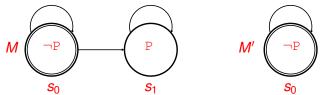
A property not expressible in LTL

• Let $AP = \{P\}$ and consider models M and M' below



 $\begin{array}{ll} M & = & (\{s_0, s_1\}, \{s_0\}, \{(s_0, s_0), (s_0, s_1), (s_1, s_1)\}, L) \\ M' & = & (\{s_0\}, \{s_0\}, \{(s_0, s_0)\}, L) \end{array}$

where: $L = \lambda s$. if $s = s_0$ then {} else {P}

- Every M'-path is also an M-path
- So if ϕ true on every *M*-path then ϕ true on every *M*'-path
- Hence in LTL for any ϕ if $M \models \phi$ then $M' \models \phi$
- Consider $\phi_{\mathbb{P}} \Leftrightarrow$ "can always reach a state satisfying \mathbb{P} "
 - $\phi_{\mathbb{P}}$ holds in *M* but not in *M'*
 - ▶ but in LTL can't have $M \models \phi_{P}$ and not $M' \models \phi_{P}$
- hence $\phi_{\mathbb{P}}$ not expressible in LTL

Mike Gordon (acknowledgement: Logic in Computer Science, Huth & Ryan (2nd Ed.) page 219, ISBN 0 521 54310 X) 57 / 128

CTL model checking

For LTL path formulae ϕ recall that $M \models \phi$ is defined by:

 $\boldsymbol{M} \models \phi \iff \forall \pi \ \boldsymbol{s}. \ \boldsymbol{s} \in \boldsymbol{S}_0 \land \mathsf{Path} \ \boldsymbol{R} \ \boldsymbol{s} \ \pi \Rightarrow \llbracket \phi \rrbracket_{\boldsymbol{M}}(\pi)$

- ► For CTL state formulae ψ the definition of $M \models \psi$ is: $M \models \psi \Leftrightarrow \forall s. \ s \in S_0 \Rightarrow \llbracket \psi \rrbracket_M(s)$
- ▶ *M* common; LTL, CTL formulae and semantics []_M differ
- CTL model checking algorithm:
 - compute $\{s \mid \llbracket \psi \rrbracket_M(s) = true\}$ bottom up
 - check $S_0 \subseteq \{s \mid \llbracket \psi \rrbracket_M(s) = true\}$
 - symbolic model checking represents these sets as BDDs

CTL model checking: p, **AX** ψ , **EX** ψ

- For CTL formula ψ let $\{\psi\}_M = \{s \mid \llbracket\psi\rrbracket_M(s) = true\}$
- When unambiguous will write $\{\psi\}$ instead of $\{\psi\}_M$
- $\{p\} = \{s \mid p \in L(s)\}$
 - scan through set of states S marking states labelled with p
 - {p} is set of marked states
- To compute {AXψ}
 - recursively compute $\{\psi\}$
 - marks those states all of whose successors are in $\{\psi\}$
 - $\{AX\psi\}$ is the set of marked states
- To compute {EXψ}
 - recursively compute $\{\psi\}$
 - marks those states with at least one successor in $\{\psi\}$
 - $\{EX\psi\}$ is the set of marked states

CTL model checking: $\{ \mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2] \}, \{ \mathbf{A}[\psi_1 \ \mathbf{U} \ \psi_2] \}$

- To compute $\{\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]\}$
 - recursively compute $\{\psi_1\}$ and $\{\psi_2\}$
 - mark all states in $\{\psi_2\}$
 - mark all states in $\{\psi_1\}$ with a successor state that is marked
 - repeat previous line until no change
 - {**E**[ψ_1 **U** ψ_2]} is set of marked states
- ► More formally: $\{\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]\} = \bigcup_{n=0}^{\infty} \{\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]\}_n$ where: $\{\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]\}_0 = \{\psi_2\}$ $\{\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]\}_{n+1} = \{\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]\}_n$ \bigcup $\{s \in \{\psi_1\} \ | \ \exists s' \in \{\mathbf{E}[\psi_1 \ \mathbf{U} \ \psi_2]\}_n. R \ s \ s'\}$
- $\{A[\psi_1 \cup \psi_2]\}$ similar, but with a more complicated iteration
 - details omitted (see Huth and Ryan)

Example: checking EF p

► EFp = E[T U p]

• holds if ψ holds along some path

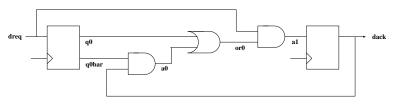
- Note {T} = S
- Let $S_n = \{ \mathbf{E}[T \ \mathbf{U} \ p] \}_n$ then:

$$\mathcal{S}_0 = \{ \mathbf{E}[\mathbb{T} \ \mathbf{U} \ p] \}_0 \\ = \{ p \} \\ = \{ s \mid p \in L(s) \}$$

 $\begin{array}{rcl} \mathcal{S}_{n+1} & = & \mathcal{S}_n \ \cup \ \{ s \in \{ \mathbb{T} \} \mid \exists s' \in \{ \mathsf{E}[\mathbb{T} \ \mathsf{U} \ p] \}_n. \ R \ s \ s' \} \\ & = & \mathcal{S}_n \ \cup \ \{ s \mid \exists s' \in \mathcal{S}_n. \ R \ s \ s' \} \end{array}$

- mark all the states labelled with p
- mark all with at least one marked successor
- repeat until no change
- [EF p] is set of marked states

Example: RCV



• Recall the handshake circuit:

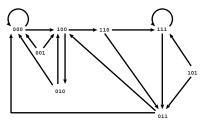
- State represented by a triple of Booleans (dreq, q0, dack)
- ► A model of RCV is *M*_{RCV} where:

$$\begin{split} & \textit{M} = (\textit{S}_{\text{RCV}},\textit{S}_{0_{\text{RCV}}},\textit{R}_{\text{RCV}},\textit{L}_{\text{RCV}}) \\ & \text{and} \\ & \textit{R}_{\text{RCV}} \left(\textit{dreq},\textit{q0},\textit{dack}\right) \left(\textit{dreq}',\textit{q0}',\textit{dack}'\right) = \\ & \left(\textit{q0}' = \textit{dreq}\right) \land \left(\textit{dack}' = \left(\textit{dreq} \land \left(\textit{q0} \lor \textit{dack}\right)\right)\right) \end{split}$$

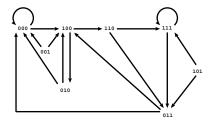
RCV state transition diagram

Possible states for RCV: {000,001,010,011,100,101,110,111} where b₂b₁b₀ denotes state dreq = b₂ ∧ q0 = b₁ ∧ dack = b₀

Graph of the transition relation:



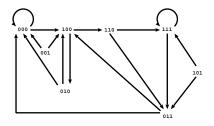
Computing Reachable M_{RCV}



Define:

 $\begin{array}{ll} \mathcal{S}_{0} &= \{b_{2}b_{1}b_{0} \mid b_{2}b_{1}b_{0} \in \{111\}\}\\ &= \{111\}\\ \mathcal{S}_{i+1} &= \mathcal{S}_{i} \ \cup \ \{s' \mid \exists s \in \mathcal{S}_{i}. \ \mathcal{R}_{\text{RCV}} \ s \ s' \ \}\\ &= \mathcal{S}_{i} \ \cup \ \{b'_{2}b'_{1}b'_{0} \mid \\ &\quad \exists b_{2}b_{1}b_{0} \in \mathcal{S}_{i}. \ (b'_{1} = b_{2}) \ \land \ (b'_{0} = b_{2} \land (b_{1} \lor b_{0}))\} \end{array}$

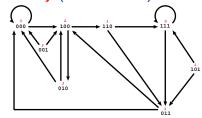
Computing {EF At111} where At111 $\in L_{RCV}(s) \Leftrightarrow s = 111$



Define:

$$\begin{split} \mathcal{S}_{0} &= \{ s \mid \texttt{Atlll} \in L_{\texttt{RCV}}(s) \} \\ &= \{ s \mid s = 111 \} \\ &= \{ 111 \} \\ \mathcal{S}_{n+1} &= \mathcal{S}_{n} \cup \{ s \mid \exists s' \in \mathcal{S}_{n}. \ \mathcal{R}(s,s') \} \\ &= \mathcal{S}_{n} \cup \{ b_{2}b_{1}b_{0} \mid \\ &= \exists b'_{2}b'_{1}b'_{0} \in \mathcal{S}_{n}. \ (b'_{1} = b_{2}) \ \land \ (b'_{0} = b_{2} \land (b_{1} \lor b_{0})) \} \end{split}$$

Computing {EF At111} (continued)



Compute:

$$\begin{array}{l} \mathcal{S}_{0} &= \{111\} \\ \mathcal{S}_{1} &= \{111\} \cup \{101, 110\} \\ &= \{111, 101, 110\} \\ \mathcal{S}_{2} &= \{111, 101, 110\} \cup \{100\} \\ &= \{111, 101, 110, 100\} \\ \mathcal{S}_{3} &= \{111, 101, 110, 100\} \cup \{000, 001, 010, 011\} \\ &= \{111, 101, 110, 100, 000, 001, 010, 011\} \\ \mathcal{S}_{n} &= \mathcal{S}_{3} \quad (n > 3) \\ \{ \textbf{EF} \text{ At} 111 \} &= \mathbb{B}^{3} = \mathcal{S}_{\text{RCV}} \\ \mathcal{M}_{\text{RCV}} \models \textbf{EF} \text{ At} 111 \Leftrightarrow \mathcal{S}_{0\text{RCV}} \subseteq \mathcal{S} \end{array}$$

Symbolic model checking

- Represent sets of states with BDDs
- Represent Transition relation with a BDD
- If BDDs of $\{\psi\}$, $\{\psi_1\}$, $\{\psi_2\}$ are known, then:
 - BDDs of {¬ψ}, {ψ₁ ∧ ψ₂}, {ψ₁ ∨ ψ₂}, {ψ₁ ⇒ ψ₂} computed using standard BDD algorithms
 - BDDs of {AXψ}, {EXψ}, {A[ψ₁ U ψ₂]}, {E[ψ₁ U ψ₂]]} computed using straightforward algorithms (see textbooks)
- Model checking CTL generalises reachable states iteration

History of Model checking

- CTL model checking due to Emerson, Clarke & Sifakis
- Symbolic model checking due to several people:
 - Clarke & McMillan (idea usually credited to McMillan's PhD)
 - Coudert, Berthet & Madre
 - Pixley

SMV (McMillan) is a popular symbolic model checker:

```
http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.kenmcmil.com/smv.html
http://nusmv.irst.itc.it/
```

(original) (Cadence extension by McMillan) (new implementation)

Other temporal logics

- CTL*: combines CTL and LTL
- Engineer friendly industrial languages: PSL, SVA

Expressibility of CTL

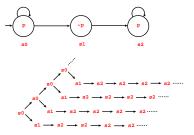
Consider the property

"on every path there is a point after which p is always true on that path"

Consider

((*) non-deterministically chooses T or F)

0: s0 1: s1 2:	P:=1; WHILE (; P:=0;	*) DO SKIP;
s2 3: 4: 5:	P:=1; WHILE T	DO SKIP;



- Property true, but cannot be expressed in CTL
 - would need something like $AF\psi$
 - where ψ is something like "property p true from now on"
 - but in CTL ψ must start with a path quantifier A or E
 - cannot talk about current path, only about all or some paths
 - ► **AF**(**AG p**) is false (consider path s0 s0 s0 ···)

LTL can express things CTL can't

- ► Recall: $\begin{bmatrix} \mathbf{F}\phi \end{bmatrix}_{M}(\pi) = \exists i. \llbracket \phi \rrbracket_{M}(\pi \downarrow i)$ $\begin{bmatrix} \mathbf{G}\phi \end{bmatrix}_{M}(\pi) = \forall i. \llbracket \phi \rrbracket_{M}(\pi \downarrow i)$
- ► **FG** ϕ is true if there is a point after which ϕ is always true $\begin{bmatrix} FG\phi \end{bmatrix}_{M}(\pi) = \begin{bmatrix} F(G(\phi)) \end{bmatrix}_{M}(\pi)$ $= \exists m_{1} . \begin{bmatrix} G(\phi) \end{bmatrix}_{M}(\pi \downarrow m_{1})$ $= \exists m_{1} . \forall m_{2} . \begin{bmatrix} \phi \end{bmatrix}_{M}((\pi \downarrow m_{1}) \downarrow m_{2})$ $= \exists m_{1} . \forall m_{2} . \begin{bmatrix} \phi \end{bmatrix}_{M}(\pi \downarrow (m_{1} + m_{2}))$
- LTL can express things that CTL can't express
- Note: it's tricky to prove CTL can't express FG

CTL can express things that LTL can't express

AG(EF p) says:

"from every state it is possible to get to a state for which *p* holds"

- Can't say this in LTL (easy proof given earlier slide 57)
- Consider disjunction:

"on every path there is a point after which **p** is always true on that path or from every state it is possible to get to a state for which **p** holds"

- Can't say this in either CTL or LTL!
- CTL* combines CTL and LTL and can express this property

CTL*

- Both state formulae (ψ) and path formulae (ϕ)
 - state formulae ψ are true of a state s like CTL
 - path formulae ϕ are true of a path π like LTL
- Defined mutually recursively

ψ	::=	р	(Atomic formula)
		$\neg\psi$	(Negation)
	İ	$\psi_1 \vee \psi_2$	(Disjunction)
		$\mathbf{A}\phi$	(All paths)
		${\sf E} \dot{\phi}$	(Some paths)
ϕ	::=	ψ	(Every state formula is a path formula)
		$\neg \phi$	(Negation)
	Í	$\phi_1 \vee \phi_2$	(Disjunction)
		$\mathbf{X}\phi$	(Successor)
	İ	$F\phi$	(Sometimes)
		$\mathbf{G}\phi$	(Always)
		$[\phi_1 \ \mathbf{U} \ \phi_2]$	(Until)

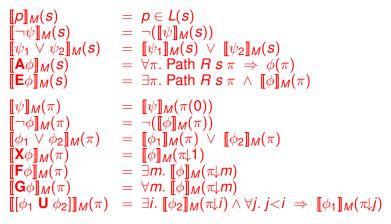
CTL is CTL* with X, F, G, [-U-] preceded by A or E

 LTL consists of CTL* formulae of form Aφ, where the only state formulae in φ are atomic

Mike Gordon

CTL* semantics

Combines CTL state semantics with LTL path semantics:



• Note $\llbracket \psi \rrbracket_M : S \rightarrow \mathbb{B}$ and $\llbracket \phi \rrbracket_M : (\mathbb{N} \rightarrow S) \rightarrow \mathbb{B}$

LTL and CTL as CTL*

- As usual: $M = (S, S_0, R, L)$
- ▶ If ψ is a CTL* state formula: $M \models \psi \Leftrightarrow \forall s \in S_0$. $\llbracket \psi \rrbracket_M(s)$
- ► If ϕ is an LTL path formula then: $M \models_{LTL} \phi \Leftrightarrow M \models_{CTL} A\phi$
- ▶ If *R* is total ($\forall s$. $\exists s'$. *R* s s') then (exercise): $\forall s s'$. *R* s s' $\Leftrightarrow \exists \pi$. Path *R* s $\pi \land (\pi(1) = s')$
- The meanings of CTL formulae are the same in CTL*

 $\llbracket \mathbf{A}(\mathbf{X}\psi) \rrbracket_{M}(s)$

- $= \forall \pi. \text{ Path } R \ s \ \pi \Rightarrow \llbracket X \psi \rrbracket_M(\pi)$
- $= \forall \pi. \text{ Path } R \ s \ \pi \Rightarrow \llbracket \psi \rrbracket_{M}(\pi \downarrow 1)$
- $= \forall \pi. \text{ Path } R \ s \ \pi \Rightarrow \llbracket \psi \rrbracket_{M}((\pi \downarrow 1)(0))$ $= \forall \pi. \text{ Path } R \ s \ \pi \Rightarrow \llbracket \psi \rrbracket_{M}(\pi(1))$

 $(\psi \text{ as path formula})$ $(\psi \text{ as state formula})$

[AXψ**]**_M(s)

Mike Gordon

- $= \forall s'. R s s' \Rightarrow \llbracket \psi \rrbracket_{M}(s')$
- $= \forall s'. (\exists \pi. \text{ Path } R \ s \ \pi \land (\pi(1) = s')) \Rightarrow \llbracket \psi \rrbracket_{M}(s')$
- $= \forall s'. \forall \pi. \text{ Path } R \ s \ \pi \land (\pi(1) = s') \Rightarrow \llbracket \psi \rrbracket_M(s')$

 $= \forall \pi$. Path $R \ s \ \pi \Rightarrow \llbracket \psi \rrbracket_M(\pi(1))$

Exercise: do similar proofs for other CTL formulae

Fairness

May want to assume system or environment is 'fair'

- Example 1: fair arbiter the arbiter doesn't ignore one of its requests forever
 - not every request need be granted
 - want to exclude infinite number of requests and no grant
- Example 2: reliable channel

no message continuously transmitted but never received

- not every message need be received
- want to exclude an infinite number of sends and no receive

Handling fairness in CTL and LTL

Consider:

p holds infinitely often along a path then so does q

- In LTL is expressible as $G(F \rho) \Rightarrow G(F q)$
- Can't say this in CTL
 - why not what's wrong with $AG(AF p) \Rightarrow AG(AF q)$?
 - in CTL* expressible as $A(G(F p) \Rightarrow G(F q))$
 - fair CTL model checking implemented in checking algorithm
 - ► fair LTL just a fairness assumption like $G(F \rho) \Rightarrow \cdots$
- Fairness is a tricky and subtle subject
 - many kinds of fairness:
 'weak fairness', 'strong fairness' etc
 - exist whole books on fairness

Propositional modal μ -calculus

- You may learn this in Topics in Concurrency
- μ -calculus is an even more powerful property language
 - has fixed-point operators
 - both maximal and minimal fixed points
 - model checking consists of calculating fixed points
 - many logics (e.g. CTL*) can be translated into μ-calculus
- Strictly stronger than CTL*
 - expressibility strictly increases as allowed nesting increases
 - need fixed point operators nested 2 deep for CTL*
- The μ -calculus is very non-intuitive to use!
 - intermediate code rather than a practical property language
 - nice meta-theory and algorithms, but terrible usability!