
Bisimulation equivalence: general idea

◮ M, M ′ bisimilar if they have ‘corresponding executions’

◮ to each step of M there is a corresponding step of M ′

◮ to each step of M ′ there is a corresponding step of M

◮ Bisimilar models satisfy same CTL* properties

◮ Bisimilar: same truth/falsity of model properties

◮ Simulation gives property-truth preserving abstraction

(see later)
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Bisimulation relations

◮ Let R : S→S→B and R′ : S′→S′→B be transition relations

◮ B is a bisimulation relation between R and R′ if:

◮ B : S→S′→B

◮ ∀s s′. B s s′ ⇒ ∀s1 ∈ S. R s s1 ⇒ ∃s′

1. R′ s′ s′

1 ∧ B s1 s′

1

(to each step of R there is a corresponding step of R′)

◮ ∀s s′. B s s′ ⇒ ∀s′

1 ∈ S. R′ s′ s′

1 ⇒ ∃s1. R′ s s1 ∧ B s1 s′

1

(to each step of R′ there is a corresponding step of R)
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Bisimulation equivalence: definition and theorem

◮ Let M = (S,S0,R, L) and M ′ = (S′,S′
0,R

′, L′)

◮ M ≡ M ′ if:

◮ there is a bisimulation B between R and R′

◮ ∀s0 ∈ S0. ∃s′

0 ∈ S′

0. B s0 s′

0

◮ ∀s′

0 ∈ S′

0. ∃s0 ∈ S0. B s0 s′

0

◮ there is a bijection θ : AP→AP ′

◮ ∀s s′. B s s′ ⇒ L(s) = L′(s′)

◮ Theorem: if M ≡ M ′ then for any CTL* state formula ψ:

M |= ψ ⇔ M ′ |= ψ

◮ See Q14 in the Exercises
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Abstraction

◮ Abstraction creates a simplification of a model

◮ separate states may get merged
◮ an abstract path can represent several concrete paths

◮ M � M means M is an abstraction of M

◮ to each step of M there is a corresponding step of M
◮ atomic properties of M correspond to atomic properties of M

◮ Special case is when M is a subset of M such that:
◮ M = (S0,S,R,L) and M = (S0,S,R,L)

S ⊆ S

S0 = S0

∀s s′ ∈ S. R s s′ ⇔ R s s′

∀s ∈ S. L s = L s

◮ S contain all reachable states of M

∀s ∈ S. ∀s′ ∈ S. R s s′ ⇒ s′ ∈ S

◮ All paths of M from initial states are M-paths
◮ hence for all CTL formulas ψ: M |= ψ ⇒ M |= ψ
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Recall JM1
Thread 1 Thread 2

0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;

1: X:=1; 1: X:=2;

2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;

3: 3:

◮ Two program counters, state: (pc1, pc2, lock , x)

SJM1 = [0..3]× [0..3]× Z× Z

RJM1 (0, pc2, 0, x) (1, pc2, 1, x)
RJM1 (1, pc2, lock , x) (2, pc2, lock , 1)
RJM1 (2, pc2, 1, x) (3, pc2, 0, x)

RJM1 (pc1, 0, 0, x) (pc1, 1, 1, x)
RJM1 (pc1, 1, lock , x) (pc1, 2, lock , 2)
RJM1 (pc1, 2, 1, x) (pc1, 3, 0, x)

◮ Assume NotAt11 ∈ LJM1(pc1, pc2, lock , x) ⇔ ¬((pc1 = 1) ∧ (pc2 = 1))

◮ Model MJM1 = (SJM1, {(0, 0, 0, 0)},RJM1, LJM1)

◮ SJM1 not finite, but actually lock ∈ {0, 1}, x ∈ {0, 1, 2}

◮ Clear by inspection that MJM1 � MJM1 where:

MJM1 = (SJM1, {(0, 0, 0, 0)},RJM1, LJM1)

◮ SJM1 = [0..3]× [0..3]× [0..1]× [0..3]

◮ RJM1 is RJM1 restricted to arguments from SJM1

◮ NotAt11 ∈ LJM1(pc1, pc2, lock , x) ⇔ ¬((pc1 = 1) ∧ (pc2 = 1))

◮ LJM1 is LJM1 restricted to arguments from SJM1
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Simulation relations

◮ Let R : S→S→B and R : S→S→B be transition relations

◮ H is a simulation relation between R and R if:

◮ H is a relation between S and S – i.e. H : S→S→B

◮ to each step of R there is a corresponding step of R – i.e.:

∀s s. H s s ⇒ ∀s′ ∈ S. R s s′ ⇒ ∃s′ ∈ S. R s s′ ∧ H s′ s′

◮ Also need to consider abstraction of atomic properties

◮ HAP : AP→AP→B

◮ details glossed over here
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Simulation preorder: definition and theorem

◮ Let M = (S,S0,R, L) and M = (S,S0,R, L)

◮ M � M if:

◮ there is a simulation H between R and R

◮ ∀s0 ∈ S0. ∃s0 ∈ S0. H s0 s0

◮ ∀s s. H s s ⇒ L(s) = L(s)

◮ ACTL is the subset of CTL without E-properties

◮ e.g. AG AFp – from anywhere can always reach a p-state

◮ Theorem: if M � M then for any ACTL state formula ψ:

M |= ψ ⇒ M |= ψ

◮ If M |= ψ fails then cannot conclude M |= ψ false
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Example (Grumberg)

M M

r

y

g

 yg

r

RED

YELLOW

GREEN

STOP

GO

H

H

H

H a simulation

H RED STOP ∧
H YELLOW GO ∧
H GREEN GO

HAP : {r , y , g}→{r , yg}→B

HAP r r ∧
HAP y yg ∧
HAP g yg

◮ M |= AG AF ¬r hence M |= AG AF ¬r

◮ but ¬(M |= AG AF r) doesn’t entail ¬(M |= AG AF r)

◮ [[AG AF r ]]M(STOP) is false

(consider M-path π′ where π′ = STOP.GO.GO.GO. · · · )

◮ [[AG AF r ]]M(RED) is true

(abstract path π′ doesn’t correspond to a real path in M)
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CEGAR

◮ Counter Example Guided Abstraction Refinement

◮ Lots of details to fill out (several different solutions)

◮ how to generate abstraction
◮ how to check counterexamples
◮ how to refine abstractions

◮ Microsoft SLAM driver verifier is a CEGAR system
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Temporal Logic and Model Checking – Summary

◮ Various property languages: LTL, CTL, PSL (Prior, Pnueli)

◮ Models abstracted from hardware or software designs

◮ Model checking checks M |= ψ (Clarke et al.)

◮ Symbolic model checking uses BDDs (McMillan)

◮ Avoid state explosion via simulation and abstraction

◮ CEGAR refines abstractions by analysing counterexamples

◮ Triumph of application of computer science theory

◮ two Turing awards, McMillan gets 2010 CAV award
◮ widespread applications in industry
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Topics and corresponding slides

Topic Slides

Introduction to models 1 - 9

Atomic properties 10

Trees and paths 11 - 12

Examples of properties 13 - 16

Reachability 17

Introduction to model checking 18 - 26

Symbolic model checking 27 - 32

Disjunctive partitioning of BDDs 33 - 35

Generating counter-examples 36 - 42

Introduction to temporal logic 43 - 45

Linear Temporal Logic (LTL) 46 - 58

Computation Tree Logic (CTL) 59 - 75

CTL model checking 75 - 83

History of model checking 84

Expressibility of LTL and CTL 57 - 58, 85 - 87

CTL* 88 - 90

Fairness 91 - 92

Propositional modal µ-calculus 93

Sequential Extended Regular Expressions (SEREs) 94 - 95

Assertion Based Verification (ABV) and PSL 96 - 107

Dynamic verification: event semantics 108 - 117

Bisimulation 118 - 120

Abstraction 121 - 125

Counterexample Guided Abstraction Refinement (CEGAR) 126

Summary 127



THE END
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