Standard BDD operations

>

Mike Gordon

If formulae f;, f> represents sets Sy, S», respectively
then f; A fo, f; V > represent S; N So, Sy U So respectively

Standard algorithms compute Boolean operation on BDDs
Abbreviate (vq,...,v,)to V

If f(V) represents S
and g(v, V') represents {(v,V') | RV V')}
then Ju. f(uU) A g(u, V) represents {V |Ju. i€ SAR UV}

Can compute BDD of Ju. h(u, v) from BDD of h(u, v)
» e.g. BDD of 3vy. h(vq, v2) is BDD of h(T, v2) V h(F, v2)

From BDD of formula f(vq, ..., v,) can compute by, ..., b,
such thatif vi = by, ..., vy = by then f(by, ..., by) < true
» by, ..., by is a satisfying assignment (SAT problem)
» used for counterexample generation (see later)

31/128

Reachable States via BDDs
» Assume M = (S, Sy, R, L) and S = B"

» Represent R by Boolean formulae g(v, v/)

v

lteratively define formula f,(V) representing S,

fo(v) = formula representing Sy
fra(V) = fa(V) v (30. fa(D) A 9(8, 7))

v

Let Bo, Br be BDDs representing f,(V/), g(V, v/)

v

Iteratively compute BDDs 5, representing f,
Bni1=Bn V (3d. Bnld/V] A Bgld,v/v,V'])

» efficient using (blue underlined) standard BDD algorithms
(renaming, conjunction, disjunction, quantification)

» BDD B, only contains variables v: represents S, C S

v

At each iteration check 5,1 = BB, efficient using BDDs

» when 5,1 = B, can conclude 5, represents Reachable M

» we call this BDD By, in a later slide (i.e. By = 5,)
Mike Gordon 32/128

Example BDD optimisation: disjunctive partitioning

Three state transition functions in parallel

= ' 0x,0y,67 1 B x B x BB

» Transition relation (asynchronous interleaving semantics):

R(X,y,Z) (ley/vzl):
(X' =6x(x,y,2) Ny =y N Z=2)V
X' =x N y=(x,y,2) N Z=2)V
(xX'=x Ny =y AN Z=06(xy,2))

Mike Gordon 33/128

Avoiding building big BDDs
» Transition relation for three transition functions in parallel
R(x.y,z) (X'.y',Z') =

(X' =dx(x,y,2) N Y=y N Z=2)V
X' =x N Yy =(x,y,2) N Z=2)V
X'=x Ny =y N Z=65(xy,2))

» Recall symbolic iteration:
far1 (V) = (V) v (3U. fo(U) A 9(d, V)

» For this particular R (see next slide):
fn+1 (Xa Y, Z)

=fhix,y,2)vV(3xyz fp(X,y,Z2) NR(X,y,2) (X,y,2))
- fn(X,y./ Z) v

(3x. fa(X,y,2) N x =0x(X,y,2)) V

(3}7 fn(X./y, Z) NY= 5}/(Xay7 Z)) \

(3z. fa(x,y,2) N z=102(x,y,2))

» Don’t need to calculate BDD of R!

Mike Gordon

34/128

Disjunctive partitioning — Exercise: understand this
HYT/? fn(77772) A R (Yayvi) (X,y,Z)

= IXYZ. (X, y,2) N (Xx=0x(X,¥,Z) NYy=Y NZ=2)V
(X=X ANy=0,Xy,2) N z=2)V
(X=X ANy=y N z=06;(X,Y,2)))
= (XYZ6L(XV.2) AX=0x(X.V.Z) ANYy=Y A 2=2Z)V
(IXyz. (X, y,2) N X=X Ny=06,X,y,Z2) N Z=2)V
(XVZ6H(X,V,Z) AX=XAy=y A z=0,(X,V,2))
= (Ixyz. fa(X,y,2) N x=06(X,y,2) Ny=yY N zZ=2)V
(Ixyz. fo(x,¥,2) N X=X Ny=0y(X,y,2Z) N Z=2Z)V
Xy zZ. fa(x,y,Z) NX=X ANYy=Yy N Z=20(x,y,2))
= ((3x. fa(X,y,2) N x=x(X,y,2)) AN (Ty.y=y) A (32.z=2)) V
((Fx. x=x) N (Ty. fa(x,¥,2) Ny=6y(X,¥,2)) N (3Z.z=2)) V
(GX. x=x) A (GY.y=7) A (2. fa(X,y.2) A 2=02(x, y,2))
- (ElY fn(yvyvz) /\ X_(S (X y?))
(Hy fn(X7Y7 Z) A y: 6}/(X yai))
(Fz. fa(x,y,2) N z=102(x,Y,2))

Mike Gordon

35/128

Verification and counterexamples

» Typical safety question:

» is property p true in all reachable states?
» i.e. check M = AGp
» i.e. isVs. s € Reachable M = p s

» Check using BDDs

» compute BDD /3y, of Reachable M
» compute BDD 5, of p(V)

» check if BDD of By = B3, is the single node

» Valid because true represented by a unique BDD
(canonical property)

» If BDD is not| 1 | can get counterexample

Mike Gordon

36/128

Generating counterexamples (general idea)
BDD algorithms can find satisfying assignments (SAT)

» Suppose not all reachable states of model M satisfy p

» i.e. 3s € Reachable M. —(p(s))

» Set of reachable state S given by: S = [, Sh

» lterate to find least n such that 9s € S,. = (p(s))

» Use SAT to find b, such that b, € Sy A —=(p(bn))

» Use SAT to find b,_4 such that b,_1 € S,_1 AR b,_1 by
» Use SAT to find b,,_» such that b, > € S, > A R by_o by_1

» lterate to find by, by, ..., by_1, by Where b; € S; AN R bj_1 b;
» Then by by -+ b,_q by is a path to a counterexample

Mike Gordon 37/128

Use SAT to find s,,_4 such that s,_1 € S,_1 A R Sh_1 S)

Mike Gordon

Suppose states s, s’ symbolically represented by v, v
Suppose BDD B; represents v € S; (1 < i < n)
Suppose BDD 55 represents R V v/

Then BDD o
(Bn—1 A Bgl[bn/V'])
represents B
\7 G Sn7‘| /\ R ‘7 bn

Use SAT to find a valuation b,,_; for v

Then BDD o
(Bn-1 A Bg[bn/V'])[ba-1/V]
represents

bn 1 GSn 1/\Rbn 1bn

38/128

Generating counterexamples with BDDs

BDD algorithms can find satisfying assignments (SAT)

>

>

Mike Gordon

M = (S, So, R, L) and By, By, ..., Bu, Br, By as earlier

Suppose By = By is not
Must exist a state s € Reachable M such that —(p s)

Let 5, be the BDD representing —(p V)

lterate to find first n such that B, A B

Use SAT to find b, such that (Bn A Bﬁp)[Bni/V]

Use SAT to find b, 1 such that (B,_1 A Bg[bn/V'])[bn_1/V]
For 0 < i < nfind b;_4 such that (5;_1 A Bg[b;/Vv'])[bi_1/V]
bo.. . .,bi,. . .,b, is a counterexample trace

Sometimes can use partitioning to avoid constructing Bg

39/128

CALL FOR PAPERS
2nd ICAPS Workshop on Model Checking and Automated Planning (MOCHAP-15)

http://icaps15.icaps-conference.orq/

Jerusalem, Israel, June 7/8, 2015

There has been a lot of work on the exchanges between the two research areas of model checking and automated
planning. From a high level perspective, model checking and planning problems are related in the sense that plans
(found by a planning system) correspond to error traces (found by a model checker).

For example, finding violations of properties that can be checked on a per-state basis (e.g., mutex properties) in model
checking can be achieved by finding goal states in a correspondent planning problem.

Thus, if a plan is found by a planning system, it corresponds to an error trace that a model checker could return. The
link can be exploited also in the other way around, using a model checker to search the state space of a planning
problem, and stopping the search when a goal state is found. Furthermore, there is a strong connection between
hybrid-system falsification and motion planning as

state-of-the-art motion planners are used as the starting point for searching the continuous state spaces of hybrid
systems.

The purpose of the workshop is to continue to promote a cross-fertilisation between research on planning and

verification, incrementing the synergy between the two areas. This workshop is an ideal venue for
discussing what can be shared in terms of techniques, tools, modelling languages and benchmark problems.

Topics of Interest

Topics of interest include - but are not limited to - the following topics:

* Planning as model checking

Example (from an exam)

Consider a 3x3 array of 9 switches

Suppose each switch 1,2,...,9 can either be on or off, and that toggling any switch will
automatically toggle all its immediate neighbours. For example, toggling switch 5 will
also toggle switches 2, 4, 6 and 8, and toggling switch 6 will also toggle switches 3, 5
and 9.

(a) Devise a state space [4 marks] and transition relation [6 marks] to represent the
behavior of the array of switches

You are given the problem of getting from an initial state in which even numbered
switches are on and odd numbered switches are off, to a final state in which all the
switches are off.

(b) Write down predicates on your state space that characterises the initial [2 marks]
and final [2 marks] states.

(c) Explain how you might use a model checker to find a sequences of switches to
toggle to get from the initial to final state. [6 marks]

You are not expected to actually solve the problem, but only to explain how to represent
it in terms of model checking.

Mike Gordon 40/128

Solution

A state is a vector (vi,v2,v3,va,v5,ve,v7,ve,v9), where vi € B

A transition relation Trans is then defined by:

Trans (vl,v2,v3,v4,v5,v6,v7,v8,v9) (v1l',v2",v3’,v4’ ,v5' ,ve’ ,v7’

\%

\

Mike Gordon

((V1'==vI)A(v2'==v2) A (v3'=Vv3) A (v4' ==v4) A (v5 =v5)A

(V6" =v6) A (VT =vT) A(v8'=v8)A (VI =vI)) (toggle switch 1)

(V1 ==v1) A (v2'==v2) AN (v3'==v3)A(v4' =v4) A (v5 ' ==v5)A

(Vv6'=v6) A (VT =vT)A(v8' =v8)A(v9' =v9)) (toggle switch 2)

(V1" =v1) A (v2' ==v2) A (v3'==v3) A (v4'=v4) A\ (v5'=Vv5)A

(V6" ==v6) A (VT =vT) A (v8'=v8) A (VI =v9)) (toggle switch 3)

((V1'==v1) A (v2'=v2) A (v3'=v3) A (v4' ==v4) A (V5 ==v5)A

(v6'=v6) A (V7' =—vT)A(v8'=v8) A (v9’'=v9)) (toggle switch 4)

(V1" =v1) A (v2' ==v2) AN (v3'=v3) A (V4 ==v4) A\ (V5 ==v5)A

(V6" ==v6) A (v =vT)A(v8' ==v8)A (v =v9)) (toggle switch 5)

(V1" =v1) A (v2'=v2) AN (v3'==v3) A (Vv4'=v4) A (V5 ==v5)A

(V6" ==v6) A (v =vT)A(v8'=v8)A (v’ ==v9)) (toggle switch 6)

(V1" =v1) A (v2'=v2) AN (v3' =v3) A (v4' ==v4) A (V5" =v5) A

(V6" =v6) A (v ==vT)A(v8'==v8)A (v =v9)) (toggle switch 7)

((v1"=v1) A (v2'=v2) AN (v3'=v3)A(v4'=v4) A (V5 ==v5)A

(V6" =v6) A (VT ==vT)A(v8'==v8) A (v9'=-v9)) (toggle switch 8)

((v1"=v1) A (v2'=v2) AN (v3'=v3)A(v4'=v4) A (v5'=vE)A

(V6" ==v6) A (v =vT) A (v8"==v8) A (v9'=-v9)) (toggle switch 9)

,v8’,v9")

41/128

Solution (continued)

Predicates nit, rina1 characterising the initial and final states,
respectively, are defined by:

Init(vl,v2,v3,v4,v5,v6,v7,v8,v9) =
vl A v2 AN =v3 A vd AN =v5 A ve AN =v7T A v8 A —v9

Final (vl,v2,v3,v4,v5,v6,v7,v8,v9) =
vl A w2 AN =v3 A =vd AN =v5 A =ve A =v7T A =v8 A —v9

Model checkers can find counter-examples to properties, and
sequences of transitions from an initial state to a
counter-example state. Thus we could use a model checker to
find a trace to a counter-example to the property that

—Final (vl,v2,v3,v4,v5,v6,v7,v8,v9)

Mike Gordon 42/128

Properties
» VseS5y.Vs'.R* s s’ = p s says p true in all reachable states

v

Might want to verify other properties
1. DeviceEnabled holds infinitely often along every path

2. From any state it is possible to get to a state where
Restart holds

3. After a three or more consecutive occurrences of Req there
will eventually be an Ack

v

Temporal logic can express such properties

v

There are several temporal logics in use
» LTL is good for the first example above
» CTL is good for the second example
» PSL is good for the third example

v

Model checking:
» Emerson, Clarke & Sifakis: Turing Award 2008
» widely used in industry: first hardware, later software

Mike Gordon 43/128

Temporal logic (originally called “tense logic”)

Originally devised for investigating: “the relationship
between tense and modality attributed to the Megarian
philosopher Diodorus Cronus (ca. 340-280 BCE)”.

Mary Prior, his wife, recalls “I remember his waking me
one night [in 1953], coming and sitting on my bed, ... and
saying he thought one could make a formalised tense logic”.

A. N. Prior
1914-1969

» Temporal logic: deductive system for reasoning about time
» temporal formulae for expressing temporal statements
» deductive system for proving theorems
» Temporal logic model checking
» uses semantics to check truth of temporal formulae in models
» Temporal logic proof systems also important in CS
» use pioneered by Amir Pnueli (1996 Turing Award)
» not considered in this course

Recommended: http://plato.stanford.edu/entries/prior/

Mike Gordon 44 /128

http://plato.stanford.edu/entries/prior/

Temporal logic formulae (statements)

» Many different languages of temporal statements
» linear time (LTL)
» branching time (CTL)
» finite intervals (SERESs)
» industrial languages (PSL, SVA)

» Prior used linear time, Kripke suggested branching time:
... we perhaps should not regard time as a linear series ... there are
several possibilities for what the next moment may be like - and for
each possible next moment, there are several possibilities for the
moment after that. Thus the situation takes the form, not of a linear
sequence, but of a ‘tree’.

[Saul Kripke, 1958 (aged 17, still at school)]

» CS issues different from philosophical issues
» Moshe Vardi: “Branching vs. Linear Time: Final Showdown”

http://Awww.computer.org/portal/web/awards/Vardi

Moshe Vardi
www.computer.org

"For fundamental and lasting contributions to the development
of logic as a unifying foundational framework and a tool for
modeling computational systems"

2011 Harry H. Goode Memorial Award Recipient

Mike Gordon 45/128

Linear Temporal Logic (LTL)

» Grammar of well formed formulae (wff) ¢

o = p (Atomic formula: p € AP)
| ¢ (Negation)
| &1V o (Disjunction)
| Xo (successor)
| Fo (sometimes)
| Go (always)
|

[¢1 Udz] (Until)
» Details differ from Prior’s tense logic — but similar ideas

» Semantics define when ¢ true in model M
» where M = (S, Sy, R, L) — a Kripke structure
» notation: M = ¢ means ¢ true in model M
» model checking algorithms compute this (when decidable)

Mike Gordon 46/128

