
Simulation semantics (a.k.a. event semantics)

◮ HDLs use discrete event simulation

◮ changes to variables ⇒ threads enabled
◮ enabled threads executed non-deterministically
◮ execution of threads ⇒ more events

◮ Combinational thread:

always @(v1 or · · · or vn) v:=E

◮ enabled by any change to v1, . . ., vn

◮ Positive edge triggered sequential threads:

always @(posedge clk) v:=E

◮ enabled by clk changing to T

◮ Negative edge triggered sequential threads:

always @(negedge clk) v:=E

◮ enabled by clk changing to F

Mike Gordon 108 / 128

Simulation

◮ Given

◮ a set of threads

◮ initial values for variables read or written by threads

◮ a sequence of input values

(inputs are variables not in LHS of assignments)

◮ simulation algorithm ⇒ a sequence of states

Choose an enabled thread

Execute the chosen thread

 Fire event controls to enable new threads

 Execute
 until
 quiescent
 then
 advance
simulation
 time

◮ Simulation is non-deterministic

Mike Gordon 109 / 128

Combinational threads in series

f g hin out
l l1 2

◮ HDL-like specification:

always @(in) l1 := f(in) thread T1

always @(l1) l2 := g(l1) thread T2

always @(l2) out := h(l2) thread T3

◮ Suppose in changes to x at simulation time t

◮ T1 will become enabled and assign f(x) to l1
◮ if l1’s value changes then T2 will become enabled

(still simulation time t)
◮ T2 will assign g(f(x)) to l2
◮ if l2’s value changes then T3 will become enabled

(still simulation time t)
◮ T3 will assign h(g(f(x))) to out
◮ simulation quiesces

(still simulation time t)

◮ Steps at same simulation time happen in “δ-time”
(VHDL jargon)

Mike Gordon 110 / 128

Semantic gap

◮ Designers use HDLs and verify via simulation

◮ event semantics

◮ Formal verifiers use logic and verify via proof

◮ path semantics

◮ Problem: do path and simulation semantics agree?

◮ Would like:

paths = sequences of quiescent simulation states

initial state states after
one step

states after
two steps

Mike Gordon 111 / 128

Sequential threads: alternative simulation semantics
in

clk

l
out

◮ Consider two Dtypes in series:
always @(posedge clk) l := in
always @(posedge clk) out := l

◮ If posedge clk:
◮ both threads become enabled
◮ race condition

◮ Right thread executed first:
◮ out gets previous value of l
◮ then left thread executed
◮ so l gets value input at in

◮ Left thread executed first:
◮ l gets input value at in
◮ then right thread executed
◮ so out gets input value at in

Mike Gordon 112 / 128

Sequential threads: aligning semantics
in

clk

l
out

◮ If right thread executed first get formal model semantics

R(in, l , out)(in′, l ′, out ′) = (l ′ = in) ∧ (out ′ = l)

◮ If left thread executed first get weird semantics

R(in, l , out)(in′, l ′, out ′) = (l ′ = in) ∧ (out ′ = in)

◮ How to ensure formal model semantics?

◮ Method 1: use non-blocking assignments:

always @(posedge clk) l <= in;

always @(posedge clk) out <= l;

◮ non-blocking assignments (<=) in Verilog
◮ RHS of all non-blocking assignments first computed
◮ assignments done at end of simulation cycle

◮ Method 2: make simulation cycle VHDL-like

Mike Gordon 113 / 128

Verilog versus VHDL simulation cycles

◮ Verilog-like simulation cycle:

Choose an enabled thread

Execute the chosen thread

 Fire event controls to enable new threads

 Execute
 until
 quiescent
 then
 advance
simulation
 time

◮ VHDL-like simulation cycle:

Execute all enabled threads in parallel

 Fire event controls to enable new threads

 Execute
 until
 quiescent
 then
 advance
simulation
 time

Mike Gordon 114 / 128

VHDL event semantics

in

clk

l
out

◮ Recall HDL:
always @(posedge clk) l := in
always @(posedge clk) out := l

◮ If posedge clk :

◮ both threads become enabled

◮ VHDL semantics:

◮ both threads executed in parallel
◮ out gets previous value of l
◮ in parallel l gets value input at in

◮ Now no race

◮ Event semantics matches path semantics

Mike Gordon 115 / 128

Another example: combinational + sequential

in

clk

l
outXOR

◮ Exercise: Do VHDL and Verilog event semantics agree?

◮ Ignoring race if input does change at clock edge

◮ in real world might get meta-stability problems

◮ also in previous example

◮ need analogue simulation (e.g. using SPICE)

(Circuit from: http://en.wikipedia.org/wiki/File:Edge_triggered_D_flip_flop.svg)Mike Gordon 116 / 128

http://en.wikipedia.org/wiki/File:Edge_triggered_D_flip_flop.svg

Summary of dynamic versus static semantics

◮ Simulation (event) semantics different from path semantics

◮ No standard event semantics (Verilog versus VHDL)

◮ Verilog: need non-blocking assignments

◮ VHDL semantics closer path semantics

◮ Simulation runs generate finite sequences

◮ better fit with LTL than CTL

Mike Gordon 117 / 128

