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Exercises for the Lectures on

Bigraphs: a Model for Mobile Agents

Exercises for Lecture I

E1 DECOMPOSITION. Recall the convention that we write the inner names of a bi-
graph below the regions that represent it.

For the built environmentG, draw a bigraphD representing the three agents that
are inside rooms, and a host bigraphF such thatG = F ◦D. Write the interface
betweenF andD in algebraic form.

E2 DESIGNING RULES.
(a) The setB1–B3 of reaction rules is very limited. To extend it a little, add arule B4
to enable an agent linked with a computer to sever this link, and another ruleB5 to
allow an agent unlinked to a computer to leave a room.

(b) Given a set of reaction rules, we call a property of a bigraph B an invariant if it
holds of all possible future states. An obvious invariant ofH ◦G is ‘there are exactly
five agents’. Think of five other invariants ofH ◦G under the rulesB1–B5.

(c) Instead ofB4 andB5, design a single ruleB6 that allows an agent to leave a room,
simultaneously severing any link with the computer. Does this change affect your
invariants? Can you think of another which did not hold before?

E3 MOBILE AMBIENTS . Here is one of the reaction rules for Mobile Ambients, a
calculus which inspired the treatment of placing in bigraphs.
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The in-node, inside an ambient namedx and pointing to an ambient namedy, causes
the former ambient to moveinside the latter one. At the same time thein-node dies,
but its contents are released.

We have not yet introduced the algebra of bigraphs, but in this instance it explains
itself; note that the contents of sites0, 1 . . . are denoted byd0, d1, . . ..

Conversely, suppose that we have an ambient namedx inside an ambient namedy
and we want the former to moveoutsidethe latter. Using a new control ‘out’, analogous
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to ‘in’, design a rule which will make this happen when there is anout-node inside the
x-ambient. Write down the algebraic expression of this rule.

Finally, introduce a new control ‘throw’. Design a rule such that athrow-node,
pointing to an ambient namedx, will ‘throw’ its contents into that ambient and then
die. Hint: to allow the throwing node to be anywhere outside the ambientit points to,
perhaps inside other ambients, use a reaction rule that has two regions (unlike the rules
we have met so far).

Exercises for Lecture II

E4 BIGRAPHS AS A CATEGORY. Assume that the identity bigraphs are defined by
id〈m,X〉

def
= 〈idm, idX〉 and composition of bigraphs byG ◦F

def
= 〈GP

◦FP, GL
◦F L〉.

Assuming also that place graphs and links graphs both form categories, prove that
bigraphs form a category.

E5 ORIGIN. Given a signatureK, what bigraphs have the originǫ as their outer face?
Which of these have empty support?

E6 LINKINGS . Show that every linking can be built from elementary linkings using
identities, composition and product. Is composition necessary for this?

E7 OCCURRENCE. Let us define formally what it means for one bigraph to occur in
another. We say thatF occursin G if and only if the equation

G = C1 ◦ (F ⊗ idI) ◦C0

holds for some interfaceI and some bigraphsC0 andC1.
The identityidI is important here: it allows nodes ofC1 to have children inC0 as

well as inF , and allowsC1 andC0 to share links that do not involveF . It seems to be
the natural way to define occurrence, as the following suggests.

Prove thatF occurs inG, according to this definition, ifG is takes any of the forms
F ◦C, C ◦F , F ⊗ C or C ⊗ F . Also show that agroundbigrapha (one whose inner
face isǫ) occurs in a ground bigraphg if and only if g = C ◦a for someC.

Also prove that occurrence is transitive, i.e. ifE occurs inF andF occurs inG
thenE occurs inG.

You will need the equations satisfied by composition and product in an s-category.
For simplicity, assume that the compositions and products you use are defined.

E8 STRATIFICATION. Let us say that a place sortingΣ = (Θ,K,Φ) is stratified if,
for some functionφ : Θ→Θ, the formation ruleΦ requires that

all children of a rootr : θ have sortθ ;
all children of a nodev : θ have sortφ(θ) .

The CCS place-sortingΣccs for CCS is a special case of stratified sorting in which
Θ = {p, a} (for processes and alternations), withφ(p) = a andφ(a) = p.

Prove that every stratified sorting is satisfied by the identities and symmetries, and
preserved by composition and product. Why is it necessary forinterfaces to contain
sorts, in order to achieve this?
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E9 DISTRIBUTED CCS. Taking the hint from process calculi with locality, letus
make a simple extension of CCS which we could call ‘distributed CCS’. We add an
extra top-level syntactic entity called asystem. A systemS consists of a set ofcells,
each containing a single process. We shall allow two forms ofcommunication; one (as
we have now) will allow communication only within a cell, andthe other will allow
communication between processes whether or not in the same cell.

So we extend the syntax class of actionsµ, and we add a syntax class of systems,
as follows:

µ ::= x
∣

∣ x
∣

∣ x
S ::= (|P |)

∣

∣ S, S

wherex ‘throws’ an output that can be received anywhere, and(|P |) is a cell containing
the processP .

How should structural congruence be adjusted? What change should be made to the
signatureKccs and the sortingΣccs? What extension must be made to the translation
from CCS to BGccs? (Changes to the dynamics of BGccs will be the subject of later
exercises.)

Exercises for Lecture III

E10 DISTRIBUTED REACTION. Continuing Exercise E9, what extra reaction axioms
and rules do we need, beyond those in the slide ‘Reaction in CCS’, to allow communi-
cation both within a cell and across cell boundaries?Hint: it is not as elegant as you
might hope!

E11 ALGEBRA. Write down in algebraic form the ground reaction rule(r, r′) =
(R.d,R′.d′) from the parametric CCS rule shown in the slide ‘Reaction in CCS bi-
graphs’, assuming a parameterd = d0 ⊗ · · · ⊗ d3, wheredi has outer namesYi

(0 ≤ i ≤ 3) andY =
⊎

i Yi.
Give the interfaces ofR,R′, d, r andr′, assuming the stratified sorting for CCS.

E12 ACTION AT A DISTANCE. Continuing Exercise E10, we now wish to model
thrown reactions in the bigraphs for CCS. What extension is needed to the dynamic
signature of BGccs?

Adapt the parametric rule of the slide ‘Reaction in CCS bigraphs’ to allow thrown
reactions to occur both within and between cells.

E13 BEHAVIOURAL EQUIVALENCE . Consider the two CCS processes

P = x.(y.0 + z.0) andQ = x.y.0 + x.z.0
wherex, y andz are distinct channel names. In what sense do they behave the same?
In what sense, if any, do they behave differently?

E14 BISIMILARITY . As part of the original proof for CCS that bisimilarity is a con-
gruence, prove that ifP1 ∼ P2 thenP1 |Q ∼ P2 |Q. Hint: To do this, define the
relation

S
def
= {(P1 |Q,P2 |Q) | P1∼P2, Q any process} .
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To prove it is a bisimulation, consider any transitionP1 |Q
µ

−→ R1; you have to find
anR2 such thatP2 |Q

µ
−→ R2 and(R1, R2) ∈ S. To do this consider all the ways

in which the transition ofP1 |Q could be inferred from the transition rules (for this
exercise ignore the rule involving≡), showing that in each case an appropriateR2 can
be found.

E15 MATCHING A REDEX. The slides called ‘What’s a minimal bound?’ illustrate
how the minimal bounds for a pair(a, r) depend on the overlap betweena andr. This
overlap can be defined by tagging their nodes with identifiers. It is not obvious how
many so-calledmatchesthere are. This exercise is designed to give a flavour of how to
answer this question. (For the full treatment, see the discussion ofconsistent spansin
the book.)

The slides show two matchings betweena andr, and the corresponding bounds
(L,D). In the first case, they share their left-handsend-nodes; in this case prove that,
to achieveL ◦a = D ◦ r, theycannotshare theirget-nodes.

In the second case,a shares its left-handsend-node withr’s right-handsend-node;
in this case prove that, to achieveL ◦a = D ◦ r, theymustshare theirget-nodes.

What other matches betweena andr are possible, to achieveL ◦a = D ◦ r?

Exercises for Lecture IV

E16 BUD FISSION. Our reaction rules for membrane budding deserve a closer look.
The rule for bud fission removes the gates that allow particlemigration, but the bud
remains a bud, rather than becoming a new brane. Therefore itcannot behave like a
brane, and create buds itself. Before that it must ‘become’ abrane.

Without knowing the biological reality, let us assume that the process of bud fission
allows the coat proteins to be shed, and after that the bud becomes a fully fledged brane.

Make this happen, perhaps by adding new controls and adding or modifying reac-
tion rules.

E17 PARTICLE MIGRATION. The rule for particle migration allows particles to move
in both directions between a brane and an incipient bud. When we assign rates to
reaction rules, the rate assigned to this rule will not favour one direction of movement
over the other. In reality, it may be that movement of particles into the incipient bud is
actually faster than in the other diection.

To model this, we need two rules with different rates. Designthese two rules, to
replace our present rule for particle migration.

E18 STOCHASTIC SIMULATION. To say that an event has rateρ means that the prob-
ability that it occurs (at or) later than timet ≥ 0 is e−ρt. Suppose thatn reactions are
possible in a stateg, with ratesρ1, . . . , ρn. Letρ =

∑n

i=1
ρi. Prove that the probability

pi of theith reaction occurring first isρi/ρ.
This is the basis of a stochastic interpreter. In each stateg it discovers the rates and

results of the possible reactions, and picks the next stateg′ non-deterministically, with
the probability of the reactiong ⊲ g′ computed as above.
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Hint: What is probability that all the reactions except theith occur at or later than
time t? What is the probability that theith reaction occurs in the infinitesimal time
interval(t, t + δt)? From these two, compute the required result by integration.

Exercises for Lecture V

E19 TRACKING. Consider a simple parametric rule(R,R′, η), in which anA-node
is lost and theB- andC-nodes swap their contents.

B C

A A A

B C

R
′

R

This description is misleading! WhichA-node is lost? Or maybe both are lost and
a new one created? Hitherto, in abstract bigraphs, we have asserted nothing about
whether nodes keep their identity through a reaction. With tagging, we can do so.

In concrete bigraphs, we can enrich a rule to a quadruple(R,R′, η, τ) by adding a
partial mapτ : |R′| ⇀ |R| called atracking map. It tells us whether an entitys in R′ is
newly created (i.e.τ(s) undefined), or if not, where it can be tracked to inR. Answer
several questions:

(a) Is there any reason that a node should not change its control through a reaction?

(b) Let (r, r′) be a ground rule generated by(R,R′, η, τ). How would you extend
the tracking map to|r′| ⇀ |r|?

(c) If g ⊲ g′ is a reaction based upon(r, r′), how would you extend the tracking
map to|g′| ⇀ |g|?

(d) If g ⊲ g1 ⊲ · · · · · · ⊲ gn = g′, how would you define a tracking map
|g′| ⇀ |g| for the whole reaction sequence?

(e) Do you think tracking—perhaps generalised—is a way to extract a causal struc-
ture for bigraphical dynamics?
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E20 A LINK GRAPH RPO. Find the RPO( ~B,B) of the following bound~D for ~A:

u0 u1

v1

u2 u0 u2

v0

v0 v2v2

u1

y0x0 x1 x2 y2 y3

v1

y1

D0
D1

A1A0

E21 RPOS FOR BIGRAPHS. In bigraphs, let~D be a bound for~A. Then we can
construct a place graph RPO( ~BP, BP) for ~AP relative to ~DP. We can also construct a

link graph RPO( ~BL, BL) for ~AL relative to ~DL. It also turns out that the triple( ~B,B),
where

Bi = 〈BP

i , BL

i 〉 (i = 0, 1) and B = 〈BP, BL〉 ,

is well formed, because the node-sets in each pair coincide.
Using this fact, and the properties of combination, prove that ( ~B,B) is indeed an

RPO for ~A relative to~D.

E22 BEHAVIOURAL CONGRUENCE. Complete the proof of congruence for minimal
transitions in two respects:

(1) To ensure thatS is a bisimulation, we require that(b′0, b
′
1) ∈ S, i.e. that for some

contextC ′ we have(b′0, b
′
1) = (C ′

◦a′
0, C

′
◦a′

1) with a′
0 ∼ a′

1.

To achieve this, first note that (a) is based on a ground rule(r0, r
′
0) with b′0 =

E0 ◦ r′0; similarly, (c) is based on a ground rule(r1, r
′
1) with a′

1 = D′
1 ◦ r′1. Then

complete the argument.

(2) Since we are given the transition ofC ◦a0 we know thatE0 is an active context.
To justify the constructed transition forC ◦a1 we need thatE1 is also active.
Prove this claim.

We have also ignored some details concerning support equivalence; these can be found
in the book.


