Bisimulation equivalence: general idea

- M, M' bisimilar if they have 'corresponding executions'
 - to each step of M there is a corresponding step of M'
 - to each step of M' there is a corresponding step of M
- Bisimilar models satisfy same CTL* properties
- Bisimilar: same truth/falsity of model properties
- Simulation gives property-truth preserving abstraction (see later)

Bisimulation relations

- ► Let $R: S \rightarrow S \rightarrow \mathbb{B}$ and $R': S' \rightarrow S' \rightarrow \mathbb{B}$ be transition relations
- *B* is a **bisimulation relation** between *R* and R' if:
 - ► $B: S \rightarrow S' \rightarrow \mathbb{B}$
 - ► $\forall s \ s'. B \ s \ s' \Rightarrow \forall s_1 \in S. R \ s \ s_1 \Rightarrow \exists s'_1. R' \ s' \ s'_1 \land B \ s_1 \ s'_1$ (to each step of *R* there is a corresponding step of *R'*)
 - ► $\forall s \ s' . B \ s \ s' \Rightarrow \forall s'_1 \in S. R' \ s' \ s'_1 \Rightarrow \exists s_1. R' \ s \ s_1 \land B \ s_1 \ s'_1$ (to each step of R' there is a corresponding step of R)

Bisimulation equivalence: definition and theorem

- ▶ Let $M = (S, S_0, R, L)$ and $M' = (S', S'_0, R', L')$
- $M \equiv M'$ if:
 - there is a bisimulation B between R and R'
 - ▶ $\forall s_0 \in S_0$. $\exists s'_0 \in S'_0$. $B s_0 s'_0$
 - ▶ $\forall s'_0 \in S'_0$. $\exists s_0 \in S_0$. $B s_0 s'_0$
 - there is a bijection θ : $AP \rightarrow AP'$
 - $\forall s s' . B s s' \Rightarrow L(s) = L'(s')$
- ► Theorem: if $M \equiv M'$ then for any CTL* state formula ψ : $M \models \psi \Leftrightarrow M' \models \psi$
- See Q14 in the Exercises

Abstraction

- Abstraction creates a simplification of a model
 - separate states may get merged
 - an abstract path can represent several concrete paths
- $M \leq \overline{M}$ means \overline{M} is an abstraction of M
 - to each step of *M* there is a corresponding step of *M*
 - atomic properties of M correspond to atomic properties of \overline{M}
- Special case is when \overline{M} is a subset of M such that:
 - ▶ $\overline{M} = (\overline{S_0}, \overline{S}, \overline{R}, \overline{L}) \text{ and } M = (S_0, S, R, L)$ $\overline{S} \subseteq S$ $\overline{S_0} = S_0$ $\forall s \ s' \in \overline{S}. \ \overline{R} \ s \ s' \Leftrightarrow R \ s \ s'$ $\forall s \in \overline{S}. \ \overline{L} \ s = L \ s$
 - ► \overline{S} contain all reachable states of M $\forall s \in \overline{S}$. $\forall s' \in S$. $R \ s \ s' \Rightarrow s' \in \overline{S}$
- All paths of M from initial states are \overline{M} -paths
 - ▶ hence for all CTL formulas ψ : $\overline{M} \models \psi \Rightarrow M \models \psi$

Recall JM1

Thread 1		Thread 2
0:	IF LOCK=0 THEN LOCK:=1;	0: IF LOCK=0 THEN LOCK:=1;
1:	X:=1;	1: X:=2;
2:	IF LOCK=1 THEN LOCK:=0;	2: IF LOCK=1 THEN LOCK:=0;
3:		3:

Two program counters, state: (pc1, pc2, lock, x)

 $\begin{array}{ll} S_{\rm JM1} &= [0..3] \times [0..3] \times \mathbb{Z} \times \mathbb{Z} \\ R_{\rm JM1} & (0, pc_2, 0, x) \\ R_{\rm JM1} & (1, pc_2, lock, x) \\ R_{\rm JM1} & (2, pc_2, 1, x) \end{array} \left(\begin{array}{c} (1, pc_2, 1, x) \\ (2, pc_2, lock, 1) \\ (3, pc_2, 0, x) \end{array} \right) \\ \end{array} \right) \left(\begin{array}{c} R_{\rm JM1} & (pc_1, 0, 0, x) \\ R_{\rm JM1} & (pc_1, 1, lock, x) \\ R_{\rm JM1} & (pc_1, 2, 1, x) \end{array} \right) \\ \end{array} \right) \left(\begin{array}{c} (pc_1, 1, 1, x) \\ (pc_1, 2, lock, 2) \\ (pc_1, 3, 0, x) \end{array} \right) \\ \end{array} \right)$

- ► Assume NotAt11 $\in L_{JM1}(pc_1, pc_2, lock, x) \Leftrightarrow \neg((pc_1 = 1) \land (pc_2 = 1))$
- Model $M_{JM1} = (S_{JM1}, \{(0, 0, 0, 0)\}, R_{JM1}, L_{JM1})$
- ▶ S_{JM1} not finite, but actually $lock \in \{0, 1\}, x \in \{0, 1, 2\}$
- Clear by inspection that $M_{JM1} \leq \overline{M}_{JM1}$ where:

 $\overline{M}_{\text{JM1}} = (\overline{S}_{\text{JM1}}, \{(0, 0, 0, 0)\}, \overline{R}_{\text{JM1}}, \overline{L}_{\text{JM1}})$

- $\overline{S}_{\text{JM1}} = [0..3] \times [0..3] \times [0..1] \times [0..3]$
- \overline{R}_{JM1} is R_{JM1} restricted to arguments from \overline{S}_{JM1}
- ► NotAt11 $\in \overline{L}_{JM1}(pc_1, pc_2, lock, x) \Leftrightarrow \neg((pc_1 = 1) \land (pc_2 = 1))$
- \overline{L}_{JM1} is L_{JM1} restricted to arguments from \overline{S}_{JM1}

Simulation relations

- ▶ Let $R: S \rightarrow S \rightarrow \mathbb{B}$ and $\overline{R}: \overline{S} \rightarrow \overline{S} \rightarrow \mathbb{B}$ be transition relations
- *H* is a simulation relation between *R* and \overline{R} if:
 - *H* is a relation between *S* and \overline{S} i.e. *H* : $S \rightarrow \overline{S} \rightarrow \mathbb{B}$
 - ► to each step of \overline{R} there is a corresponding step of \overline{R} i.e.: $\forall s \ \overline{s}. H s \ \overline{s} \Rightarrow \forall s' \in S. R s s' \Rightarrow \exists \overline{s'} \in \overline{S}. \overline{R} \ \overline{s} \ \overline{s'} \land H s' \ \overline{s'}$
- Also need to consider abstraction of atomic properties
 - $\bullet H_{AP} : AP \rightarrow \overline{AP} \rightarrow \mathbb{B}$
 - details glossed over here

Simulation preorder: definition and theorem

- Let $M = (S, S_0, R, L)$ and $\overline{M} = (\overline{S}, \overline{S_0}, \overline{R}, \overline{L})$
- $M \preceq \overline{M}$ if:
 - there is a simulation *H* between *R* and \overline{R}
 - $\triangleright \ \forall s_0 \in S_0. \ \exists \overline{s_0} \in \overline{S_0}. \ H \ s_0 \ \overline{s_0}$
 - $\forall s \ \overline{s}. \ H \ s \ \overline{s} \Rightarrow L(s) = \overline{L}(\overline{s})$
- ACTL is the subset of CTL without E-properties
 - e.g. AG AFp from anywhere can always reach a p-state
- ► Theorem: if $M \preceq \overline{M}$ then for any ACTL state formula ψ : $\overline{M} \models \psi \Rightarrow M \models \psi$
- If $\overline{M} \models \psi$ fails then cannot conclude $M \models \psi$ false

Example (Grumberg)

H a simulation

H RED STOP A H YELLOW GO A H GREEN GO

 $H_{AP}: \{r, y, g\} \rightarrow \{r, yg\} \rightarrow \mathbb{B}$

 $H_{AP} r r \land$ $H_{AP} y yg \land$ $H_{AP} g yg$

- $\overline{M} \models$ **AG AF** $\neg r$ hence $M \models$ **AG AF** $\neg r$
- ▶ but $\neg(\overline{M} \models \text{AG AF } r)$ doesn't entail $\neg(M \models \text{AG AF } r)$
 - ► **[AG AF** r]_{\overline{M}}(*STOP*) is false (consider \overline{M} -path π' where $\pi' = STOP.GO.GO.GO....$)
 - [AG AF r]_M(RED) is true (abstract path π' doesn't correspond to a real path in M)

CEGAR

Counter Example Guided Abstraction Refinement

Lots of details to fill out (several different solutions)

- how to generate abstraction
- how to check counterexamples
- how to refine abstractions
- Microsoft SLAM driver verifier is a CEGAR system

Temporal Logic and Model Checking – Summary

- Various property languages: LTL, CTL, PSL (Prior, Pnueli)
- Models abstracted from hardware or software designs
- Model checking checks $M \models \psi$ (Clarke et al.)
- Symbolic model checking uses BDDs (McMillan)
- Avoid state explosion via simulation and abstraction
- CEGAR refines abstractions by analysing counterexamples
- Triumph of application of computer science theory
 - two Turing awards, McMillan gets 2010 CAV award
 - widespread applications in industry

Topics and corresponding slides

Торіс	Slides
Introduction to models	1-9
Atomic properties	10
Trees and paths	11 - 12
Examples of properties	13 - 16
Reachability	17
Introduction to model checking	18 - 26
Symbolic model checking	27 - 32
Disjunctive partitioning of BDDs	33 - 35
Generating counter-examples	36 - 42
Introduction to temporal logic	43 - 45
Linear Temporal Logic (LTL)	46 - 58
Computation Tree Logic (CTL)	59 - 75
CTL model checking	75 - 83
History of model checking	84
Expressibility of LTL and CTL	57 - 58, 85 - 87
CTL*	88 - 90
Fairness	91 - 92
Propositional modal μ -calculus	93
Sequential Extended Regular Expressions (SEREs)	94 - 95
Assertion Based Verification (ABV) and PSL	96 - 107
Dynamic verification: event semantics	108 - 117
Bisimulation	118 - 120
Abstraction	121 - 125
Counterexample Guided Abstraction Refinement (CEGAR)	126
Summary	127

THE END