
Standard BDD operations

◮ If formulae f1, f2 represents sets S1, S2, respectively

then f1 ∧ f2, f1 ∨ f2 represent S1 ∩ S2, S1 ∪ S2 respectively

◮ Standard algorithms compute Boolean operation on BDDs

◮ Abbreviate (v1, . . . , vn) to ~v

◮ If f (~v) represents S

and g(~v , ~v ′) represents {(~v , ~v ′) | R ~v ~v ′)}
then ∃~u. f (~u) ∧ g(~u, ~v) represents {~v | ∃~u. ~u ∈ S ∧ R ~u ~v}

◮ Can compute BDD of ∃~u. h(~u, ~v) from BDD of h(~u, ~v)
◮ e.g. BDD of ∃v1. h(v1, v2) is BDD of h(T, v2) ∨ h(F, v2)

◮ From BDD of formula f (v1, . . . , vn) can compute b1, . . ., bn

such that if v1 = b1, . . ., vn = bn then f (b1, . . . , bn) ⇔ true
◮ b1, . . ., bn is a satisfying assignment (SAT problem)
◮ used for counterexample generation (see later)
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Reachable States via BDDs
◮ Assume M = (S,S0,R, L) and S = B

n

◮ Represent R by Boolean formulae g(~v , ~v ′)

◮ Iteratively define formula fn(~v) representing Sn

f0(~v) = formula representing S0

fn+1(~v) = fn(~v) ∨ (∃~u. fn(~u) ∧ g(~u, ~v))

◮ Let B0, BR be BDDs representing f0(~v), g(~v , ~v ′)

◮ Iteratively compute BDDs Bn representing fn

Bn+1 = Bn ∨ (∃~u. Bn[~u/~v ] ∧ BR[~u, ~v/~v , ~v
′])

◮ efficient using (blue underlined) standard BDD algorithms
(renaming, conjunction, disjunction, quantification)

◮ BDD Bn only contains variables ~v : represents Sn ⊆ S

◮ At each iteration check Bn+1 = Bn efficient using BDDs

◮ when Bn+1 = Bn can conclude Bn represents Reachable M
◮ we call this BDD BM in a later slide (i.e. BM = Bn)
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Example BDD optimisation: disjunctive partitioning

δ

δ

δ
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z

Three state transition functions in parallel

δx , δy , δz : B× B× B→B

◮ Transition relation (asynchronous interleaving semantics):

R (x , y , z) (x ′, y ′, z ′) =
(x ′ = δx(x , y , z) ∧ y ′ = y ∧ z ′ = z) ∨
(x ′ = x ∧ y ′ = δy (x , y , z) ∧ z ′ = z) ∨
(x ′ = x ∧ y ′ = y ∧ z ′ = δz(x , y , z))
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Avoiding building big BDDs

◮ Transition relation for three transition functions in parallel
R(x , y , z) (x ′, y ′, z ′) =
(x ′ = δx(x , y , z) ∧ y ′ = y ∧ z ′ = z) ∨
(x ′ = x ∧ y ′ = δy (x , y , z) ∧ z ′ = z) ∨
(x ′ = x ∧ y ′ = y ∧ z ′ = δz(x , y , z))

◮ Recall symbolic iteration:

fn+1(~v) = fn(~v) ∨ (∃~u. fn(~u) ∧ g(~u, ~v))

◮ For this particular R (see next slide):
fn+1(x , y , z)

= fn(x , y , z) ∨ (∃x y z. fn(x , y , z) ∧ R (x , y , z) (x , y , z))

= fn(x , y , z) ∨
(∃x . fn(x , y , z) ∧ x = δx(x , y , z)) ∨
(∃y . fn(x , y , z) ∧ y = δy (x , y , z)) ∨
(∃z. fn(x , y , z) ∧ z = δz(x , y , z))

◮ Don’t need to calculate BDD of R!
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Disjunctive partitioning – Exercise: understand this
∃x y z. fn(x , y , z) ∧ R (x , y , z) (x , y , z)

= ∃x y z. fn(x , y , z) ∧ ((x = δx(x , y , z) ∧ y = y ∧ z = z) ∨
(x = x ∧ y = δy (x , y , z) ∧ z = z) ∨
(x = x ∧ y = y ∧ z = δz(x , y , z)))

= (∃x y z. fn(x , y , z) ∧ x = δx(x , y , z) ∧ y = y ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = δy (x , y , z) ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = y ∧ z = δz(x , y , z))

= (∃x y z. fn(x , y , z) ∧ x = δx(x , y , z) ∧ y = y ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = δy (x , y , z) ∧ z = z) ∨
(∃x y z. fn(x , y , z) ∧ x = x ∧ y = y ∧ z = δz(x , y , z))

= ((∃x . fn(x , y , z) ∧ x=δx(x , y , z)) ∧ (∃y . y=y) ∧ (∃z. z=z)) ∨
((∃x . x=x) ∧ (∃y . fn(x , y , z) ∧ y=δy (x , y , z)) ∧ (∃z. z=z)) ∨
((∃x . x=x) ∧ (∃y . y=y) ∧ (∃z. fn(x , y , z) ∧ z=δz(x , y , z)))

= (∃x . fn(x , y , z) ∧ x = δx(x , y , z)) ∨
(∃y . fn(x , y , z) ∧ y = δy (x , y , z)) ∨
(∃z. fn(x , y , z) ∧ z = δz(x , y , z))
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Verification and counterexamples

◮ Typical safety question:

◮ is property p true in all reachable states?
◮ i.e. check M |= AG p
◮ i.e. is ∀s. s ∈ Reachable M ⇒ p s

◮ Check using BDDs

◮ compute BDD BM of Reachable M

◮ compute BDD Bp of p(~v)

◮ check if BDD of BM ⇒ Bp is the single node 1

◮ Valid because true represented by a unique BDD

(canonical property)

◮ If BDD is not 1 can get counterexample
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Generating counterexamples (general idea)

BDD algorithms can find satisfying assignments (SAT)

◮ Suppose not all reachable states of model M satisfy p

◮ i.e. ∃s ∈ Reachable M. ¬(p(s))

◮ Set of reachable state S given by: S =
⋃∞

n=0 Sn

◮ Iterate to find least n such that ∃s ∈ Sn. ¬(p(s))

◮ Use SAT to find bn such that bn ∈ Sn ∧ ¬(p(bn))

◮ Use SAT to find bn−1 such that bn−1 ∈ Sn−1 ∧ R bn−1 bn

◮ Use SAT to find bn−2 such that bn−2 ∈ Sn−2 ∧ R bn−2 bn−1
...

◮ Iterate to find b0, b1, . . ., bn−1, bn where bi ∈ Si ∧ R bi−1 bi

◮ Then b0 b1 · · · bn−1 bn is a path to a counterexample
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Use SAT to find sn−1 such that sn−1 ∈ Sn−1 ∧ R sn−1 sn

◮ Suppose states s, s′ symbolically represented by ~v , ~v ′

◮ Suppose BDD Bi represents ~v ∈ Si (1 ≤ i ≤ n)

◮ Suppose BDD BR represents R ~v ~v ′

◮ Then BDD

(Bn−1 ∧ BR[~bn/~v ′])
represents
~v ∈ Sn−1 ∧ R ~v ~bn

◮ Use SAT to find a valuation ~bn−1 for ~v

◮ Then BDD

(Bn−1 ∧ BR[~bn/~v ′])[~bn−1/~v ]
represents
~bn−1 ∈ Sn−1 ∧ R ~bn−1

~bn
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Generating counterexamples with BDDs

BDD algorithms can find satisfying assignments (SAT)

◮ M = (S,S0,R, L) and B0, B1, . . . , BM , BR, Bp as earlier

◮ Suppose BM ⇒ Bp is not 1

◮ Must exist a state s ∈ Reachable M such that ¬(p s)

◮ Let B¬p be the BDD representing ¬(p ~v)

◮ Iterate to find first n such that Bn ∧ B¬p

◮ Use SAT to find ~bn such that (Bn ∧ B¬p)[~bn/~v ]

◮ Use SAT to find ~bn−1 such that (Bn−1 ∧ BR[~bn/~v ′])[~bn−1/~v ]

◮ For 0 < i < n find ~bi−1 such that (Bi−1 ∧ BR[~bi/~v ′])[~bi−1/~v ]

◮ ~b0,. . .,~bi ,. . .,~bn is a counterexample trace

◮ Sometimes can use partitioning to avoid constructing BR
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Example (from an exam)
Consider a 3x3 array of 9 switches

1 2 3

4 5 6

7 8 9

Suppose each switch 1,2,...,9 can either be on or off, and that toggling any switch will
automatically toggle all its immediate neighbours. For example, toggling switch 5 will
also toggle switches 2, 4, 6 and 8, and toggling switch 6 will also toggle switches 3, 5
and 9.

(a) Devise a state space [4 marks] and transition relation [6 marks] to represent the
behavior of the array of switches

You are given the problem of getting from an initial state in which even numbered
switches are on and odd numbered switches are off, to a final state in which all the
switches are off.

(b) Write down predicates on your state space that characterises the initial [2 marks]
and final [2 marks] states.

(c) Explain how you might use a model checker to find a sequences of switches to
toggle to get from the initial to final state. [6 marks]

You are not expected to actually solve the problem, but only to explain how to represent
it in terms of model checking.
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Solution

A state is a vector (v1,v2,v3,v4,v5,v6,v7,v8,v9), where vi ∈ B

A transition relation Trans is then defined by:

Trans(v1,v2,v3,v4,v5,v6,v7,v8,v9)(v1’,v2’,v3’,v4’,v5’,v6’,v7’,v8’,v9’)

= ((v1’=¬v1)∧(v2’=¬v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=v5)∧
(v6’=v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 1)

∨ ((v1’=¬v1)∧(v2’=¬v2)∧(v3’=¬v3)∧(v4’=v4)∧(v5’=¬v5)∧
(v6’=v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 2)

∨ ((v1’=v1)∧(v2’=¬v2)∧(v3’=¬v3)∧(v4’=v4)∧(v5’=v5)∧
(v6’=¬v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 3)

∨ ((v1’=¬v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=¬v5)∧
(v6’=v6)∧(v7’=¬v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 4)

∨ ((v1’=v1)∧(v2’=¬v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=¬v5)∧
(v6’=¬v6)∧(v7’=v7)∧(v8’=¬v8)∧(v9’=v9)) (toggle switch 5)

∨ ((v1’=v1)∧(v2’=v2)∧(v3’=¬v3)∧(v4’=v4)∧(v5’=¬v5)∧
(v6’=¬v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=¬v9)) (toggle switch 6)

∨ ((v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=¬v4)∧(v5’=v5)∧
(v6’=v6)∧(v7’=¬v7)∧(v8’=¬v8)∧(v9’=v9)) (toggle switch 7)

∨ ((v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=v4)∧(v5’=¬v5)∧
(v6’=v6)∧(v7’=¬v7)∧(v8’=¬v8)∧(v9’=¬v9)) (toggle switch 8)

∨ ((v1’=v1)∧(v2’=v2)∧(v3’=v3)∧(v4’=v4)∧(v5’=v5)∧
(v6’=¬v6)∧(v7’=v7)∧(v8’=¬v8)∧(v9’=¬v9)) (toggle switch 9)
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Solution (continued)

Predicates Init, Final characterising the initial and final states,

respectively, are defined by:

Init(v1,v2,v3,v4,v5,v6,v7,v8,v9) =

¬v1 ∧ v2 ∧ ¬v3 ∧ v4 ∧ ¬v5 ∧ v6 ∧ ¬v7 ∧ v8 ∧ ¬v9

Final(v1,v2,v3,v4,v5,v6,v7,v8,v9) =

¬v1 ∧ ¬v2 ∧ ¬v3 ∧ ¬v4 ∧ ¬v5 ∧ ¬v6 ∧ ¬v7 ∧ ¬v8 ∧ ¬v9

Model checkers can find counter-examples to properties, and

sequences of transitions from an initial state to a

counter-example state. Thus we could use a model checker to

find a trace to a counter-example to the property that

¬Final(v1,v2,v3,v4,v5,v6,v7,v8,v9)
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Properties
◮ ∀s∈S0.∀s′.R∗ s s′ ⇒ p s′ says p true in all reachable states

◮ Might want to verify other properties

1. DeviceEnabled holds infinitely often along every path

2. From any state it is possible to get to a state where

Restart holds

3. After a three or more consecutive occurrences of Req there

will eventually be an Ack

◮ Temporal logic can express such properties

◮ There are several temporal logics in use

◮ LTL is good for the first example above

◮ CTL is good for the second example

◮ PSL is good for the third example

◮ Model checking:

◮ Emerson, Clarke & Sifakis: Turing Award 2008

◮ widely used in industry: first hardware, later software
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Temporal logic (originally called “tense logic”)
Originally devised for investigating: “the relationship
between tense and modality attributed to the Megarian
philosopher Diodorus Cronus (ca. 340-280 BCE)”.

Mary Prior, his wife, recalls “I remember his waking me
one night [in 1953], coming and sitting on my bed, ... and
saying he thought one could make a formalised tense logic”.

A. N. Prior
1914-1969

◮ Temporal logic: deductive system for reasoning about time
◮ temporal formulae for expressing temporal statements
◮ deductive system for proving theorems

◮ Temporal logic model checking
◮ uses semantics to check truth of temporal formulae in models

◮ Temporal logic proof systems also important in CS
◮ use pioneered by Amir Pnueli (1996 Turing Award)
◮ not considered in this course

Recommended: http://plato.stanford.edu/entries/prior/
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Temporal logic formulae (statements)
◮ Many different languages of temporal statements

◮ linear time (LTL)
◮ branching time (CTL)
◮ finite intervals (SEREs)
◮ industrial languages (PSL, SVA)

◮ Prior used linear time, Kripke suggested branching time:
... we perhaps should not regard time as a linear series ... there are
several possibilities for what the next moment may be like - and for
each possible next moment, there are several possibilities for the
moment after that. Thus the situation takes the form, not of a linear
sequence, but of a ’tree’.
[Saul Kripke, 1958 (aged 17, still at school)]

◮ CS issues different from philosophical issues
◮ Moshe Vardi: “Branching vs. Linear Time: Final Showdown”

2011 Harry H. Goode Memorial Award Recipient

Mike Gordon 45 / 128



Linear Temporal Logic (LTL)

◮ Grammar of well formed formulae (wff) φ

φ ::= p (Atomic formula: p ∈ AP)

| ¬φ (Negation)

| φ1 ∨ φ2 (Disjunction)

| Xφ (successor)

| Fφ (sometimes)

| Gφ (always)

| [φ1 U φ2] (Until)

◮ Details differ from Prior’s tense logic – but similar ideas

◮ Semantics define when φ true in model M

◮ where M = (S,S0,R,L) – a Kripke structure

◮ notation: M |= φ means φ true in model M

◮ model checking algorithms compute this (when decidable)
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