
DRAFTThe Notion of Proofin Hardware Veri�cationAvra CohnUniversity of Cambridge Computer LaboratoryNew Museums Site, Pembroke StreetCambridge, CB2 3QG, England.Abstract:Recent advances in the �eld of hardware veri�cation have raised somefresh (and some familiar) issues to do with the scope and limitations offormal proof. In this note, some of these are considered in the contextof the Viper veri�cation project. Viper is a microprocessor designed byW. J. Cullyer, C. Pygott and J. Kershaw, of the Royal Signals and RadarEstablishment of the U.K. Ministry of Defense, for use in safety-criticalapplications. Much to their credit, the designers intended from the startthat Viper be formally veri�ed; they presented Viper's more abstract spec-i�cations in a language suitable for formal reasoning, and they placed thedesign in the public domain. Viper microprocessors are currently beingmarketed as veri�ed chips. The formal proof aspects of the veri�cationwork have been carried out at the Computer Laboratory of the Universityof Cambridge. To date, some important properties of a register-transferlevel model of Viper, relative to a more abstract functional speci�cation,have been proved (by the author) using the HOL proof generating system.`Veri�ed' systems such as Viper seem likely to become commonplace inthe near future. Whilst proofs about the abstract models of such systemsare obviously a vital contribution to our trust in them, it is also impor-tant (not least in safety-critical applications) that the limitations of theapproach be understood.Some of the material in this note appears in [7].1 IntroductionThe veri�cation of hardware systems has recently become an attractive applicationarea for theorem provers for several reasons. First, hardware veri�cation is in manyways a more tractable problem than software (program) veri�cation; it is often eas-ier to write a clear speci�cation which captures the functionality of a system forhardware than for software { and hardware proofs tend to have a certain unifor-mity of structure which is well suited to mechanical treatment. Second, there are1



compelling economic reasons for trying to get hardware correct early on, as correct-ing errors in a chip can involve expensive re-fabrication, not merely the editing oftext. Finally, it is becoming increasingly important to invest time and e�ort in theveri�cation of hardware which is intended for safety-critical applications.Several issues pertaining to the scope and limitations of veri�cation have recentlybeen raised by the project to formally verify aspects of the Viper microprocessorat the University of Cambridge. In this note, some of the issues are discussed;although this is done in the context of Viper, the remarks may be more general.The intention is to encourage intelligent understanding of the sense in which a pieceof hardware can be called \veri�ed", and not to undermine research in veri�cation,or to discredit this vital work. As devices begin to appear on the market purportingto be \veri�ed" or \mathematically proved" { possibly with the implication thatthey cannot therefore fail { a sharp watch must be kept for unquali�ed claims, andfor failures to convey the sense, extent and nature of the veri�cation e�ort. Thisapplies particularly to very hazardous applications such as nuclear power plantcontrol.Various computing systems in recent years have been claimed to do veri�cation orproof, or something akin, when in fact they were doing something distinct from (ifno less valuable than) formal proof in an explicit and well-understood logic. Thatis, they have done simulation, or reasoning in ad hoc logical systems, or informalreasoning, etc. For present purposes, \veri�cation" is taken to mean formal proofin the usual mathematical sense of a sequence of valid inference steps.2 The Viper MicroprocessorViper [8,9,20,10,11,24] is a microprocessor designed by W. J. Cullyer, C. Pygottand J. Kershaw at the Royal Signals and Radar Establishment of the U.K. Ministryof Defense (henceforth \RSRE") for use in safety-critical applications such as civilaviation and nuclear power plant control. Viper chips are now commercially avail-able. They are currently �nding uses in areas such as the deployment of weaponsfrom tactical aircraft [12]. To support safety-critical applications, Viper has a par-ticularly simple design; for example, interrupts in the usual sense are not permitted;the instruction set is kept to a minimum; and the machine is designed to stop if itdetects itself in an error or illegal con�guration. (The stopping feature is intendedto support the running of several Vipers simultaneously for increased reliability.)The simplicity of the design makes it amenable to formal analysis using currenttechniques.Aspects of the formal, mechanical veri�cation of Viper were subcontracted to theHardware Veri�cation Group at the University of Cambridge from early 1986 tolate 1987. The results of this project are reported in [6] and [7]. A pilot study forthe main proof is reported in [5].3 The HOL Veri�cation SystemThe veri�cation of Viper has been approached within HOL (Higher Order Logic)[2,14,15], a theorem-proving system derived from R. Milner's LCF system (Logicfor Computable Functions) [13,23] and based on the version of higher order logic2



formulated by A. Church [3]. HOL was implemented by M. Gordon at the Uni-versity of Cambridge and is currently in use by the Hardware Veri�cation Groupat Cambridge and at several sites throughout the world. \Veri�cation" was un-derstood by Viper's designers at RSRE (as by the LCF and HOL communities)to mean complete, formal proof in an explicit and well-understood logic. Proofsin HOL are normally constructed interactively, combining machine assistance withuser-guidance, and not fully automatically (although the extent to which this is sois a function of user-designed proof strategies).4 The Models of ViperThe designers of Viper, who deserve a great deal of credit for the promotion offormal methods, intended from the start that Viper be formally veri�ed. Theirapproach was to specify Viper in a hierarchy of decreasingly abstract levels, each ofwhich concentrated on some speci�c aspect of the design. That is, each level was tobe a speci�cation of the more abstract level above it (if any), and an implementationof the one below (if any). The veri�cation e�ort would then be simpli�ed by beingstructured according to the abstraction levels. These levels of description werecharacterized by the design team at RSRE. The �rst two levels, and part of thethird, were written by them in a logical language amenable to reasoning and proof(a predecessor of HOL's higher order logic). (The systematic study of abstractionhierarchies and mechanisms in the modelling of hardware is discussed by T. Melhamin [21] and [22].)The highest level speci�cation of Viper is a simple state transition function de-scribing the way in which an abstract state (representing Viper's memory and itsvisible registers) changes as Viper executes each of its possible instruction types(see [8] and [6] for details). The speci�cation is thus an operational semantics ofthe instruction set. It characterizes no more than the fetch-decode-execute cycle ofViper; it does not specify all of the possible behaviours of the actual microprocessor.In particular, the capacity of Viper to be reset externally by an operator (i.e. tohave its registers cleared from the outside) is not covered; nor is its capacity for`timing itself out' due to memory failure after some �xed number of clock cycles.As will be discussed, any veri�cation of a more concrete model relative to this toplevel speci�cation must consequently be limited to the behaviour manifest at thetop level. That is, no such proof can establish that Viper resets or times-out in anacceptable way.The next (more concrete) level is called the major state level. At this level, aninstruction is processed via a sequence of events rather than in a single step. Anevent may a�ect the visible registers or the memory of the top level speci�cation, orany of several internal registers (which comprise the internal state). These internalregisters are still part of an abstract view of Viper, and do not necessarily correspondto parts of the actual Viper chip. The `next' event in a sequence is determinedaccording to the current event, the visible state, and the internal state; and someevents are recognizably terminal and some initial, in the sequences. From all of this,a new state transition function can be extracted and its properties established byproof. In particular, the cumulative result of the sequence of events which processeseach of the instruction types can be inferred, and then compared to the result ofthe corresponding high level state transformation function.3



The `block model' is the most concrete level considered in the formal veri�ca-tion project (although the RSRE design continues down to the gate-level circuitdesign, which could in principle also be formally veri�ed). The block model waspresented by the designers in a form which was partly pictorial and partly textual(and functional). The model consists of `blocks', that is, computational units suchas Viper's instruction decoder, its arithmetic-logic unit (ALU), and its memory.Information passes between blocks, and to/from the outside world at �xed clockcycles. The functional speci�cations describe only the internal combinational logicof the various blocks. Neither their behaviour over time (e.g. the delay units whichgive them memory), nor the connections between separate blocks are covered bythe functional speci�cations; the pictorial speci�cation �lls in the rest of that infor-mation. Much as at the major state level, the concept of single instructions beingprocessed via sequences of steps is built into the block model. In addition, severalsmaller steps implement each major step. The block de�nitions and the pictorialinformation were supplied by the designers at RSRE; a fully formal description hadto be constructed from these sources, and the block machine's behaviour patternshad to be logically inferred from the formal description.The block model isolates the computational behaviour of Viper; to relate it toeither of the more abstract speci�cations (the top level speci�cation or the majorstate model), computational behaviours such as additions, shifts, negations andcomparisons had to be considered in detail. The block model also speci�es moreof the actual behaviours of Viper (e.g. the behaviour of resets and time-outs)than appear in the top level formal speci�cation. At the block level, one begins toapproach the functional units and connectivity of the actual circuit, though still ina rather abstract way.5 The Viper Veri�cation ProjectThe correctness proof of the major state level of Viper relative to its top levelspeci�cation was straightforward (if lengthy) in HOL, since the possible executionsequences of the model were explicitly given. That is, the conditions under whichone event follows another were explicitly de�ned. The proof consisted, therefore, ofa number of cases (one for each instruction type), in which the cumulative e�ectsof the sequence of events processing that instruction type were inferred from thede�nition of the model. In each case, the e�ects were then proved equivalent to thee�ects speci�ed at the top level, for components appearing at both levels. It alsohad to be proved that every possible execution sequence has been considered, tojustify the case analysis.The correctness of the block model is more di�cult to establish. The �rst task inthe veri�cation e�ort was to derive a functional speci�cation of the block model ina formal logic suitable for reasoning and proof, since it is not obvious how to reasonformally about a schematic diagram indicating the transfer of information to andfrom its sub-units simultaneously.The second task was to infer the behaviour of the block model using its functionalrepresentation. As in the major state level proof, it �rst had to be inferred, for eachinstruction type, what were the accumulated e�ects on the registers of the blockmodel after all of the steps which process that instruction had been performed. Thisinvolved extracting from the formal representation: (i) the conditions under which4



one step lead to another, and (ii) any assumptions that had to be made about initialstates and `normal' behaviour in order to resolve the state transitions. (These wereimplicitly determined by the functional representation of the block model; at themajor state level, the conditions were given explicitly, and no assumptions wererequired.) Normal behaviour means behaviour which is within the scope of thehigh level speci�cation. For example, as mentioned, it had to be assumed in theveri�cation of the Viper block model that the machine was not reset at any timeduring the course of processing an instruction; and that the block machine's time-out facility was never invoked. The initial conditions, for example, had to includethe assumptions that at the start of processing each instruction (i) the time-outcounter was not set at its maximum value, and (ii) no errors were being signalled.It also had to be shown, as before, that the state transition conditions covered alllogical possibilities, to ensure that no possible instruction types had been omittedfrom the analysis.The third task would be to verify the results of the block model relative to theresults of the top level transformation function at each instruction type. The �rstand second tasks of the block model veri�cation have been completed to date,giving a provably correct and complete description of the behaviour of the formalrepresentation of the block model (under the assumptions mentioned above); butfor practical reasons, the third task has not been completed. All three tasks arediscussed in [7].6 Limitations of Proof in Hardware Veri�cationThe notion of formal proof began to receive serious attention in its own right justbefore the age of computing. Since computers have been used to assist with formalproofs, there has been renewed discussion of what proof is and what it actuallyensures. This may be in part because there is no prior reason to insist that machinesconstruct proofs in the way that mathematicians do; nor is there yet any well-agreed`standard of evidence' that a proof has been successfully completed by a machine,of the sort that mathematicians are required to supply. In this section, attention isdrawn to some of the fresh concerns which have been raised by the Viper veri�cationproject.6.1 Chips and Intentions Cannot be Veri�edIdeally, one would like to prove that a chip such as Viper correctly implementedits intended behaviour in all circumstances; we could then claim that the chip'sbehaviour was predictable and correct, as intended. In reality, neither an actualdevice nor an intention are objects to which logical reasoning can be applied. Theintended behaviour rests in the mind of the architects and is not itself accessible. Itcan, of course, be reported in a formal language { but not with checkable accuracy.Similarly, a material device can only be observed and measured; it cannot be veri-�ed. Again, a device can be described in a formal way, and the description veri�ed;but as with intentions, there is no way to assure the accuracy of the description.Indeed, any description is bound to be inaccurate in some respects, since it cannotbe hoped to mirror an entire physical situation even at an instant, much less as itevolves through time; a model of a device is necessarily an abstraction (a simpli�-5



cation). In short, veri�cation involves a pair of models which bear an uncheckableand possibly imperfect relation to the intended design and to the actual device.Although these points seem obvious, they are not merely philosophical quibbles.Errors were found both in the top level speci�cation of Viper and in its majorstate model, none of which was either intended by the designers or evident in themanufactured Viper chips. (These errors are discussed in [6].) The errors were fairlyminor and quickly repaired, but their presence highlights the rather limited sensein which an actual product can be said to have been veri�ed against the architect'sintended design or against the actual chip: there remains the danger that { secureas the proof may be { the models themselves may be wrong.There is no complete solution to this problem, but there are avenues of approachto be explored. In particular, as we produce clearer and more concise and readableabstract speci�cations, their intuitive plausibility should be increased. At the otherextreme, as we devise more realistic and detailed models, their correspondence withactual devices should become more convincing. Attention has been drawn to thesepoints by T. Melham [21].6.2 Links between Designer, Veri�er and ManufacturerThat the actual Viper chips appear not to su�er from the errors found in the modelsalso illustrates the still quite abstract nature of the research described in [6] and [7].The chips were already in the process of being built by the time the subcontractedveri�cation work began on the major state model at Cambridge; and they had beenbuilt and were being advertised by the time the work on the block model was un-dertaken. Whilst it is possible in theory that an error in an abstract speci�cationhad been re
ected in the circuit design given by RSRE to the manufacturers { theabstract speci�cations were no doubt in the architects' minds while they designedthe circuit { it seems more likely, because of the indirect links between the designers'abstract speci�cations, the circuit design process, the manufacturers, and the veri-�ers, that problems in the speci�cation would not propagate down to chip problems.In fact, it would seem to be the case that the manufacturers worked from di�erent`design texts' than the veri�ers. Until common models in a common language areadopted, we are only studying models which bear an informal connection to thedevices they are modelling. In this respect, too, there is good reason to hope thata common language will be agreed and an integrated approach taken in the future.6.3 The Lack of a Fully Formal DescriptionAt more concrete levels of description, the situation may be further complicatedby not beginning with fully formal descriptions. For example, Viper's top levelspeci�cation and its major state level were both supplied in a logical language; butits block level model was given was partly formally and partly pictorially (as wasnatural). Combining these two parts required both ingenuity and some guesswork.The guesses were based on the co-incidence of line names, on the names of boundvariables in function de�nitions, and on annotations in the text of the de�nitions.None of these notational devices can be regarded as a formal speci�cation. Beforeveri�cation can be meaningfully applied in such cases, a fully formal descriptionmust be produced. Once again, however, accuracy cannot be checked; the new6



formal description may be a 
awed translation of the pictorial speci�cation, or a
awed combination of picture and text, but this cannot be rigorously tested. Onemay therefore end up proving properties of a formal description bearing an imperfectrelation to the intended design - and possibly never know it.In fact, this was a problem in the block level representation of Viper; in theauthor's �rst attempt at a formal representation of the Viper block diagram, therewere a pair of interchanged line names. This 
awed description was subsequentlyused to deduce plausible-looking block results. The error in the representationwas discovered (rather later in the proof) and only by an unsystematic inspection.This problem of the accuracy of a representation could appear at the gate level,the transistor level, or any other level at which a linguistic description has to beconstructed creatively from a pictorial one, i.e. at which diagrams are the usualand natural mode of speci�cation. This further limits the sense in which a systemcan be called veri�ed.This problem is at least partly addressed by the previous section; if the designers,for example, are in a position to read and scrutinize the formal description derivedfrom the informal speci�cation, they may well be able to spot mistakes, particularlythose which require a deep understanding of the design.6.4 The Level and Completeness of the ModelsAs veri�cation relates a less abstract implementation to a more abstract speci�ca-tion, it is important to be explicit about the level of abstraction and the degree ofcompleteness of the models in question. We say that a device has been veri�ed \atthe major state level" or \at the register transfer level", and so on { it is not enoughto say simply \veri�ed". For example, Viper's major state machine has been fullyveri�ed with respect to its top level speci�cation; but the proof establishing theequivalence of these two sets of results depends only on the 
ow of control in thetwo models, and does not depend on any of the computational behaviours of Viper.(That is, the same formal expression represents the arithmetic-logic unit in bothlevels, so that expression is never evaluated.) Therefore, the fact that Viper hasbeen veri�ed \at the major state level" does not actually ensure very much; theessence of the microprocessor (the behaviour of its ALU) has not, at that stage,been treated. Viper certainly could not, on that basis alone, be usefully called\veri�ed".The block model of Viper does concern itself with Viper's arithmetic and logicaloperations, and with the transfer of information between registers and memory.Thus verifying Viper to the block level would be a signi�cant step towards a \ver-i�ed" microprocessor. (In any case, the proof has not been fully completed at thislevel.) However, the block model does not concern itself with gate layout, tran-sistors, electrical e�ects, timing problems, or many similar areas in which unsus-pected errors would seem particularly likely to be appear. (In those areas, enormousamounts of research remain to be done on �nding useful, tractable models, even be-fore we begin to verify them.) Thus, again, the term \veri�ed" cannot be properlyused without an indication of the levels of the models involved. At every level ofabstraction, some properties are included and some ignored..In addition, the models involved may be incompletely speci�ed. For example,Viper's highest level speci�cation is complete only for the processing of instructions,7



and does not cover such features as resetting or timing-out the machine, or otherpossible behaviours speci�ed at the block level. This, from the outset, restrictsany analysis to the high level behaviour alone, again missing the more subtle andperplexing issues.6.5 Normality AssumptionsIn discussing what was proved in the Viper veri�cation project, it was indicatedthat certain assumptions had to be made (about initial and normal behaviours) inorder to infer the cumulative e�ects of processing instructions. These assumptionsare perfectly natural, and re
ect the fact that devices are intended to operate onlyunder certain conditions. The only cause for concern here is if these assumptionsare ignored when claims are made about what was proved. In the formal correct-ness statement, of course, any persistent assumptions will appear explicitly as theantecedents of an implication. It is in informal summaries (advertising material andso on) that the assumptions can easily be overlooked.In the end, for example, the e�ect of each of Viper's instructions on the registersof its block model was deduced. This was done by assuming that the machine wasinitialized in a reasonable way, and assuming that that it was run under certain idealconditions. The e�ect was not deduced, say, of assuming that a reset operation couldoccur { it could have been, but to no useful end, since that e�ect is not speci�ed atthe top level. Thus, even a fully veri�ed block design could remain incorrect in itsresetting behaviour, and the error could propagate, despite the proof, down to thechip itself. This illustrates the importance of knowing the conditions under whichthe block model has been analyzed.6.6 Putting Formal Proof in ContextFinally, the correctness of an abstract representation of a system must be placed incontext when we talk about its reliability in safety-critical applications. The authorclaims no expertise in the �eld of reliability, but this much is obvious: that anabstract and limited sense of correctness (for example, for Viper, the equivalence ofa register transfer level speci�cation to a functional speci�cation of the fetch-decode-execute cycle) is only one of many issues which have to be considered collectively.Aside from possible problems at more concrete levels of description, which havealready been discussed, safety will also depend on factors as yet outside of theworld of formal description: these range from issues of social administration andcommunication, as well as sta� training and group behaviour, at one end, to theperformance of mechanical and chemical parts, and so on, at the other. One hasonly to contemplate the mass catastrophes of the last ten years or so to perceivethe predominant role played by these extra-logical factors.It is the author's guess (though, again, not an expert opinion) that the sortof abstract design correctness discussed here, though of undoubted importance, isstill a relatively minor contribution to the overall reliability of real systems. Thisseems so at least at the present state of research into representation and proof, andwith the present weak links between designer, veri�er and manufacturer. That is,using a hardware design veri�ed only at a fairly abstract level { and only underidealized operating conditions { as part of the control system in very hazardous8



applications (in which large populations or land masses may be destroyed) doesnot yet seem signi�cantly safer than using any other design. If only because of thenumber of extra-logical factors involved, the use of the word \veri�ed" must underno circumstances be allowed to confer a false sense of security.7 ConclusionsVarious of the limitations on the use of the word \veri�ed" are obscured in claimssuch as the following (both taken from promotional material):\VIPER is the �rst commercially available micropressor with . . . a for-mal speci�cation and a proof that the chip conforms to it." [26,27]\One unique feature of Viper is that the instruction set is speci�edmathematically . . . and the gate-level logic design has been proven toconform to this speci�cation." [16]As discussed, a chip as such cannot be veri�ed { but this is perhaps just an impreciseuse of words. The second example, depending on one's interpretation of \proven",could be called a false claim; no formal proofs of Viper (to the author's knowledge)have thus far been done at or near the gate level. The gate level design of Viper hasbeen checked by C. Pygott using an innovative simulation method called intelligentexhaustion [25], but it has not yet been formally veri�ed. Such assertions as thosequoted, taken as assurances of the impossibility of design failure in safety-criticalapplications, could have catastrophic results. To summarize:� Neither an intended behaviour nor a physical chip is an object to which theword \proof" meaningfully applies. Both an intention and a chip may them-selves may be inadequately represented in formal language, and this is notitself veri�able.� Because of the present weak links between designer, veri�er and manufacturer,it is not at all obvious that errors deduced in very abstract speci�cations arelikely to manifest themselves in actual products. We must then ask howmuch extra security veri�cation currently a�ords. (This is an argument forcontinued research, not against veri�cation!)� Any veri�cation e�ort is necessarily limited to those behaviours speci�ed atthe most abstract level. It should be clearly stated when a system is called\veri�ed" which actual features are not covered.� It should also be clearly stated to what level of concreteness the speci�cationsextend. It seems fair to expect that the more concrete the models, the greateris the likelihood of �nding errors in the design, particularly errors which wouldpropagate through to the actual product. Since any model is an abstractionof a material device, it is never correct to call a system \veri�ed" withoutreference to the level of the models used.� Any working assumptions about initial states or normal behaviours shouldalso appear in veri�cations claims. Particularly in informal descriptions, theassumptions may not always be evident.9



� A proof that one speci�cation implements another { despite being completelyrigorous, expressed in an explicit and well-understood logic, and even checkedby another system { should still be viewed in context of the many other extra-logical factors which a�ect the correct functioning of hardware systems. Inaddition to the abstract design, everything from the system operators to themechanical parts must function correctly { and correctly together { to avoidcatastrophe.For a long time, mechanical theorem-proving was su�ciently di�cult that re-searchers frequently drew upon simple (or occasionally less simple) mathematicalproblems on which to exercise their mechanical proof systems. Advances in theoryas well as in technology have now made proof e�orts feasible which once appearedimpossibly large, uneconomic, or labour-intensive. Sophisticated theorem-provingenvironments, together with modern work-stations, operating systems and editors,have supported this progress. The proofs, for example, of the basic theorems ofarithmetic [1], or of the correctness of schematic compiling algorithms [4] { to choosetwo examples { were challenging problems in their time, yet current veri�cation ef-forts are focusing on properties of realistic (and sometimes commercial) hardwaredesigns. Besides the Viper microprocessor, examples include the veri�cation byW. Hunt in the Boyer-Moore system of the FM8501 [18], a computer designed (byHunt) for the purpose of veri�cation; the veri�cation in HOL by J. Joyce [19] ofTamarack, a computer designed by M. Gordon, also for the purpose of veri�cation;the veri�cation in HOL by J. Herbert of the ECL chip [17], a network interfacedesigned by A. Hopper as part of the Cambridge Fast Ring; and the veri�cation inHOL by T. Melham of the T-Ring [22], a very simple ring network designed by D.Gaubatz and M. Burrows.It would seem, in conclusion, that we are now beginning to be able to verify realhardware designs to useful levels of detail. None of the remarks in this note shouldbe taken as pessimistic { just cautious. As \veri�ed" hardware begins to be used inlife-critical applications (which could include 
y-by-wire aircraft, bomb deploymentsystems, nuclear power stations, medical equipment, automotive braking systems,railway signallers, and so on), it will become increasingly important to insist thatthe word \veri�ed" and its synonyms are modi�ed, quali�ed and explained so thatwe know exactly what claims are being made, and can assess them intelligently.8 Future WorkAt the beginning of Section 6, the problem was mentioned of establishing a standardof evidence for having achieved a proof in a mechanical theorem-prover. In thiscapacity, neither the long chains of primitive inferences which proofs comprise northe particular procedures which have constructed these proofs have so far foundmuch favour. The Viper block model proofs consist in several million primitiveinference steps, for example; and the procedures which generate them comprisedozens of pages of code in the functional programming language ML. The questionof proof evidence is typical of a variety of foundational issues which have not beenbroached in this note, but which at some point must also be addressed. For example,the consistency of any abstruse or special-purpose logic has to be established; this isa standard problem but not always easy. Worse, it could be asked on what basis we10



place our con�dence in the implementation of a theorem-proving methodology (andthe operating system on which it runs, the hardware of which the host machine isbuilt, and so on).One pragmatic answer (which is a topic of planned research at Cambridge) isthat we can reduce the number of systems in which we must trust by agreeing on astandard for `proof deliverables'. That is, we could agree on a proof output formatsuch that the proofs produced at one site could be independently (and mechanically)checked at another. This idea, in the context of hardware veri�cation, is due to K.Hanna. Part of its attraction is that proof checking is generally much less di�cultthan proof construction.Another research goal is to �nd a uniform representation language for everyoneinvolved in producing a hardware device: designers, clients, veri�ers, fabricators,etc. This would help to integrate the various communities, and thus to reduce thedanger, for example, that the models which are veri�ed di�er from the plans usedby the manufacturers. It also would increase the chances that the errors turnedup by veri�cation were actual errors in the physical devices. Higher order logichas been proposed for this purpose, but any more or less standard logic could be acandidate.A very large step toward reliable systems would be a veri�cation e�ort extendingall the way from the software level down to the gate level. Research is currentlybeing planned in this area (i) jointly at the University of Cambridge and at SRIInternational, Cambridge, and (ii) at Computational Logic Inc. in Texas.Finally, research is continuing at various places into models for more realisticlevels of representation of hardware, in the hope of expressing and locating themore subtle and worrying errors that beset digital systems. Once the models arefound, there appears to be no shortage of theorem-proving tools with which to verifythem.9 AcknowledgementsMany thanks to Tom Melham and Mike Gordon for helpful comments and discus-sions. Thanks also to Thomas Forster. The opinions expressed are the author'salone. The Viper veri�cation work at Cambridge was supported by a grant fromRSRE. The preparation of this note was suggested by Larry Wos, and was supportedby a grant from the U.K. Science and Engineering Research Council.

11



References[1] R. S. Boyer and J S.Moore, A Computational Logic, Academic Press, 1979[2] A. Camilieri, M. Gordon and T. Melham, Hardware Veri�cation using Higher-Order Logic, Proceedings of the IFIP WG 10.2 Working Conference: FromH.D.L. Descriptions to Guaranteed Correct Circuit Designs, Grenoble, Septem-ber 1986, ed. D. Borrione, North-Holland, Amsterdam, 1987[3] A. Church, A Formulation of the Simple Theory of Types, Journal of SymbolicLogic 5, 1940[4] A. Cohn, Machine Assisted Proofs of Recursion Implementation, Ph.D. Thesis,Dept. of Computer Science, University of Edinburgh, 1979[5] A. Cohn and M. Gordon, A Mechanized Proof of Correctness of a SimpleCounter, University of Cambridge, Computer Laboratory, Tech. Report No.94, 1986[6] A. Cohn, A Proof of Correctness of the Viper Microprocessor: the First Level,VLSI Speci�cation, Veri�cation and Synthesis, eds. G. Birtwistle and P.A.Subrahmanyam, Kluwer, 1987; Also University of Cambridge, Computer Lab-oratory, Tech. Report No. 104[7] A. Cohn, Correctness Properties of the Viper Block Model: The Second Level,Proceedings of the 1988 Conference on Hardware Veri�cation, Ban�, Canada(To be published by Springer-Verlag); Also University of Cambridge, ComputerLaboratory, Tech. Report No. 134[8] W. J. Cullyer, Viper Microprocessor: Formal Speci�cation, RSRE Report85013, Oct. 1985[9] W. J. Cullyer, Viper | Correspondence between the Speci�cation and the\Major State Machine", RSRE report No. 86004, Jan. 1986[10] W. J. Cullyer, Implementing Safety-Critical Systems: The Viper Microproces-sor, VLSI Speci�cation, Veri�cation and Synthesis, eds. G. Birtwistle and P.A.Subrahmanyam, Kluwer, 1987[11] W. J. Cullyer, J. Kershaw and C. Pygott, forthcoming book on Viper[12] C. Gane (Computing Devices Company Ltd.), Computing Devices, Hastings'VIPER-VENOM Project: VIPER in Weapons Stores Management, SafetyNet:Viper Microprocessors in High Integrity Systems, Enq. No. 021, Issue 2, July-August-September 1988, Viper Technologies Ltd., Worcester, England[13] M. Gordon, R. Milner and C. P. Wadsworth, Edinburgh LCF, Lecture Notesin Computer Science No. 78, Springer-Verlag, 1979[14] M. Gordon, HOL: A Machine Oriented Formulation of Higher-Order Logic,University of Cambridge, Computer Laboratory, Tech. Report No. 68, 1985
12



[15] M. Gordon, HOL: A Proof Generating System for Higher-Order Logic, Univer-sity of Cambridge, Computer Laboratory, Tech. Report No. 103, 1987; Revisedversion in VLSI Speci�cation, Veri�cation and Synthesis, eds. G. Birtwistleand P.A. Subrahmanyam, Kluwer, 1987[16] M. P. Halbert (Cambridge Consultants Ltd.), Selfchecking Computer ModuleBased on the Viper1A Microprocessor, SafetyNet: Viper Microprocessors inHigh Integrity Systems, Enq. No. 017, Issue 2, July-August-September 1988,Viper Technologies Ltd., Worcester, England[17] J. Herbert and M. J. C. Gordon, A Formal Hardware Veri�cation Methodologyand its Application to a Network Interface Chip, IEE Proceedings, Computersand Digital Techniques, Special issue on Digital Design Veri�cation, Vol. 133,Part E, No. 5, 1986; Also in draft version: University of Cambridge, ComputerLaboratory, Tech. Report No. 66, 1985[18] W. A. Hunt Jr., FM8501: A Veri�ed Microprocessor, University of Texas,Austin, Tech. Report 47, 1985[19] J. J. Joyce, Formal Veri�cation and Implementation of a Microprocessor, VLSISpeci�cation, Veri�cation and Synthesis, eds. G. Birtwistle and P.A. Subrah-manyam, Kluwer, 1987[20] J. Kershaw, Viper: A Microprocessor for Safety-Critical Applications, RSREMemo. No. 3754, Dec. 1985[21] T. Melham, Abstraction Mechanisms for Hardware Veri�cation, VLSI Speci�-cation, Veri�cation and Synthesis, eds. G. Birtwistle and P.A. Subrahmanyam,Kluwer, 1987[22] T. Melham, forthcoming Ph.D. Thesis, University of Cambridge, ComputerLaboratory[23] L. Paulson, Logic and Computation, Cambridge University Press, 1987[24] C. H. Pygott, Viper: The Electronic Block Model, RSRE Report No. 86006,July 1986[25] C. H. Pygott, Formal Proof of a Correspondence between the Speci�cation ofa Hardware Module and its Gate Level Implementation, RSRE Report No.85012, Nov. 1985[26] Viper Microprocessor: Veri�able Integrated Processor for Enhanced Reliabil-ity: Development Tools, Charter Technologies Ltd., Publication No. VDT1,Issue 1, Dec. 1987[27] Application for Admission and Registration Form, Second VIPER Symposium,RSRE, Malvern, England, 6-7 September, 1988
13


