counting distinct reactions

55. When defining the rate of a reaction, we did not
exactly define what was meant by adistinct occur-
renceof a redex. So let us illustrate what is meant,
by an example that picks up the crucial points. We
consider the possible reactionsg ⊲ g′ under differ-
ent rules.

56. The first step in counting is to tag the nodes ofg.
There is only oneB-node; so we just tag theA-nodes,
using colours.

57. Now suppose there is just one rule,R; how many
different occurrences are there ofr in g?

58. In one way,r uses the blue node, and . . .

59. . . . in a second way , it uses the pink node. So
there are two ways.

60. But if g hasn A-nodes instead of two, there are
n distinct occurrences orr in g.

61. Going back tog with two A-nodes, consider a
different ruleS.

62. There may seem to be two ways to matchs
in g, but in fact there is just one way; ins we have
to colour the twoA-nodes blue and pink, and there
is only one way to do this because the members of
a link are not ordered. To put it another way, the
tagged bigraphs has an automorphism under bijec-
tion of tagging. Lecture V deals with tagged—or
concrete—bigraphs, and will clarify this.

63. Finally, if insteadg hasn A-nodes, then there
will be n(n−1)/2 ways, notn(n−1) ways.

12

In summary, the way to get the count right isfirst
to tag the nodes of the agentg, andthento count the
ways to match the redexr in the taggedg.

Rates for transitions

64. Stochastic rates in a process calculus were pio-
neered over a decade ago. They were assigned di-
rectly to (labelled) transitions, because these were
rightly regarded as more important than reactions for
characterizing process behaviour. But in bigraphs,
sometimes reactions are more important than transi-
tions; in any case we have seen how toderivetransi-
tions from reaction rules, so we should also hope to
derive rated transitions from rated rules.

Here, we see how to do it. It is rather close to
how we derive rates for reactions, but we do it only
for minimal transitions—so we are concerned only
with minimal bounds. These are formally defined,
via tagging, in Lecture V. So it appears that we may
claim to have a simple and credible candidate for a
uniform treatment of rates in bigraphs.

Experimental evidence is needed to confirm or
refute this claim.

65. In CCS, since there is only one reaction rule
we may feel a lack of freedom in defining the rate of
a transition, which is a communication between two
participants. We may like each participant in a com-
munication to have the power to influence its rate.

The slide shows how this can be done to a con-
siderable extent, without enriching the calculus. We
have seen, in a biological example, how the rate of
a reaction in a population of identical elements de-
pends upon the size of the population. The slide
shows how, by replicating any summand in a CCS
alternation, we can multiple the rate of a communica-
tion by any integer. If large integers are used, there is
little limitation in allowing only integer multipliers.

V Foundation for
behavioural equivalence

66. In Lecture III we introducedbigraphical reac-
tive systems (BRSs)54, defining their reactions and

54Definition 8.6

transitions. We introduced the notions of minimal
transitions and bisimilarity (illustrated using CCS)
that form the basis on which, in an arbitrary BRS,
one system can be understood to behave the same as
another in every possible context. This equivalence
depends on the external interactions of the system;
we defined a minimal transition in terms of the min-
imal context needed to enable a system to perform a
particular reaction.

We postponed until now the question of whether
these minimal transitions exist. The purpose of this
Lecture is to answer this question precisely. We shall
do it uniformly, not merely for BRSs but for a much
wider class of reactive systems of which they are an
instance. We thus define a very general notion of
behavioural equivalence, and thus a credible answer
to the question: “What is a discrete process?”

67. We shall understand a process to be an equiva-
lence class of descriptions of behaviour, e.g. the ex-
pressions in a process calculus, where two descrip-
tions are equivalent if and only if they behave the
same in some agreed sense. We want more than this:
in a formalism that can build larger descriptions from
smaller ones, we want the equivalence to be acon-
gruence, in the sense that when two descriptions are
equivalent we can replace one by the other in any
larger description, without changing the latter’s be-
haviour.

We want still more: the formalism must be able
to encode in a natural way a wide range of existing
process calculi, so as to provide a common theory for
these. It must also possess a notion of space, enough
impose spatial constraints upon behaviour.

Bigraphs satisfy the last criterion; but it turns out
that there is a more general framework in which we
can uniformly derive our behavioural congruence. To
introduce it, we shall first define a general frame-
work of reactive systems55, too weak to express spa-
tial constraints. We then enrich it just enough to ex-
press such constraints; thus we arrive atwide reac-
tive systems (WRSs)56. The behavioural theory in
this framework is very clear and clean, and can im-

55Definition 7.1
56Definition 7.2

13

mediately be specialised to BRSs.

Discrete processes and tagging

68. We begin with examining the question “What is
a discrete process?”. The classical question “What is
a computable function?” was solved by Alan Turing,
giving the answer “a behavioural equivalence class
of abstract machines”. The meaning of “behaviour”
in this case was in terms of input/output: the machine
was said to compute a given mathematical functionf
if, given on its tape an argumentx for f , it would in
due course terminate with the valueF (x) on its tape.

An interactive process is less simple to describe
than a computation. For one thing, it behaves non-
deterministically, so in terms of input/output it must
be said to compute a many-valued relation, not a func-
tion. But instead of delivering a single output (though
different each time) for a single given input, it inter-
acts continually with its environment. It is mislead-
ing to describe these interactions as either inputs or
outputs; more accurately they are communications.

Let us at least confine ourselves todiscrete pro-
cesses, those whose behaviour is a sequence of atomic
actions (e.g. communications) rather than a contin-
uous activity. This still leaves open a wide choice
of behavioural equivalences. Among those that have
been studied in other settings we choose bisimilar-
ity, though results analogous to ours can certainly be
obtained for other equivalences and pre-orders on be-
haviour.

69. For this purpose the notion oftagging, to dis-
tinguish among the different occurrences of an agent
within a system, becomes essential. We saw this in
Lecture IV in determining reaction rates; we now see
it in determining minimal transitions, and hence in
definingbisimilarity 57. In doing this, we shall work
in wide reactive systems (WRSs), of which bigraph-
ical reactive systems (BRSs) are a special instance.

The idea of tagging, labelling or identifying the
occurrences of one entity in another is not prominent
in algebra. It is used sometimes in computational cal-
culi, for example in theλ-calculus—where it helps

57Definition 7.9

to prove theorems such as the (very central) Church-
Rosser theorem. Even there, it has sufficed to treat it
somewhat informally.

But here, we seem to need to treat it with full
rigour. One can see the need in applications such as
a built environment; we may wish to track an agent
who moves about58. We have used it in Lecture IV
to count the number of occurrences of a redex, and
thus define the rates of reactions. And finally, in this
Lecture we use it to define precisely what we mean
by a minimal transition, which was so important in
Lecture III.

70. A concrete bigraph59 is just like an abstract
one (which is what we have dealt with in the pre-
ceding Lectures), except in one respect: its nodes
and edges have distinct identifiers, or tags. We de-
note the tags ofG by |G|, called thesupport60 of G.
Thus, for example, if we were describing the journey
of one particular copy of a broadcast message, as in
the fanciful example61 at the beginning of Lecture 1,
we would use a tag to distinguish this copy from the
others.

To treat this rigorously, we have to see how it
affects the categorical framework we are using.

S-categories, reactive systems
and transitions

71. Hitherto we have worked withspm categories62.
We have to refine this, to accommodate support; the
main reason is that composition and product must
obey the discipline that tags within a single bigraph
are unique. So for concrete bigraphs we need ans-
category63, in which these operators are only defined
on bigraphs with disjoint supports.

This adjustment causes little difficulty. For ex-
ample, it is independent of the notion ofsorting64.
Given a sortingΣ, we use`BG(Σ)—with a tagged
name!—for the s-category of concrete bigraphs over

58Section 11.1
59Definition 2.3
60Definition 2.4
61the Prologue
62Definition 2.11
63Definition 2.13
64Chapter 5

14

Σ, to distinguish it from the spm category BG(Σ) of
abstract bigraphs65.

Let us give more detail about the relationship be-
tween s-categories and spm categories, even though
it is not essential for following the slides. In an s-
category we say thatg is asupport translation66 of
f if it is obtained fromf by a bijectionρ : |f |→ |g|
that respects the structure off . Then we call the two
arrowssupport equivalent67, and writef ≏ g.

In the special case of two bigraphsF and G,
we broaden this equivalence tolean-support equiv-
alence68, written F ≎ G, which also ignores idle
edges (i.e. edges that are linked to nothing, which
can arise from certain reactions). So an abstract bi-
graphA is just a lean-support equivalence class of
concrete ones, such asG; we writeA = [[G]].

72. We can define reaction for any s-category. Re-
call that there is an interfaceǫ called theorigin69; it
is the unit for tensor product. Aground arrow is one
out of the origin. So we can define reaction very sim-
ply, allowing it to happen anywhere (i.e. in any con-
text D). What we cannot do is to limitwhereit can
happen, because there is no sufficient notion ofplace
in s-categories. To be more precise, the symmetries
provide an elementary notion of swapping places, but
an arbitrary arrow provides no structuring of places.

73. As promised, in awide reactive systemwe add
just enough to represent how arbitrary arrows can
structure places, without going as far as the nodal
structure of bigraphs. First note that there is a very
simple s-category NAT, whose objects are natural num-
bers considered as ordinalsm = {0, . . . , m−1}, and
whose arrows are functionsf : m→n. For i ∈ m,
if f(i) = j ∈ n then we can think of this as saying
“placei ∈ m lies viaf in placej ∈ n”. To enrich an
arbitrary s-categorỳC with this kind of placing, we
just insist that there is afunctor70 ‘width’ from `C
to Nat. A functor of s-categories, just as in spm cat-

65Definition 2.19
66Definitions 2.13 and A.1
67Definition 2.13
68Definition 2.19
69Definition 2.10
70Definition 2.9

egories71, is required to satisfy various conditions.
Thus, when we form a complex arrowf : I → J in
`C from simpler ones, we can derive howf relates
places inI to places inJ from the placing structure
of the simpler arrows.

In terms of this placing structure, the slide then
shows how to equip a reactive system with anac-
tivity relation Act72 which tells us, for every arrow
f : I → J , whether or not it isactiveat each place in
its inner faceI. Thus, by supplyingwidth andAct,
we declare a reactive system to be wide. It turns out,
of course, that BRSs are wide (and have a lot more
structure too).

74. A key property of the width functor is that, given
f : I → J , it determines a subsetwidth(f)(width(I))
of width(J) which is a locatioñ ⊆ J . It is the image
of I in J under width function off .

So we can refine our reactions and transitions to
become wide ones. First we require the the context
D of the redexr : I → J is active, i.e. active every-
where inwidth(I). Second, we index the reactions
and transitions by the image ofI under the width
function ofD. This latter condition is needed to en-
sure congruence of bisimilarity.

75. Having dealt with width—i.e.wheretransitions
can happen—we now look athowthey happen. This
entails understanding how an agenta can overlap
with a redexr. This overlap is just their support in-
tersection|a| ∩ |r|.

For a transition to beminlmalwe need to identify
the part ofr that doesn’t overlap witha. Our diagram
looks persuasive, but is it uniquely defined?

Relative pushouts

76. To determine the meaning of a minimal triple, as
was sought on the previous slide, we need to look at a
basic categorical phenomenon, which is a refinement
of the classical notion of apushout73.

Some basic terminology: aspan74 is a pair of
~f = (f0, f1) of arrows with the same domain (= in-

71Definition 2.11
72Definition 7.2
73Definition 4.2
74Chapter 4

15

ner face), and acospan~g is similar but with the same
codomain (= outer face). Then~g is abound75 for ~f
if g0 ◦f0 = g1 ◦f1.

If so, maybe~f has a ‘smaller’ bound than~g. This
would take the form of a triple(~h, h) as stated in the
first diagram, called arelative bound for ~f relative
to ~g. (h measures how the bound has shrunk.) We
want a relative bound that is as small as possible;
then we shall call it arelative pushout (RPO)76. It
has the property that it is at least as ‘small’ as any
other relative bound(~k, k), in the sense of the second
diagram.

RPOs don’t always exist; in fact they exist nei-
ther in abstract link graphs nor in abstract bigraphs77.
But they dol exist inconcretebigraphs78.

77. Intuitively, if the bound created by an RPO
is minimal, then any attempt to decrease it further
should be vacuous! This motivates the definition of
idem pushout (IPO)79; it is simply a bound which,
with an identity as third member, constitutes an RPO
for itself. There follows a list of beautiful proper-
ties of RPOs and IPOs80. In particular, the second
and third properties represent the intimate relation-
ship between IPOs and RPOs.

The fourth property (in two parts) is exactly what
is needed in the forthcoming proof of behavioural
congruence. The reader familiar with pushouts81 will
recall that these two properties, the cutting and past-
ing of IPOs, also belong to pushouts. Indeed, they
may lead us to expect an IPO to be exactly a pushout!
But it is not: the key difference is that for a given
span there is typically a family of IPOs; on the other
hand any pushout is unique up to isomorphism. So
it is accurate to call an IPO a minimal bound, and a
pushout a minimum bound.

RPOs (hence IPOs) exist in concrete bigraphs82

but typically not in abstract bigraphs83. They con-

75Definition 4.1
76Definition 4.3
77Example 5.25 and Figure 5.4
78Section 5.1
79Definition 4.4
80Proposition 4.5
81Definition 4.2
82Section 5.1
83Exercise 5.25

stitute a pleasant example of the combining place
graphs and link graphs84; to get an RPO in bigraphs
we get RPOs for their constituent place graphs and
link graphs, and then combine them. In developing
the theory if bigraphs, this separation woas found to
simplify the task by an order of magnitude!

78. This and the following slides illustrate the RPO
construction for link graphs. We begin with a simple
link graphG.

79. We decomposeG into D0 ◦A0, choosingA0 to
contain the nodesv0, v2, v

′

2
and the edgee0 . . .

80. . . . and again decomposeG into D1 ◦A1, choos-
ingA1 to contain the nodesv1, v

′

1
, v2, v

′

2
and the edge

e2. Thus the span~A is bounded by the cospan~D.

81. We then decapitateD0 andD1, removing their
shared (upper) part. . .

82. . . . leaving the RPO(~B, B) for ~A relative to~D.
This example gives good intuition on RPOs, but

the formal expression of the construction85 needs care.
A detailed case analysis is needed to prove the con-
struction is sound86, that it yield a relative bound87

and that this bound is indeed an RPO88.
The RPO construction for a place graph RPO is

remarkably similar, and the combination into a bi-
graph RPO is straightforward.

Minimal transitions and
congruent bisimilarity

83. We now declare that aminimal transition is one
based upon an RPO. We have also explained the need
for wide transitions, i.e. transitions indexed by a lo-
cation. The next step is to adapt our definition of
bisimilarity89. As we are in concrete bigraphs, when
defining a bisimulation containing the pair(a, b) we

84Theorem 5.11
85Construction 5.5
86Lemmas 5.6
87Lemma 5.7
88Theorem 5.8
89Definition 7.9

16

are only concerned with labelsL such that|L| is dis-
joint from |a| and |b|. This is the only adaptation
needed.

84. The proof that bisimilarity is a congruence in
a concrete WRS with RPOs is remarkably elegant.
It replaces some proofs for particular process calculi
that are long and tedious. The proof is outlined here,
emphasizing the vital role played by cutting and past-
ing IPOs. Some details involving the handling of
support equivalence90 have been omitted.

This proof is, of course, valid for concrete BRSs,
since they possess RPOs.

85. However, a process calculus (such as CCS) is
typically encoded as an abstract BRS, not a concrete
one. So, in order to complete the correspondence of
bigraphical theory with known process theories, we
must transfer the above results to abstract BRSs.

This slide outlines the procedure, which is de-
tailed in the book91. Briefly: we start with an ab-
stract BRS; we tag everything, making it concrete;
we get our minimal transition system and bisimilar-
ity congruence in the concrete BRS; finally we carry
them back to the abstract one. Of course, it has to be
proved that they survive the journey!

VI Ubiquitous Systems:
a Context for Bigraphs

Models and their tower

87. Ubiquitous systems may be very large; to un-
derstand them, we needmodelsat many levels. At
a high level, a model may use sophisticated – even
quasi-human – properties to describe the behaviour
of a system. For example, one such concept isre-
flectivity ; it represents the ability to analyse one’s
own behaviour.

A tower of models will be both high and wide.
Higher models will beabstractionsor explanations
of lower ones; at the lowest level, a model explains
a real physical system. The tower also has width;

90Definition 7.13
91Section 7.4

models of different subsystems of a system may be
combined, i.e. juxtaposed but with some elements in
common. Thus explanations of the subsystems can
be combined into an explanation of the whole.

In one sense we can regard realities, i.e. real
physical systems, as extremal models. They are ex-
tremal because they explain nothing else. But, as we
see later, the explanations of realities have different
scientific status from explanations of models.

We proceed to make these ideas more definite
with the help of examples.

The nature of models

88. What is a model? At very least, it contains a set
of entities. A programming languageP is a model,
whose entities are programs and their syntactic com-
ponents. In what sense does it explain a reality? Take
the example of an initialised computerC; we may
say thatP explainsC, or equivalently that itC re-
alisesP , in the same sense that the abstractions of
physics, such as electrons and quarks, explain physi-
cal realities. In our case, the difference is that a com-
puter is anartificial reality; and it often comes into
existence after the model which explains it. For this
reason, we may replace the word ‘explain’ by ‘spec-
ify’.

89. But we cannot say thatP explainsC unless
we declare that the entities ofP havebehaviour, de-
fined abstractly. We therefore refine our definition of
a model to include the behaviour of its entities.

Then, to say thatC realisesP , we require a spe-
cific relationship betweenP ’s defined behaviour and
theobservationswe make ofC ’s behaviour. These
observations consist of keyboard and screen events.
For example, for the program ‘x:= 3 + 5; print x’ we
expect the keyboard events that realise the program
are followed by a screen event displaying ‘8’.

In this way, we have assimilated the way pro-
grams are realised by artifacts (computers) to the way
in which a scientific model explains natural phenom-
ena. Of course this assimilation exists not only for
informatics but for any engineering discipline and its
artifacts.

Composing explanations

17

90. We have describes how a programs specifies
(or explains) an initialised computer. This explana-
tion can be unpacked into several explanations via
intervening models – each with their special notion
of entities and behaviour. And programs (say inC or
Java) may themselves be explained by logical speci-
fications. The logic’s entities are not dynamic; they
are logical formulae, and their behaviour is better
called theirmeaning. Logicians call it their ‘valu-
ation’; it gives each formula a truth-value for every
possible assignment of values to its variables.

Thus our diagram concatenates, orcomposes, four
explanations. At the top level, the explanation may
be by means of Hoare’s logic; to each programP is
assigned a set of sentences of the form{F}P{F ′},
where the formulaeF and F ′ may be called pre-
and post-conditions. The explanation is validated
by showing that wheneverF is true at the start, and
P runs to termination according to its rules of be-
haviour, thenF ′ will be true at the end. As everyone
knows, this valuation can be formalised and proven
(or disproven) by Hoare logic.

The explanation at the next level down is a com-
piler; its validation is sometimes called a proof of
compiler correctness.

Lower still, assembly code programs are mod-
elled by hardware design diagrams. This design can
be formally described and the validation can be done
formally; indeed, this has been done by automatic
reasoning for simple computers or their parts.

The lowest level consists of hardware diagrams
that specify real computers. This is a specification of
a reality, so its validation can only take the form of
observations of expected behaviour. Thus our orig-
inal explanation has been factored – and extended
– into three explanations that can be formally vali-
dated, and one that can only consist of predicted ob-
servations. We shall come back to this distinction.

Mathematicians may well regard an explanation
as a commuting square; but we shall avoid mathe-
matical terminology, because we don’t wish to con-
strain our models and explanations to be rigorous.
Some of the best and most-used explanations are done
in natural language; an outstanding example is the
Algol60 Report.

Combining explanations

91. By composing explanations we can build a tower
high. Towers also have width, arising from juxtapos-
ing orcombining models. The example here shows a
complete model of an aircraft, achieve by combining
an informatic model of its embedded software with
an electro-mechanical model of its other engineered
parts. The latter model could itself be a combination
of an electrical and a mechanical model. Such com-
binations typically involve shared behaviour; for ex-
ample, certain electrical events and software events
are shared. One can then regard the complete expla-
nation as combined from the partial explanations. It
is likely that, to be tractable, a complete explanation
must be factored in this way.

92. To model the flight of a complete aircraft, it
is not enough just to model the artifact. A further
combination must be made, this time with a meteo-
rological model – a model not of an artifact but of
a natural reality. It is only because we have assimi-
lated these two kinds of model that we can treat their
combination. And again, certain events – such as the
impact of a gust of wind – are shared between them.

93. Each of the three models we have combined
may, of course, be decomposed vertically; equally, it
may be extended upwards by further more abstract
models. For the informatic model, a fine example
of this is the recent analysis – i.e. explanation – of
the embedded software, using particular techniques
of abstract interpretation, carried out for the Euro-
pean Airbus by a French team at INRIA.

We can note two features of this impressive suc-
cess. First, several distinct aspects of the software
were explained independently, and this rendered the
combined explanation tractable; it was indeed car-
ried out with automatic assistance. Second, the to-
tal explanation was a special case of combination,
which did not rely upon events shared between the
partial explanations.

The unifying influence of model explanations

94. This slide summarises the general approach to
models that we have illustrated. We should not claim

18

to have defined models rigorously; there may be many
kinds of model, and some compositions or combi-
nations may not make sense. But, having seen ex-
amples, we must agree that both composition and
combination are essential members of our informatic
toolkit.

There is a welcome initiative of Model-Driven
Engineering (MDE) in the software engineering pro-
fession. What is sometimes missing there is the ex-
plicit presentation of thebehaviourof entities. Some-
times this is justified in the object-oriented approach,
because the behaviour can be assumed to be in terms
of objects. Our examples show that this assumption
is far from justified in general; there are many ways
to define behaviour.

95. Having assimilated the modelling of artifacts
with modelling in natural science, we have to accept
that we can never formally ascertain the behaviour of
real informatic entities with certainty. This has been
pointed out before, in particular by Michael Jackson.

Note how this applies to the combination of mod-
els. For example, in combining a model of embedded
software with an electro-mechanical model of an air-
craft we must identify the events shared between the
models. We may believe we have identified them all;
but this cannot be formally verified. For instance,
we may wrongly neglect the effect of heat exchange
between an embedded computer and its mechanical
environment.

The sheer size of software entities forms a huge
barrier to understanding them, and we have no choice
but to decompose or factorise large explanations into
smaller ones. So it is essential to aspire to rigorous
models, and (except at the very lowest level) to rig-
orous validations between them. This aspiration is a
large part of the claim that informatics has scientific
status; not only as an experimental science, but also
as an analytical science in the sense of applied math-
ematics or logic. Indeed its domain of application
will increasingly pervade our world.

96. Though we aspire to science, we are also an
engineering discipline and a production industry. For
much of our activity, modelling and explanation are
informal. To achieve a formal specification we need

first to build informally specified artifacts and play
with them.

A related point is that no model suits everyone; a
simple model – even though incomplete – may have
great value for non-expert users and executives. A
good example ismessage sequence charts; they are
designed for non-experts, but although they only de-
scribe finite fragments of behaviour, they often reveal
essential points for design. They can be seen as par-
tially explaining a more rigorous model, perhaps a
concurrent programming language.

But some informal models never achieve formal
definition. This is true even of programming lan-
guages, which are the platform for large systems upon
which we increasingly depend. Their informal def-
initions may be ambiguous, leading to implementa-
tions that are inconsistent or unintended.

As informatic systems become more complex and
autonomous, can we afford not to refine our their in-
formal specifications into formal ones? This is the
only way in which we shall truly understand such a
system, either before or after we build it.

At least part of our aspiration to science must
be to define models from which programming lan-
guages are unambiguously derived.

Ubiquitous systems: qualities and concepts

97. The two quoted visions of ubiquitous sys-
tems agree on their most prominent quality: they will
support us without our awareness. Since we are un-
aware of them (unless we are experts) we shall not
understand them. Then how do we, as a society, have
confidence in these systems?

Other engineering disciplines have grown at a
relatively slow pace, and society has a stratified un-
derstanding built upon a hierarchy of expertise. For
example, there are many levels of understanding of
electrical systems, from the electrical scientist through
the acedemic epelctrical engineer, through levels of
understanding in the construction industry, out to the
electrician who installs home systems.

The pace of growth in the informatic discipline
has been hectic by comparison; society therefore lacks
a hierarchical understanding. In the case of ubiqui-
tous systems the lack presents a real danger. There

19

is hope for this to be recognised, since the difference
from previous software systems is so great; there is
a clear incentive to build a hierarchy of expertise in
parallel with building the first generation of ubiqui-
tous systems.

98. A ubiquitous system is startlingly different from
traditional computing. It consists typically of a pop-
ulation of agents, both hardware (sensors and effec-
tors) and software, interacting and moving, with be-
haviour that is not fully determined. It (and its agents)
will take decisions autonomously; often the agents
will negotiatewith each other, willtrust or mistrust
each other, and willknow something about the sys-
tem as a whole. They will be larger than any systems
we know, will interact and perhaps merge with each
other, and adapt in other ways to their changing en-
vironment.

A simple example of interaction will be between
a system controlling (and driving) traffic on the mo-
torways, and a health care system managing patients’
well-being in their homes. If I have an emergency
then the health system will send an ambulance, which
will have to negotiate with the traffic system for a fast
passage on the motoway.

99. A huge range of concepts will be involved in
understanding such systems, and hence in specify-
ing their behaviour. The list in this slide is certainly
not exhaustive. No single model can handle all these
concepts; some tower of models is essential, in which
a higher-level concept such as trust will be repore-
sented by more concrete behaviour lower down. For
example, ‘A trustsB’ may be implemented as ‘A has
a log of previous successful interactions withB’.

Note too that properties related to safety and se-
curity are prominent.

100. In seeking to lay the foundation stones of this
model tower, i.e. the lowest level of modelling, we
look for very concrete properties. It is natural to
choose properties ofstructure andmotion – the lat-
ter being the way that structure varies with time. Struc-
ture is concerned withconnectivity and relativelo-
cality of agents. Finally, given that motion is likely
to be non-deterministic, we addstochasticsto our

list of ground-level concepts for ubiquitous systems.
Let us use the termabstract machineto denote

the way these concepts are related; this machine, spe-
cialised for each ubiquitous system, will describe pos-
sible behaviours of that system, including its inter-
nal behaviour and the way it interacts with its envi-
ronment. Call it theUbiquitous Abstract Machine
(UAM) . It differs strikingly from the von Neumann
machine, which has served for half a century as the
abstract mechanism underlying sequential comput-
ing. The success of the UAM will be the extent to
which it provides a foundational model that can im-
plement the higher models required for ubiquitous
systems.

This is how the bigraph model arose. It is a de-
velopment of the family of process calculi that have
increasingly refined the way in which interaction de-
pends upon bothplacing (locality) amdlinking (con-
nectivity). The model is only a proposal; it can only
become foundational model for ubiquitous comput-
ing if it survives serious experimental application.
For the latter, it must be seen to yield language for
programming and simulation, and equipped with ap-
propriate mechanised tools for analysis, such as model-
checking.

20

