Bisimulation equivalence: general idea

» M, M" bisimilar if they have ‘corresponding executions’

» to each step of M there is a corresponding step of M’
» to each step of M’ there is a corresponding step of V/

» Bisimilar models satisfy same CTL* properties
» Bisimilar: same truth/falsity of model properties

» Simulation gives property-truth preserving abstraction
(see later)
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Bisimulation relations

» Let R: S—+S—Band R’ : S'—S'—B be transition relations

» Bis a bisimulation relation between R and R’ if:
» B: S-S —B

» Vss'.Bss =Vs;€S. Rss;=3s]. R s s ABs; s
(to each step of R there is a corresponding step of R’)

» Vss' . Bss =Vs, €S R s s|=3s.R ssiANBs; s
(to each step of R’ there is a corresponding step of R)
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Bisimulation equivalence: definition and theorem

v

Let M = (S, So,R.L)and M' = (S, S, R, L)
» M= M if:
» there is a bisimulation B between R and R’
» Vsg € Sp. 3s) € S). B s s,
Vsy € Sy. 350 € Sp. B sp s,
there is a bijection ¢ : AP—AP’
Vss'.Bss = L(s)=L'(s)

v

v

v

v

Theorem: if M = M’ then for any CTL* state formula ¢:
MEd & My

» See Q14 in the Exercises
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Abstraction

» Abstraction creates a simplification of a model

» separate states may get merged
» an abstract path can represent several concrete paths

» M < M means M is an abstraction of \/

» to each step of M there is a corresponding step of M -
» atomic properties of M correspond to atomic properties of M

» Special case is when M is a subset of M such that:
» M= (5,5, R L)and M = (S, S, R, L)
ScsS
So =50
Vss'€S.Rss' < Rség
VseS. Ls=Ls
» S contain all reachable states of M
Vse S.V§'e S.Rss'=5¢S
» All paths of M from initial states are M-paths
» hence for all CTL formulas ¢: M = = M =

Mike Gordon
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Recall gm1

Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;
1: X:=1; 1: X:=2;

2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;
3: 3:

» Two program counters, state: (pc;, pcs, lock, x)

SJM1 = [03] X [03] X 7 X 7

Ry (0,pc2, 0, X) (1,pc2,1,x) R (pcy, 0,0, x) pci, 1,1, x)
R (1, pco, lock, x) (2, pco, lock,1) | Ran (pci,1,lock, x)  (pcy, 2, lock, 2)
Ry (2, pc2, 1, X) 3,pc2,0, X) R (pcy, 2,1, %) pci, 3,0, x)

v

ASSUME Notat11 € Ly (pey, pes, lock, x) < —((pey = 1) A (pez = 1))
Model M = (Snir,{(0,0,0,0)}, Rt L)
S not finite, but actually /ock  {0,1}, x € {0,1,2}
Clear by inspection that ... < M., where:
WJM'\ = (ngl 5 {(07 07 O‘, O)}7 ﬁuw 7ZJM'\ )
» Sy = [0..3] x [0..3] x [0..1] x [0..3]
> Ry iS Ry restricted to arguments from S,
> NotAtll € Ly (PCt, pcy, lock, x) < —=((pcy = 1) A (pcz = 1))
> Ly IS Ly, restricted to arguments from S,
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Simulation relations

» Let R: S—»S—Band R: S—S—B be transition relations

» His a simulation relation between R and R if:
» His a relation between Sand S—i.e. H: S—S—B

> to each step of R there is a corresponding step of R- i.e.:
VsS.Hss=Vs €S Rss' =3¢ € S RSssAHs' &

» Also need to consider abstraction of atomic properties

» Hpp: AP—AP—B

» details glossed over here
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Simulation preorder: definition and theorem

v
9]

Let M = (S, Sy, R, L) and M = ( ,go,ﬁ,f)
M =< M if:
» there is a simulation H between R and R

> VS()GSQ.HST)G?().HSOST)
» Vs5. Hss= L(s) = L(3)

v

v

ACTL is the subset of CTL without E-properties
» e.g. AG AFp — from anywhere can always reach a p-state

v

Theorem: if M < M then for any ACTL state formula ¢
MEy=Mgy

v

If M |= 1+ fails then cannot conclude M |= ¢ false
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Example (Grumberg)

@ H a simulation
"""" H RED STOP A
@ H YELLOW GO A
H GREEN GO
@. Hap :{r,y, g}={r,yg}—B
e Hap rrA
@ """ Hap y yg A
Hap 9 y9

» M = AG AF —r hence M |= AG AF —r
» but (M |= AG AF r) doesn't entail (M = AG AF r)
» [AG AF r];(sTop) is false
(consider M-path 7’ where 7/ = STOP.G0O.GO.GO. - - -)

» [AG AF r]um(RED) is true
(abstract path 7' doesn’t correspond to a real path in M)
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CEGAR

» Counter Example Guided Abstraction Refinement

Generate initial abstraction

success

Model check Goal: M’ E ¥

fail

IRefinenbs(ructionl I Generate counter example I I Done

no | e ————re | yes
1 Is c mple is real? I

» Lots of details to fill out (several different solutions)

» how to generate abstraction
» how to check counterexamples
» how to refine abstractions

» Microsoft SLAM driver verifier is a CEGAR system

Mike Gordon
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Temporal Logic and Model Checking — Summary

v

Various property languages: LTL, CTL, PSL (Prior, Pnueli)

v

Models abstracted from hardware or software designs

v

Model checking checks M |= ¢ (Clarke et al.)

v

Symbolic model checking uses BDDs (McMillan)

v

Avoid state explosion via simulation and abstraction

v

CEGAR refines abstractions by analysing counterexamples

v

Triumph of application of computer science theory

» two Turing awards, McMillan gets 2010 CAV award
» widespread applications in industry
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