Simulation semantics (a.k.a. event semantics)

» HDLs use discrete event simulation
» changes to variables = threads enabled

» enabled threads executed non-deterministically

» execution of threads = more events
» Combinational thread:
always @ (V4 or --- or Vp) V:=E
» enabled by any change to v4, ..., v,
» Positive edge triggered sequential threads:
always @ (posedge clk) v:=E
» enabled by clk changingto T

» Negative edge triggered sequential threads:

always @ (negedge clk) v:=E
» enabled by clk changing to

Mike Gordon

108/128

Simulation

» Given

» a set of threads
» initial values for variables read or written by threads

» a sequence of input values
(inputs are variables not in LHS of assignments)

» simulation algorithm = a sequence of states

Execute
until
quiescent
then
advance
simulation
time

3

Choose an enabled thread

|

Execute the chosen thread

v
Fire event controls to enable new threads

]

» Simulation is non-deterministic

Mike Gordon

109/128

Combinational threads in series
in—-If IL-Ig |£.I hI—»out

» HDL-like specification:

always @(in) h := f(in) thread T1
always @(h) b = g(h) .o, thread T2
always @(h) out := h(h) thread T3

» Suppose in changes to x at simulation time t

» T1 will become enabled and assign £(x) to /

» if /;’s value changes then T2 will become enabled
(still simulation time)

» T2 will assign g(£(x)) to b

» if h’s value changes then T3 will become enabled
(still simulation time 1)

» T3 will assign h(g(£(x))) to out

» simulation quiesces
(still simulation time t)

» Steps at same simulation time happen in “0-time”
(VHDL jargon)

Mike Gordon

110/128

Semantic gap

» Designers use HDLs and verify via simulation
» event semantics
» Formal verifiers use logic and verify via proof
» path semantics
» Problem: do path and simulation semantics agree?

» Would like:
paths = sequences of quiescent simulation states

initial state Statesafter Statesafter
one

Mike Gordon 111/128

Sequential threads: alternative simulation semantics
|

in — — out

CIKU

Consider two Dtypes in series:

always @ (posedge clk) | := in
always @ (posedge clk) out := |

v

v

If posedge clk:

» both threads become enabled
» race condition

Right thread executed first:

» out gets previous value of /
» then left thread executed
» so / gets value input at in

Left thread executed first:
» / gets input value at in
» then right thread executed

» SO out gets input value at in
Mike Gordon 112/128

v

v

Sequential threads: aligning semantics
|

in — — out

clku

If right thread executed first get formal model semantics
R(in, I, out)(in',I',out’) = (I'=in) A (out’ = 1)

If left thread executed first get weird semantics
R(in, I, out)(in', ', out’) = (I' = in) A (out’ = in)

How to ensure formal model semantics?

Method 1: use non-blocking assignments:

always @ (posedge clk) | <= in;
always Q@ (posedge clk) out <= [;

v

v

v

v

» non-blocking assignments (<=) in Verilog
» RHS of all non-blocking assignments first computed
» assignments done at end of simulation cycle

» Method 2: make simulation cycle VHDL-like

Mike Gordon 113/128

Verilog versus VHDL simulation cycles

» Verilog-like simulation cycle:

Execute
until
quiescent
then
advance
simulation
time

» VHDL-like simulation

Execute
until
quiescent
then
advance
simulation
time

Mike Gordon

—
A\

Choose an enabled thread

\
Execute the chosen thread

v
Fire event controls to enable new threads

1

cycle:

]

A\
Execute all enabled threads in parallel

|

Fire event controls to enable new threads

B

114/128

VHDL event semantics

in — — out

CIkU

» Recall HDL:
always @ (posedge clk) | := in
always @ (posedge clk) out := |

v

If posedge clk:
» both threads become enabled

v

VHDL semantics:

» both threads executed in parallel
» out gets previous value of /
» in parallel / gets value input at in

» Now no race
» Event semantics matches path semantics

Mike Gordon 115/128

Another example: combinational + sequential

U

in XOR out

-

clk

» Exercise: Do VHDL and Verilog event semantics agree?
» Ignoring race if input does change at clock edge

» in real world might get meta-stability problems

» also in previous example

» need analogue simulation (e.g. using SPICE)

Mike Gordon (Circuit from: http://en.wikipedia.org/wiki/File:Edge_triggered_D_flip_flop.svg)

116/128

http://en.wikipedia.org/wiki/File:Edge_triggered_D_flip_flop.svg

Summary of dynamic versus static semantics

v

Simulation (event) semantics different from path semantics

v

No standard event semantics (Verilog versus VHDL)

v

Verilog: need non-blocking assignments

v

VHDL semantics closer path semantics

v

Simulation runs generate finite sequences
» better fit with LTL than CTL

Mike Gordon 117/128

