Exercisesfor the Lectureson

Bigraphs: aModel for Mobile Agents

Exercises for Lecture |

E1 pecompPosSITION Recall the convention that we write the inner names of a bi-
graph below the regions that represent it.

For the built environmentr, draw a bigraphD representing the three agents that
are inside rooms, and a host bigraphsuch thatG = FoD. Write the interface
betweenF and D in algebraic form.

E2 DESIGNING RULES

(a) The seB1-B3 of reaction rules is very limited. To extend it a little, adduée B4
to enable an agent linked with a computer to sever this linkl, @another ruleB5 to
allow an agent unlinked to a computer to leave a room.

(b) Given a set of reaction rules, we call a property of a lmgr& aninvariant if it
holds of all possible future states. An obvious invariantof G is ‘there are exactly
five agents’. Think of five other invariants &f o G under the rule81-B5.

(c) Instead oB4 andB5, design a single rulB6 that allows an agent to leave a room,
simultaneously severing any link with the computer. Does thange affect your
invariants? Can you think of another which did not hold befor

E3 MOBILE AMBIENTS. Here is one of the reaction rules for Mobile Ambients, a
calculus which inspired the treatment of placing in bigeph
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amb,.(in,.dy | dy) | amb,.dy — amb,.(amb,.(dy | d1) | da)

Thein-node, inside an ambient namedand pointing to an ambient nameg¢dcauses
the former ambient to moviasidethe latter one. At the same time thenode dies,
but its contents are released.

We have not yet introduced the algebra of bigraphs, but itfstance it explains
itself; note that the contents of sitesl . .. are denoted byiy, d1, . . ..

Conversely, suppose that we have an ambient nameside an ambient namegd
and we want the former to mowitsidethe latter. Using a new contraliit’, analogous



to ‘in’, design a rule which will make this happen when there is@nnode inside the
x-ambient. Write down the algebraic expression of this rule.

Finally, introduce a new controthrow’. Design a rule such that ehrow-node,
pointing to an ambient named will ‘throw’ its contents into that ambient and then
die. Hint: to allow the throwing node to be anywhere outside the amliigmints to,
perhaps inside other ambients, use a reaction rule thaioaegions (unlike the rules
we have met so far).
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E4 BIGRAPHS AS A CATEGORY Assume that the identity bigraphs are defined by
idm x) = (id,idx) and composition of bigraphs b§ o F = (GP o F? G o F1).
Assuming also that place graphs and links graphs both fotegodes, prove that
bigraphs form a category.

E5 ORIGIN. Given asignaturé, what bigraphs have the origéras their outer face?
Which of these have empty support?

E6 LINKINGS. Show that every linking can be built from elementary lirgsrusing
identities, composition and product. Is composition neagsfor this?

E7 OoCCURRENCE Let us define formally what it means for one bigraph to ocaur i
another. We say thdt occursin G if and only if the equation

G=Cio(F®idr)oCy

holds for some interfacé and some bigraphS, andC.

The identityid; is important here: it allows nodes 6f; to have children irCy as
well as inF', and allowsC; andCy to share links that do not involvE. It seems to be
the natural way to define occurrence, as the following sugges

Prove thatF’ occurs inG, according to this definition, if7 is takes any of the forms
FoC,CoF, F®CorC® F. Also show that gyroundbigrapha (one whose inner
face ise) occurs in a ground bigraphif and only if g = C o a for someC.

Also prove that occurrence is transitive, i.e Hfoccurs inF' and F' occurs inG
thenE occurs inG.

You will need the equations satisfied by composition and pebth an s-category.
For simplicity, assume that the compositions and produsisuse are defined.

E8 STRATIFICATION. Let us say that a place sorting= (0, K, @) is stratifiedif,
for some functiony : © — O, the formation ruled requires that

all children of a root- : 8 have sor? ;
all children of a node : 6 have sort(0) .

The CCS place-sorting..s for CCS is a special case of stratified sorting in which
© = {p, a} (for processes and alternations), witfp) = a and¢(a) = p.

Prove that every stratified sorting is satisfied by the idiesstand symmetries, and
preserved by composition and product. Why is it necessarinferfaces to contain
sorts, in order to achieve this?



E9 DISTRIBUTED CCS. Taking the hint from process calculi with locality, let
make a simple extension of CCS which we could call ‘distelu€CS’. We add an
extra top-level syntactic entity calledsystem A systemS consists of a set afells
each containing a single process. We shall allow two formaimunication; one (as
we have now) will allow communication only within a cell, atite other will allow
communication between processes whether or not in the seline ¢

So we extend the syntax class of actignand we add a syntax class of systems,
as follows:

o= T ‘ T ’ x

S == (P) } S, S

whereT ‘throws’ an output that can be received anywhere, @Rl is a cell containing
the process.

How should structural congruence be adjusted? What chaogéddhe made to the
signaturel..s and the sorting-..s? What extension must be made to the translation
from CCS to Bs.s? (Changes to the dynamics ofGBs will be the subject of later
exercises.)
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E10 DISTRIBUTED REACTION. Continuing Exercise E9, what extra reaction axioms
and rules do we need, beyond those in the slide ‘Reaction & G€allow communi-
cation both within a cell and across cell boundariébfit: it is not as elegant as you
might hope!

E11 ALGEBRA. Write down in algebraic form the ground reaction rgter’) =
(R.d, R'.d") from the parametric CCS rule shown in the slide ‘Reaction @Si-
graphs’, assuming a parametér= dy ® --- ® ds, whered; has outer namey;
(0<i<3)andY =4, Y;.

Give the interfaces oR, ', d, r andr’, assuming the stratified sorting for CCS.

E12 ACTION AT A DISTANCE. Continuing Exercise E10, we now wish to model
thrown reactions in the bigraphs for CCS. What extension éled to the dynamic
signature of B5.s?

Adapt the parametric rule of the slide ‘Reaction in CCS kpgis to allow thrown
reactions to occur both within and between cells.

E13 BEHAVIOURAL EQUIVALENCE. Consider the two CCS processes
P=2z.(y.0+ 2.0) andQ = z.y.0 + z.2.0

wherez, y andz are distinct channel names. In what sense do they behavartie?s
In what sense, if any, do they behave differently?

E14 BISIMILARITY. As part of the original proof for CCS that bisimilarity is arc
gruence, prove that iy ~ P, thenP; |Q ~ P> |@Q. Hint: To do this, define the
relation

SE{(P1|Q,P,|Q) | Pi~P,, Q any process.
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To prove it is a bisimulation, consider any transitiBn| -, Ry; you have to find
an R, such thatP; | Q -+, Ry and (R1, R2) € S. To do this consider all the ways
in which the transition ofP; | @ could be inferred from the transition rules (for this
exercise ignore the rule involving), showing that in each case an approprigtecan
be found.

E15 MATCHING A REDEX. The slides called ‘What’s a minimal bound?’ illustrate
how the minimal bounds for a pa(t, ) depend on the overlap betweeandr. This
overlap can be defined by tagging their nodes with identifiéirss not obvious how
many so-calleagnatcheghere are. This exercise is designed to give a flavour of how to
answer this question. (For the full treatment, see the d&on ofconsistent spanis
the book.)

The slides show two matchings betweemndr, and the corresponding bounds
(L, D). In the first case, they share their left-hardd-nodes; in this case prove that,
to achieveL oca = D or, theycannotshare theiget-nodes.

In the second case,shares its left-hansknd-node withr’s right-handsend-node;
in this case prove that, to achie® a« = D or, theymustshare theiget-nodes.

What other matches betweerandr are possible, to achieveoa = D or?
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E16 BUD FISSION. Our reaction rules for membrane budding deserve a clos&r lo
The rule for bud fission removes the gates that allow partiglgration, but the bud
remains a bud, rather than becoming a new brane. Therefoamitot behave like a
brane, and create buds itself. Before that it must ‘beconbeaae.

Without knowing the biological reality, let us assume tlnegt process of bud fission
allows the coat proteins to be shed, and after that the buzhbe a fully fledged brane.

Make this happen, perhaps by adding new controls and addingpdifying reac-
tion rules.

E17 PARTICLE MIGRATION. The rule for particle migration allows particles to move
in both directions between a brane and an incipient bud. Whemssgign rates to
reaction rules, the rate assigned to this rule will not fanxane direction of movement
over the other. In reality, it may be that movement of pagtdhto the incipient bud is
actually faster than in the other diection.

To model this, we need two rules with different rates. Dediggse two rules, to
replace our present rule for particle migration.

E18 STOCHASTIC SIMULATION. To say that an event has rateneans that the prob-
ability that it occurs (at or) later than timte> 0 is e=#t. Suppose that reactions are
possible in a state, with ratesp,, ..., p,. Letp = > | p;. Prove that the probability
p; of thei'h reaction occurring first ig; /p.

This is the basis of a stochastic interpreter. In each gtiteiscovers the rates and
results of the possible reactions, and picks the next gtaten-deterministically, with
the probability of the reactiop—> ¢’ computed as above.
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Hint: What is probability that all the reactions except iHeoccur at or later than
time t? What is the probability that th&? reaction occurs in the infinitesimal time
interval (¢, t + 6t)? From these two, compute the required result by integration
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E19 TRACKING. Consider a simple parametric rl&, R’,n), in which anA-node
is lost and theB- andC-nodes swap their contents.

This description is misleading! Which-node is lost? Or maybe both are lost and
a new one created? Hitherto, in abstract bigraphs, we haertad nothing about
whether nodes keep their identity through a reaction. Wigiging, we can do so.

In concrete bigraphs, we can enrich a rule to a quadrplé?’, n, 7) by adding a
partial mapr : |R’| — |R| called atracking map It tells us whether an entityin R’ is
newly created (i.er(s) undefined), or if not, where it can be tracked tafin Answer
several questions:

(a) Is there any reason that a node should not change itsottmough a reaction?

(b) Let(r,r") be a ground rule generated b}, R’,n, 7). How would you extend
the tracking map tdr’| — |r|?

(c) If g——> ¢’ is a reaction based updn, '), how would you extend the tracking
map tolg'| — [g|?

d) If g—>g—> oo ——>g, = ¢’, how would you define a tracking map
lg’| — |g| for the whole reaction sequence?

(e) Do you think tracking—perhaps generalised—is a way taek# causal struc-
ture for bigraphical dynamics?
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E20 A LINK GRAPH RPO. Find the RPQB, B) of the following boundD for A:

z1 Z2 Yo Y1 Y2 Y3
(W ()
AQ Al
OO W @ ©

E21 RPOs FOR BIGRAPHS In bigraphs, letD be a bound ford. Then we can
construct a place graph RR@P, BP) for AP relative toDP. We can also construct a

link graph RPQ(BL, BY) for AL relative toDL. It also turns out that the triple3, B),
where

Dy

B; = (BF,BY) (i=0,1) and B = (B°, B") ,

is well formed, because the node-sets in each pair coincide.
Using this fact, and the properties of combination, prow (8, B) is indeed an
RPO for A relative toD.

E22 BEHAVIOURAL CONGRUENCE Complete the proof of congruence for minimal
transitions in two respects:

(1) To ensure thaf is a bisimulation, we require thélj, b}) € S, i.e. that for some
contextC” we have(b;, b}) = (C' oay, C' oa’) with ag ~ af.
To achieve this, first note that (a) is based on a ground (itgle-(,) with b, =
Eyor{y; similarly, (c) is based on a ground rule, ;) with aj = D or}. Then
complete the argument.

(2) Since we are given the transition©f a( we know thatE, is an active context.
To justify the constructed transition f@f oca; we need that; is also active.
Prove this claim.

We have also ignored some details concerning support dgooe; these can be found
in the book.



