
Under consideration for publication in Formal Aspects of Computing

Validating the PSL/Sugar semantics
using automated reasoning
Michael J. C. Gordon

Abstract.
The Accellera organisation selected Sugar, IBM’s formal specification language, as the basis for a standard

to “drive assertion-based verification” in the electronics industry. Sugar combines regular expressions, Linear
Temporal Logic (LTL) and Computation Tree Logic (CTL) into a property language intended for both static
verification (e.g. model checking) and dynamic verification (e.g. simulation). In 2003 Accellera decided to
rename the evolving standard to “Accellera Property Specification Language” (or “PSL” for short).

We motivate and describe a deep semantic embedding of PSL in the version of higher order logic supported
by the HOL 4 theorem proving system. The main goal of this paper is to demonstrate that mechanised
theorem proving can be a useful aid to the validation of the semantics of an industrial design language.

Keywords: Property language, Sugar, Accellera, PSL, Semantics, Formal verification, Model checking,
Theorem proving, higher order logic, HOL

1. Background on the Accellera organisation and the Sugar property language

The Accellera organisation’s website contains the following mission statement:
To improve designers’ productivity, the electronic design industry needs a methodology based on both worldwide standards and
open interfaces. Accellera was formed in 2000 through the unification of Open Verilog International and VHDL International
to focus on identifying new standards, development of standards and formats, and to foster the adoption of new methodologies.

Accellera’s mission is to drive worldwide development and use of standards required by systems, semiconductor and design
tools companies, which enhance a language-based design automation process. Its Board of Directors guides all the operations
and activities of the organisation and is comprised of representatives from ASIC manufacturers, systems companies and design
tool vendors.

Faced with a growing number of syntactically and semantically incompatible formal property languages,
Accellera set up a committee:
The Accellera Formal Property Language Technical Committee is chartered with the responsibility of defining a property
specification language standard compatible with both the Verilog (IEEE-1364) and VHDL (IEEE-1076) language. This formal
language is targeted for both dynamic verification (e.g., simulation) as well as static verification (e.g., model checking). In
addition, the Formal Property Language Technical Committee is chartered with:

• Driving standardisation among developers, users and academia,

• Promoting use of the standard, and

• Assuring interoperability for the property specification language among various verification tools within the hardware design
flow.

Correspondence and offprint requests to: Mike Gordon, University of Cambridge Computer Laboratory, William Gates Building,
JJ Thomson Avenue, Cambridge CB3 0FD, U.K. e-mail: mjcg@cl.cam.ac.uk

2 Michael J. C. Gordon

This committee conducted a competition to select a property language design to be the basis of the
Accellera standard. The finalists of the competition were based on four existing languages:

• Motorola’s CBV language;

• IBM’s Sugar (the language of its RuleBase FV toolset);

• Intel’s ForSpec;

• Verisity’s e language (the language of the Specman Elite test-bench).

After a combination of discussion and voting, the field was narrowed down to Sugar and CBV, and then
in April 2002 a vote selected IBM’s submission, Sugar. The Accellera Formal Property Language Technical
Committee then used Sugar as the starting point for defining a standard language they named PSL (short
for Accellera Property Specification Language). This paper describes work that started with Sugar and then
evolved to apply to PSL, and so we will sometimes refer to the language as PSL/Sugar.

The version of Sugar submitted by IBM to Accellera (Sugar 2.0) is primarily an LTL-based language that
is a successor to the CTL-based Sugar 1 [BBDE+01]. A key idea of both languages is the use of extended
regular expression constructs called Sugar Extended Regular Expressions or SEREs. Sugar 2.0 retains CTL
constructs in its Optional Branching Extension (OBE), but this is de-emphasised in the defining document.

Besides moving from CTL to LTL, Sugar 2.0 supports clocking and finite paths. Clocking allows one to
specify on which clocks signals are sampled (different sub-formulas may be evaluated with respect to different
clocks). The finite path semantics allows properties to be interpreted on simulation runs by test-bench tools.
The addition of clocking and finite path semantics makes the Sugar 2.0 semantics much more complicated
than the Sugar 1 semantics. However, for a real ‘industry standard’ language Sugar is relatively simple.

The aim of this paper is both to document the representation of the semantics of PSL/Sugar in higher
order logic and also to describe how theorem proving has been used to validate the semantics. In Section 2,
various motivations for this work are discussed. In Section 3, higher order logic and semantic embedding are
reviewed. In Section 4, the full semantics PSL in higher order logic is described. In Section 5, progress so far
in analysing the semantics using the HOL 4 theorem proving system is discussed. Finally, in Section 6 there
is a short section of conclusions and future plans.

The material shown in framed boxes is copied from the LATEX sources of the the Accellera Property
Specification Language Reference Manual [Acc] (henceforth called “LRM” for short). Note that, due to a
different style files used for this paper and the LRM, the text in the boxes will be typeset differently from
how it is typeset in the LRM.

2. Why embed PSL/Sugar in HOL?

There are various reasons for embedding PSL/Sugar in a machine-processable formal logic. The examples in
the following sections are not meant to be exhaustive.

2.1. Debugging and proving meta-theorems

By formalising the semantics and passing it through a parser and type-checker one achieves a first level of
‘sanity checking’ of the definition. One also exposes possible ambiguities, fuzzy corner cases etc. The process
is also very educational for the formaliser and a good learning exercise.

There are a number of meta-theorems one might expect to be true, and proving them with a theorem
prover provides a further and deeper kind of sanity checking. In the case of PSL/Sugar, such meta-theorems
include showing that expected simplifications to the semantics occur if there is no non-trivial clocking, that
different representations of the semantics of clocking are equivalent and that if finite paths are ignored then
the standard ‘text-book semantics’ results. Such meta-theorems are generally mathematically shallow, but
full of tedious details – i.e. ideal for automated theorem proving. Section 5 describes what we have proved.

A key feature of the Sugar approach – indeed the feature from which the name “Sugar” is derived – is to
have a minimal kernel augmented with a large number of definitions – i.e. syntactic sugar – to enhance the
usability (but not the expressive power) of the language. Such definitions can be validated by proving that
they achieve the intended semantics.

Validating the PSL/Sugar semantics using automated reasoning 3

2.2. Machine processable semantics

The current PSL/Sugar document is informal mathematics presented as typeset text. Tool developers could
benefit from a machine readable ‘golden semantics’. One might think of using some XML-based representation
of mathematical content. Although there are XML-based presentation oriented representations like MathML
[Mat] and content oriented representations like OpenMath [Ope], there is currently not much support for
representing formal semantic documents of the kind needed for PSL/Sugar. See Section 5.1 for some further
discussion.

Higher order logic is a widely used formalisation medium (versions of it are used by HOL, Isabelle/HOL,
PVS, NuPrl and Coq) and the semantic embedding of model-checkable logics in it is standard [RSS95, SH99,
NPW02]. Once one has a representation in higher order logic, then representations in other formats should
be straightforward to derive. If one were to select an off-the-shelf logic as a standard for encoding semantics
in a machine readable form, then the intersection of the versions of higher order logic supported by the tools
mentioned above would be a reasonable choice. The logic used here would be close to this.

2.3. Combining checking with theorem proving

Theorem proving can be used to reason about data-processing over infinite data-types like numbers (e.g. in-
cluding reals and complex numbers for DSP applications). The combination of PSL/Sugar and higher order
logic is quite expressive and provides temporal logic constructs as higher level syntactic sugar for higher
order logic, thereby enabling properties to be formulated elegantly.

PSL/Sugar is explicitly designed for use with simulation as well as formal verification. We are interested
in using the HOL platform to experiment with combinations of execution, checking and theorem-proving. To
this end we are implementing experimental tools that transform properties stated in PSL/Sugar to checking
automata. This is inspired by IBM’s FoCs project [ABG+00], but uses compilation by theorem proving to
ensure semantic equivalence between the executable checker and the source property [GHS03].

2.4. Education

Both semantic embedding and property specification are taught as part of the Computer Science undergrad-
uate course at Cambridge University, and being able to illustrate the ideas on a real example like PSL/Sugar
is pedagogically valuable. Teaching an industrial property language nicely complements and motivates aca-
demic languages like LTL and CTL.

The semantic embedding and validation of Sugar and then PSL using the HOL system is an interest-
ing case study. It illustrates some issues in making total functional definitions, and the formal challenges
attempted so far provide insight into how to perform structural induction using the built-in tools. Thus
PSL/Sugar has educational potential for training HOL users. In fact, the PSL/Sugar semantics is an exam-
ple distributed with HOL.

3. Review of higher order logic and semantic embedding

Higher order logic is an extension of first-order predicate calculus that allows quantification over functions
and relations. It is a natural notation for formalising informal set theoretic specifications (indeed, it is usually
more natural than formal first-order set theories, like ZF). We hope that the HOL notation in what follows
is sufficiently close to standard informal mathematics that it needs no systematic explanation. In this section
we briefly outline some features of the version of higher order logic implemented in the HOL 4 system. We
refer to this logic as “the HOL logic” or just “HOL”.

The HOL logic is built out of terms which are of four types: constants, variables, combinations (or
function applications) t1 t2 and λ-abstractions λx. t.

The particular set of constants that are available depends on the theory one is working in. The kernel of
the HOL logic contains constants T and F representing truth and falsity, respectively. In the HOL system
new constants can be defined in terms of existing constants using definitional mechanisms that guarantee
no new inconsistencies are introduced. Defined constants include numerals (e.g. 0, 1, 2), strings (e.g. "a",

4 Michael J. C. Gordon

"b", "ab") and logical operators (e.g. ∧, ∨, ¬, ∀, ∃). The details of HOL’s theory of definition are available
elsewhere [GM93].

The simple kernel of four kinds of terms can be extended using syntactic sugar to include all the normal
notations of predicate calculus. The extension process consists of defining new constants and then adding
syntactic sugar to make terms containing these constants look familiar. For example, constants ∀, ∃ and
Pair can be defined and then ∀x. ∃y. P (x, y) is syntactic sugar for ∀(λx. ∃(λy. P (Pair x y))), (here the
function application Pair x y means ((Pair x) y), so Pair is ‘curried’). If P is a function that returns a
truth-value (i.e. a predicate), then P can be thought of as a set, and we write x ∈ P to mean P (x) is true.
The term λx. · · ·x · · · corresponds to the set abstraction {x | · · ·x · · ·} and we will write ∀x ∈ P. Q(x) and
∃x ∈ P. Q(x) to mean ∀x. P (x)⇒ Q(x) and ∃x. P (x) ∧Q(x), respectively.

Higher order logic is typed to avoid inconsistencies.1 Types are syntactic constructs that denote sets of
values. For example, types bool and num are atomic types in HOL and denote the sets of booleans and
natural numbers, respectively. Complex types can be built using type constructors. For example, if ty1 and
ty2 are types, then ty1→ty2 denotes the set of functions with domain ty1 and range ty2, and ty1×ty2 denotes
the Cartesian product of the sets denoted by ty1 and ty2. Type constructors are traditionally applied to their
arguments using a postfix notation like (ty1, . . . , tyn)constructor. The types ty1→ty2 and ty1 × ty2 are just
special notations for (ty1, ty2)fun and (ty1, ty2)prod, respectively.

If the types for all the variables and constants in a term t are given, then a type-checking algorithm can
determine whether t is well-typed – i.e. every function is applied to an argument of the correct type – and
compute a type for t. For example, ¬3 is not well-typed (assuming ¬ has type bool→bool and 3 has type
num) and would be rejected by type-checking, however, ¬T is well-typed (assuming T has type bool) and
would be accepted and given type bool. Only the well-typed terms are considered meaningful and we write
t : ty if term t is well-typed and has type ty. Well-typed terms of type bool are the formulas of the HOL
logic, thus formulas are a subset of terms: ∀x. ∃y. x+ 1 < y is a term that is a formula, but x+ 1 is a term
(of type num) that is not a formula. The HOL logic kernel only has two types and one type constructor:
type bool of booleans, an infinite type ind of ‘individuals’ and the function type constructor →. Other types
and type constructors can be defined in terms of these [GM93]. For example, the type num of numbers is
defined as a subset of the primitive type ind, and the Cartesian product constructor × can be defined in
terms of →. Families of terms can be created by using type variables. For example, if variable x is assigned
the type α, where α is a type variable, then λx. x has type α→α and is a family of identity functions with
an instance λx : ty. x for each type ty.

B.2 of the LRM introduces the semantic notions used to specify the PSL/Sugar semantics as follows:

The semantics of a Sugar formula are defined with respect to a model M . A model is a quintuple
(S, S0, R, P, L), where S is a finite set of states, S0 ⊆ S is a set of initial states, R ⊆ S×S is the transition
relation, P is a non-empty set of atomic propositions, and L is the valuation, a function L : S −→ 2P ,
mapping each state with a set of atomic propositions valid in that state.
A path w is a finite (or infinite) sequence of states w = (w0,w1,w2, · · · ,wn) (or w = (w0,w1,w2, · · ·)). A
computation path w of a model M is a finite (or infinite) path w such that for every i < n, R(wi,wi+1)
and for no s, R(wn, s) (or such that for every i, R(wi,wi+1)). Given a finite (or infinite) path w , we define
L̂, an extension of the valuation function L from states to paths as follows: L̂(w) = L(w0)L(w1) . . . L(wn)
(or L̂(w) = L(w0)L(w1) . . .). Thus we have a mapping from states in M to letters of 2P , and from finite
(or infinite) sequences of states in M to finite (or infinite) words over 2P .
We will denote a letter from 2P by `, and a finite or infinite word from 2P by ω. We denote the length of
word ω as |ω|. A finite word ω = `0`1`2 · · · `n has length n + 1, while an infinite word has length ∞. We
denote by ωi the suffix of ω starting at `i. That is, ωi = `i`i+1 · · · `n (or ωi = `i`i+1 · · ·). We denote by
ωi,j the finite sequence of letters starting from `i and ending in `j . That is, ωi,j = `i`i+1 . . . `j .

In HOL, the parameterisation of the semantics on the sets of atomic propositions and states is represented
using type variables aprop and state, which can be instantiated to types modelling atomic propositions and
states of particular applications.

A model is represented in HOL by a term (S, S0, R, P, L). The set of states S is modelled by a predicate on
the type state, so S : state→bool. Often the type variable state will be instantiated to a particular type (e.g. a
tuple of booleans) such that every value is a valid state, but allowing the possibility that S correspond to a

1 Russell’s paradox can be formulated as: (λx. ¬(x x)) (λx. ¬(x x)) = ¬((λx. ¬(x x)) (λx. ¬(x x))).

Validating the PSL/Sugar semantics using automated reasoning 5

subset gives additional flexibility when defining particular models (though we do not exploit this flexibility
here). The set of initial states S0 is also represented by a predicate, so S0 : state→bool. The requirement
that S0 be a non-empty subset of S is represented by the formula (∃s. S0 s) ∧ (∀s. S0 s ⇒ S s), which
may need to be an assumption when formulating properties (though not in any examples in this paper). The
transition relation R is represented by a predicate on pairs. Thus R(s, s′) is true if and only if state s′ is a
possible to successor to state s, so R : (state× state)→bool. The set of atomic propositions P is modelled by
a predicate on a type aprop, so P : aprop→bool. The valuation L maps a state s to the set of propositions
true in s, thus L : state→(aprop→bool). If M is a model (S, S0, R, P, L) then:

M : (state→bool)× (state→bool)× ((state× state)→bool)× (aprop→bool)× (state→(aprop→bool))
Let model be a binary type constructor defined so that (state, aprop)model abbreviates the type of M above,
then we can write M : (state, aprop)model.

To semantically embed PSL/Sugar in HOL we first define types and constants to represent the syntax of
Boolean Expressions, Sugar Extended Regular Expressions (SEREs), Foundation Language (FL) formulas
and Optional Branching Extension (OBE) formulas. This provides an abstract syntax and gives a representa-
tion of PSL/Sugar constructs as terms in the HOL logic. The semantics is then specified by defining functions
(i.e constants of functional type) that map each construct to a representation of its meaning expressed in the
HOL logic. An embedding in which the syntax and semantics is represented inside a logic is called a deep
embedding [BGG+92]. See Section 4.1 for details of how boolean expressions are deeply embedded in HOL.

4. Formal semantics in higher order logic

In this section we give the abstract syntax and semantics of Version 1.01 PSL in higher order logic. In
Section 4.1 we briefly show how the syntax and semantics are input to the HOL system, but after that
we only give ‘pretty printed’ semantics using a HOL-to-LATEX tool implemented by Keith Wansbrough. We
do not motivate the particular constructs of Sugar that are found in PSL, nor do we provide a narrative
explanation of the semantics in detail, since this is done thoroughly in the LRM.

4.1. Boolean expressions in PSL/Sugar

The syntax of boolean expressions from B.1 of the LRM is as follows:

• Every atomic proposition is a boolean expression.

• If b, b1, and b2 are boolean expressions, then so are the following:

– (b)

– ¬b
– b1 ∧ b2

This is represented in HOL by a recursive type definition of a data-type that represents the syntax of
boolean expressions. Since atomic propositions are boolean expressions, we parameterise the type of boolean
expressions on aprop. Thus the type of terms representing boolean expressions is (aprop)bexp, where bexp
is a unary type constructor. The input to the system is:

Hol_datatype ‘bexp = B_PROP of aprop (* atomic proposition *)
| B_NOT of bexp (* negation *)
| B_AND of bexp * bexp‘ (* conjunction *)

this defines a new unary type constructor bexp and constants:

B_PROP : aprop → (aprop)bexp
B_NOT : (aprop)bexp → (aprop)bexp
B_AND : (aprop)bexp × (aprop)bexp → (aprop)bexp

We do not provide a separate constructor for “(b)”, since putting brackets around an expression does not
change its meaning. If atomic propositions are taken to be strings, then the boolean expression x∧¬y would

6 Michael J. C. Gordon

be represented by the term B AND(B PROP "x", B NOT(B PROP "y")) which has the type (string)bexp.
The semantics of boolean expressions from B.2.1 of the LRM is:

We define the semantics of boolean expressions over letters from the alphabet 2P , thus a letter is a subset
of the set of atomic propositions P . The notation ` |= b means that boolean expression b holds under the
truth assignment represented by `. The semantics of boolean expressions are defined as follows, where p
denotes an atomic proposition and b, b1, and b2 denote boolean expressions.

• ` |= p⇐⇒ p ∈ `
• ` |= (b)⇐⇒ ` |= b

• ` |=¬b⇐⇒ ` |=/ b
• ` |= b1 ∧ b2 ⇐⇒ ` |= b1 and ` |= b2

This is represented in HOL by defining a semantic function B SEM : (aprop→bool)→(aprop)bexp→bool
such that B SEM l b is true iff b is true in state l. The actual input to HOL is

Define ‘(B_SEM l (B_PROP(p:’aprop)) = p IN l)
/\
(B_SEM l (B_NOT b) = ~(B_SEM l b))
/\
(B_SEM l (B_AND(b1,b2)) = B_SEM l b1 /\ B_SEM l b2)‘

however, if we pretty print this using the HOL-to-LATEX tool, augmented with l |= b, ¬b, b1∧b2 for B SEM l b,
B NOT b and B AND b1 b2, respectively, the definition becomes:

Define ‘(l |= p = p ∈ l) ∧ (l |= ¬b = ¬l |= b) ∧ (l |= b1 ∧ b2 = l |= b1 ∧ l |= b2)‘

Note that after pretty printing the symbols ¬ and ∧ become overloaded: the occurrence of ¬ in ¬b is part
of the boolean expression syntax of PSL/Sugar, but the occurrence in ¬(l |= b) is negation in higher order
logic. Similarly ∧ is overloaded: the occurrence in b1 ∧ b2 is part of the boolean expression syntax, but the
other occurrences are conjunction in higher order logic.

4.2. Extended Regular Expressions (SEREs)

Sugar has constructs called Sugar Extended Regular Expressions or SEREs. When Accellera renamed Sugar
to PSL they kept the acronym SERE, but decreed that it should henceforth abbreviate Sequential Extended
Regular Expression. The abstract syntax from B.1 of the LRM is:

• Every boolean expression is a SERE.

• If r, r1, and r2 are SEREs, and clk is a boolean expression, then the following are SEREs:

– {r}
– r1 ; r2

– r1 : r2

– {r1} | {r2}
– {r1} && {r2}
– r[∗]
– r@clk

The semantics from B.2.3.1 of the LRM is shown in the next box:

Validating the PSL/Sugar semantics using automated reasoning 7

Clocked SEREs are defined over finite words from the alphabet 2P and a boolean expression that serves
as the clock context. The notation w |=c r, where r is a SERE and c is a boolean expression, means that w
is in the language of r in context of clock c. The semantics of clocked SEREs are defined as follows, where
b, c, and c1 denote boolean expressions, r, r1, and r2 denote clocked SEREs, and [i..k) denotes the set of
integers {j : i≤j ∧ j<k}.

• w |=c b⇐⇒ |w| ≥ 1, for every i ∈ [0..|w| − 1), `i |= ¬c and `|w|−1 |= c ∧ b
• w |=c {r} ⇐⇒ w |=c r
• w |=c r1; r2 ⇐⇒ there exists w1 and w2 such that w = w1w2, w1 |=c r1, and w2 |=c r2

• w |=c r1:r2 ⇐⇒ there exists w1, w2, and ` such that w = w1`w2, w1` |=c r1, and `w2 |=c r2

• w |=c {r1}|{r2} ⇐⇒ w |=c r1 or w |=c r2

• w |=c {r1}&& {r2} ⇐⇒ w |=c r1 and w |=c r2

• w |=c r[∗]⇐⇒ either w = ε or there exists w1, w2, . . . , wj such that w = w1w2 . . . wj

and for every i ∈ [1..j], wi |=c r
• w |=c r@c1 ⇐⇒ there exists i ∈ [0..|ω|) such that ω0,i |=t {¬c1[∗]; c1} and ωi |=c1 r

The HOL representation of this semantics of SEREs is defined by a semantic function S SEM such that
S SEM w c r is true iff word w is in the language recognised by the extended regular expression r when the
clock context (i.e. current clock) is c. The HOL term S SEM w c r is pretty-printed as w |=c r .

In the (pretty printed) HOL logic, a list containing elements e0, . . . , en is denoted by [e0; . . . ; en]. Words
are represented as lists. Juxtaposition of words denotes concatenation (e.g. w1[s]w2 is the concatenation
of w1, [s] and w2). If wlist is a list of lists then Every p wlist applies the predicate p to every element
of wlist and returns the conjunction of the result (e.g. in the semantics below Every (λw . w |= r) wlist
asserts w |= r for every w in wlist) and Concat wlist denotes the concatenation of the lists in wlist (e.g.
Concat [[a; b]; [c]; [d ; e; f]] = [a; b; c; d ; e; f]). The notation |w| denotes the length of w (empty words have
length 0) and wi denotes the ith element of w counting from 0, so w0 is the first element (note that subscripts
on symbols not denoting lists are just subscripts). The HOL-toLATEX translator generates (m .. n) for the
HOL term denoting the half open interval {x | m ≤ x ∧ x < n}, which in the LRM is written [m .. n). This
notation is potentially quite confusing, as it is usual for round brackets to denote an interval open at both
ends, but currently the translator cannot automatically generate the LRM notation from the HOL source.

Applying the translator to the HOL semantics of SEREs yields:

(w |=c b = |w | ≥ 1 ∧ (∀i ∈ (0 .. (|w | − 1)). wi |= ¬c) ∧ w|w |−1 |= c ∧ b)
∧
(w |=c r1; r2 = ∃w1 w2. (w = w1w2) ∧ w1 |=c r1 ∧ w2 |=c r2)
∧
(w |=c r1 : r2 = ∃w1 w2 l . (w = w1[l]w2) ∧ w1[l] |=c r1 ∧ [l]w2 |=c r2)
∧
(w |=c {r1} | {r2} = w |=c r1 ∨ w |=c r2)
∧
(w |=c {r1}&&{r2} = w |=c r1 ∧ w |=c r2)
∧
(w |=c r [∗] = ∃wlist . (w = Concat wlist) ∧ Every (λw . w |=c r) wlist)
∧
(w |=c r@c1 = ∃i ∈ (0 .. |w |). w0,i |= ¬c1[∗]; c1 ∧ w i |=c1 r)

This can be compared with the LRM semantics given in the framed box above.

8 Michael J. C. Gordon

4.3. Foundation Language (FL)

FL combines standard LTL notation with a less standard abort operation and some constructs using SEREs.
The abstract syntax from B.1 of the LRM is:

• Every boolean expression is a Sugar FL formula.

• If b and clk are boolean expressions, f , f1, and f2 are Sugar FL formulas and r, r1, and r2 are SEREs,
then the following are Sugar FL formulas:

– (f)

– ¬f
– f1 ∧ f2

– X! f

– [f1 U f2]

– {r}(f)

– {r1}⇒{r2}!
– {r1}⇒{r2}
– f abort b

– f@clk

– f@clk!

The semantics from B.2.3.2 of the LRM is:

The notation ω |=c f where f is a formula and c is a boolean expression means that formula f holds along

the (finite or infinite) word ω in the context of clock c. The notation M |= f means that L̂(w) |=t f for
every computation path w in M such that w0 ∈ S0 (where t = p ∨ ¬p for some p ∈ P). The semantics
of a (clocked) Sugar FL formula are defined as follows, where b, c, and c1 denote boolean expressions, r,
r1, and r2 denote SEREs, f , f1, and f2 denote (clocked) FL formulas, [i..k) denotes the set of integers
{j : i≤j ∧ j<k}, and (i..k) denotes the set of integers {j : i<j ∧ j<k}.

• ω |=c b⇐⇒ `0 |= b

• ω |=c (f)⇐⇒ ω |=c f
• ω |=c ¬f ⇐⇒ ω |=/c f
• ω |=c f1 ∧ f2 ⇐⇒ ω |=c f1 and ω |=c f2

• ω |=c X! f ⇐⇒ there exists i ∈ [1..|w|) such that ω1,i |=t {¬c[∗]; c} and ωi |=c f
• ω |=c [f1 U f2]⇐⇒ there exists k ∈ [0..|ω|) such that ωk |=t c, ωk |=c f2, and for every j ∈ [0..k) for which

ωj |=t c, ωj |=c f1

• ω |=c {r}(f) ⇐⇒ for every i ∈ [0..|ω|) such that ω0,i |=c r, there exists j ∈ [i..|ω|) such that

ωi,j |=t {¬c[∗]; c} and ωj |=c f
• ω |=c {r1}⇒{r2}!⇐⇒ for every i ∈ [0..|ω|) such that ω0,i |=c r1 there exists j ∈ [i..|ω|) such that ωi,j |=c r2

• ω |=c {r1}⇒{r2} ⇐⇒ for every i ∈ [0..|ω|) such that ω0,i |=c r1, either there exists j ∈ [i..|ω|) such that

ωi,j |=c r2 or for every j ∈ [i..|ω|) there exists a finite word ω′ such that ωi,jω′ |=c r2

• ω |=c f abort b ⇐⇒ either ω |=c f or ω |=c b or there exists i ∈ [1..|ω|) and word ω′ such that ωi |=t c ∧ b
and ω0,i−1ω′ |=c f

• ω |=c f@c1!⇐⇒ there exists i ∈ [0..|ω|) such that ω0,i |=t {¬c1[∗]; c1} and ωi |=c1 f

Validating the PSL/Sugar semantics using automated reasoning 9

The suffix “!” found on some constructs indicates that these are ‘strong’ (i.e. liveness-enforcing) operators.
The distinction between strong and weak operators is discussed and motivated in the PSL/Sugar literature
(e.g. [EF02, Section 4.11]). Although weak clocking f @c is listed in the abstract syntax of formulas, it is
actually syntactic sugar defined by: f @c = ¬(¬f @c!).

The HOL semantics is specified by defining a semantic function F SEM such that F SEM w c f means FL
formula f is true of path w with current clock c. The HOL term F SEM w c f is pretty printed as w |=c f .
A path w can be either finite or infinite. Finite paths are represented as lists and infinite paths as function
from the natural numbers to states. The notation wi denotes the i-th state in the path (counting from 0, so
w0 is the first state); w i denotes the ‘i-th tail’ of w , which is the path obtained by chopping i elements off
the front of w ; w (i,j) denotes the finite sequence of states from i to j in w , i.e. wiwi+1 · · ·wj . If w is a path,
then the length |w | of w is a number if w is finite, and is ∞ if w is infinite (this is represented in the HOL
logic using a sum type). If w is finite, then wi, w i and w (i,j) are always valid terms, but have unspecified
values if i or j are not less than |w| (inspection of the semantics below shows that this does not happen).2

The juxtaposition w (i,j)w ′ denotes the path obtained by concatenating the finite sequence w (i,j) on to the
front of the path w ′. The semantics w |=c f is defined by recursion on f :

(w |=c b = |w | > 0 ∧ w0 |= b)
∧
(w |=c ¬f = ¬(w |=c f))
∧
(w |=c f1 ∧ f2 = w |=c f1 ∧ w |=c f2)
∧
(w |=c X! f = ∃i ∈ (1 .. |w |). w1,i |=T ¬c[∗]; c ∧ w i |=c f)
∧
(w |=c [f1 U f2] = ∃k ∈ (0 .. |w |). w k |=T c ∧ wk |=c f2 ∧ ∀j ∈ (0 .. k). w j |=T c ⇒ w j |=c f1)
∧
(w |=c {r}(f) = ∀i ∈ (0 .. |w |). w0,i |=c r ⇒ ∃j ∈ (i .. |w |). w i,j |=T ¬c[∗]; c ∧ w j |=c f)
∧
(w |=c {r1} 7→ {r2}! = ∀i ∈ (0 .. |w |). w0,i |=c r1 ⇒ ∃j ∈ (i .. |w |). w i,j |=c r2)
∧
(w |=c {r1} 7→ {r2} =

∀i ∈ (0 .. |w |). w0,i |=c r1 ⇒ ((∃j ∈ (i .. |w |). w i,j |=c r2) ∨ (∀j ∈ (i .. |w |). ∃w ′. w i,j w ′ |=c r2)))
∧
(w |=c f abort b = w |=c f ∨ w |=c b ∨ ∃i ∈ (1 .. |w |). ∃w ′. w i |=T c ∧ b ∧ w0,i−1w ′ |=c f)
∧
(w |=c f @c1! = ∃i ∈ (0 .. |w |). w0,i |=T ¬c1[∗]; c1 ∧ w i |=c1 f)

This semantics is a careful formalisation of the official semantics shown in the box above, with the exception
that two minor errors in the LRM have been fixed: in the definition of w |=c b the occurrence of l0 has been
changed to w0 and |w | > 0 has been added. This change ensures that formulas are defined for empty paths
(the official semantics is undefined).

4.4. Optional Branching Extension (OBE)

LTL formulas characterise paths. If the transition relation is non-deterministic (i.e. there are states with
more than one possible successor) then there are properties that cannot be expressed in LTL, such as “from
every state it is possible to get to a state in which property P holds”. Such properties can be expressed in
Computation Tree Logic (CTL) and PSL/Sugar contains constructs from CTL called the Optional Branching
Extension (OBE). The syntax of the OBE in B.1 of the LRM is completely standard.

2 The logical treatment of ‘undefined’ terms like 1/0 or hd [] has been much discussed. HOL uses a simple approach based on
Hilbert’s ε-operator that, although appearing rather ad hoc, is guaranteed to be logically sound. Other approaches include ‘free
logics’ (i.e. logics with non-denoting terms) and three-valued logics in which formulas can evaluate to true, false and undefined.

10 Michael J. C. Gordon

• Every boolean expression is an OBE formula.

• If f , f1, and f2 are OBE formulas, then so are the following:

– (f)

– ¬f
– f1 ∧ f2

– EXf

– E[f1 U f2]

– EGf

The semantics from B.2.4 of the LRM is standard:

The semantics of OBE formulas are defined over states in the model, rather than finite or infinite words.
The notation M, s |= f means that formula f holds in state s of model M . The notation M |= f is
equivalent to ∀s ∈ S0 : M, s |= f . In other words, f is valid for every initial state of M . The semantics
of an OBE formula are defined as follows, where b denotes a boolean expression and f , f1, and f2 denote
OBE formulas.

• M, s |= b⇐⇒ s |= b

• M, s |= (f)⇐⇒M, s |= f

• M, s |= ¬f ⇐⇒M, s 6|= f

• M, s |= f1 ∧ f2 ⇐⇒M, s |= f1 and M, s |= f2

• M, s |= EX f ⇐⇒ there exists a computation path w of M such that |w | > 1, w0 = s, and M,w1 |= f

• M, s |= E[f1 U f2] ⇐⇒ there exists a computation path w of M such that w0 = s and there exists
k < |w | such that M,wk |= f2 and for every j such that j < k: M,wj |= f1

• M, s |= EG f ⇐⇒ there exists a computation path w of M such that w0 = s and for every j such that
0 ≤ j < |w |: M,wj |= f

In the HOL representation, if M is a quintuple M = (S, S0, R, P, L) representing a Kripke Structure,
then the transition relation component of M is M.R, the L component is M.L etc. Define:

Path M p s = (p0 = s) ∧ (∀n. M .R(pn , pn+1))

The semantic function O SEM is defined using Path M p s so that O SEM M f s is true iff f is true of M at
state s. HOL terms O SEM M f s are pretty printed as M, s |= f . The semantics of the OBE is defined in
HOL by:

(M , s |= b = M .L s |= b)
∧
(M , s |= ¬f = ¬(M , s |= f))
∧
(M , s |= f1 ∧ f2 = M , s |= f1 ∧ M , s |= f2)
∧
(M , s |= EX f] = ∃p. Path M p s ∧ M , p1 |= f)
∧
(M , s |= E[f1 U f2] = ∃p. Path M p s ∧ ∃k ∈ (0 .. |p|). M , pk |= f2 ∧ ∀j . j < k ⇒ M , pj |= f1)
∧
(M , s |= EG f] = ∃p. Path M p s ∧ ∀j ∈ (0 .. |p|). M , pj |= f)

For infinite paths this is the standard semantics.

Validating the PSL/Sugar semantics using automated reasoning 11

5. Analysing the semantics

Section 4 shows both the LRM semantics (in framed boxes) due to Cindy Eisner and Dana Fisman, and
the representation in higher order logic. This is the semantics current when this paper was prepared for
publication (June, 2003). In Section 5.1 we discuss some issues arising from the representation of PSL/Sugar
semantics in the HOL logic. In Section 5.2 we discuss some properties we have proved, and in Section 5.3
we discuss the proofs of these properties using the HOL system.

5.1. Representing the semantics in higher order logic

The original semantics of Sugar submitted to Accellera in 2002 was different in many details from the
current PSL semantics. We initially formalised the original semantics and attempted to establish a number of
‘sanity checking’ properties suggested by Cindy Eisner and Dana Fisman. Initially we were unsuccessful, but
following email discussions with the Sugar team, changes were made to the semantics to correct typographical
and minor semantic errors and we were then able to prove all the expected results using the HOL system.

Some of the proofs were quite hard work due to the large number of cases needing manual proof guidance,
though they were not mathematically deep. After Accellera selected Sugar, its Formal Property Language
Technical Committee modified the semantics to meet political and technical goals. This resulted in a sig-
nificantly simpler formal semantics and many of the proofs done with the original semantics became much
shorter. It was relatively easy to modify the HOL proof scripts to generate the theorems for the new se-
mantics and we expect that as the semantics further evolves, which is expected, the effort to check that the
properties still hold will be small. Thus although there were several person months of work in creating and
validating the HOL semantics, maintaining it as PSL evolves should be less demanding.

The creation of the HOL versions of the Sugar and PSL semantics was done by hand but, despite
repeated and painstaking checking, a number of transcription errors were introduced. Such errors would have
been minimised if the formal semantics in HOL was created mechanically from the ‘golden’ version in the
Language Reference Manual. Unfortunately the golden version is a mixture of informal English augmented
with mathematical notations in LATEX. We did explore processing this, but concluded that it was impractical.

We experimented with ways of structuring the LATEX source to represent the ‘deep structure’ of the
semantics rather than its ‘surface form’, with the goal of defining LATEX commands (macros) that are se-
mantically meaningful and can be parsed directly into logic with a simple script. By giving the commands
extra parameters that can be used to hold strings for generating English, but ignored when translating to
HOL, it appears possible to use LATEX to represent the semantics in a form that can be both parsed into
HOL and typeset into something close to the LRM text. However, the resulting document source would be
rather complex and may be hard to maintain, and consequently unacceptable to Accellera.

The long term ‘industry standard’ solution to this problem is to use XML, but current infrastructure is
not quite ready today (2003). One promising possibility is OpenMath [Ope]:
OpenMath is an emerging standard for representing mathematical objects with their semantics, allowing them to be exchanged
between computer programs, stored in databases, or published on the worldwide web.

It remains to see whether the OpenMath project will eventually deliver concepts and tools to support
the representation of the semantics of industrial design languages.

5.2. Properties proved

The semantics of SEREs and FL formulas are defined with respect to a clock. The ‘top level’ default clock
is T, which is always true. Other clocks are specified using the clocking constructs r@c and f @c!. SEREs
and formulas not containing “@” are called unclocked and the sets of unclocked SEREs and formulas the
unclocked subsets.

The LRM supplies separate semantics for the unclocked subsets. As an initial ‘sanity check’ we verified
that the unclocked semantics were consistent with the semantics in Section 4 when restricted to the unclocked
subsets. As a second and deeper check, we then verified the correctness of a translation of arbitrary SEREs
and formulas to unclocked ones.

5.2.1. Verifying the unclocked semantics for a trivial clock

The unclocked semantics of SEREs is specified in B.2.2.1 of the LRM by:

12 Michael J. C. Gordon

The semantics of unclocked SEREs are defined over finite words from the alphabet 2P . We will denote a
finite word over 2P by w. The concatenation of w1 and w2 is denoted by w1w2. The empty word is denoted
by ε, so that wε = εw = w. The notation w |= r, where r is a SERE, means that w is in the language of r.
The semantics of SEREs are defined as follows, where b denotes a boolean expression, r, r1, and r2 denote
unclocked SEREs, and [i..k] denotes the set of integers {j : i≤j ∧ j≤k}.
• w |= b⇐⇒ |w| = 1 and `0 |= b

• w |= {r} ⇐⇒ w |= r

• w |= r1; r2 ⇐⇒ there exist w1 and w2 such that w = w1w2, w1 |= r1, and w2 |= r2

• w |= r1:r2 ⇐⇒ there exist w1, w2, and ` such that w = w1`w2, w1` |= r1, and `w2 |= r2

• w |= {r1}|{r2} ⇐⇒ w |= r1 or w |= r2

• w |= {r1}&& {r2} ⇐⇒ w |= r1 and w |= r2

• w |= r[∗]⇐⇒ either w = ε or there exist w1, w2, . . . , wj such that w = w1w2 . . . wj and

for every i ∈ [1..j], wi |= r

The unclocked semantics of FL formulas is specified in B.2.2.2 of the LRM by:

The semantics of Sugar FL formulas are defined over finite or infinite words from the alphabet 2P . The
notation ω |= f means that formula f holds along the (finite or infinite) word ω. The notation M |= f
means that L̂(w) |= f for every computation path w in M such that w0 ∈ S0. The semantics of an FL
formula are defined as follows, where b denotes a boolean expression, r, r1, and r2 denote SEREs, f , f1,
and f2 denote FL formulas, and [i..k) denotes the set of integers {j : i≤j ∧ j<k}.
• ω |= b⇐⇒ `0 |= b

• ω |= (f)⇐⇒ ω |= f

• ω |= ¬f ⇐⇒ ω |=/ f
• ω |= f1 ∧ f2 ⇐⇒ ω |= f1 and ω |= f2

• ω |= X! f ⇐⇒ |ω| > 1 and ω1 |= f

• ω |= [f1 U f2]⇐⇒ there exists k ∈ [0..|ω|) such that ωk |= f2, and for every j ∈ [0..k), ωj |= f1

• ω |= {r}(f)⇐⇒ for every j ∈ [0..|ω|) such that ω0,j |= r, ωj |= f

• ω |= {r1}⇒{r2}! ⇐⇒ for every j ∈ [0..|ω|) such that ω0,j |= r1 there exists k ∈ [j..|ω|) such that
ωj,k |= r2

• ω |= {r1}⇒{r2} ⇐⇒ for every j ∈ [0..|ω|) such that ω0,j |= r1 either there exists k ∈ [j..|ω|) such that
ωj,k |= r2 or for every k ∈ [j..|ω|) there exists a finite word ω′ such that ωj,kω′ |= r2

• ω |= f abort b⇐⇒ either ω |= f or ω |= b or there exists j ∈ [1..|ω|) and word ω′ such that
ωj |= b and ω0,j−1ω′ |= f

In HOL, the semantics of SEREs is represented by defining w |= r by recursion on the structure of r
with the following equations:

(w |= b = (|w | = 1) ∧ w0 |= b)
∧
(w |= r1; r2 = ∃w1 w2. (w = w1w2) ∧ w1 |= r1 ∧ w2 |= r2)
∧
(w |= r1 : r2 = ∃w1 w2 l . (w = w1[l]w2) ∧ w1[l] |= r1 ∧ [l]w2 |= r2)
∧
(w |= {r1} | {r2} = w |= r1 ∨ w |= r2)
∧
(w |= {r1}&&{r2} = w |= r1 ∧ w |= r2)
∧
(w |= r [∗] = ∃wlist . (w = Concat wlist) ∧ Every (λw . w |= r) wlist)

Validating the PSL/Sugar semantics using automated reasoning 13

If we define ClockFree(r) to mean r is unclocked, then we validated the unclocked semantics by proving,
using HOL, that:

` ∀r . ClockFree(r) ⇒ ∀w . w |=T r = w |= r

The unclocked semantics of FL formulas is specified in HOL by defining w |= f by recursion on the
structure of formulas f by (warning: remember that the HOL-to-LATEX translator confusingly generates
(m .. n) to mean {x | m ≤ x ∧ x < n}):

(w |= b = |w | > 0 ∧ w0 |= b)
∧
(w |= ¬f = ¬(w |= f))
∧
(w |= f1 ∧ f2 = w |= f1 ∧ w |= f2)
∧
(w |= X! f = |w | > 1 ∧ w1 |= f)
∧
(w |= [f1 U f2] = ∃k ∈ (0 .. |w |). w k |= f2 ∧ ∀j ∈ (0 .. k). w j |= f1)
∧
(w |= {r}(f) = ∀j ∈ (0 .. |w |). w 0,j |= r ⇒ w j |= f)
∧
(w |= {r1} 7→ {r2}! = ∀j ∈ (0 .. |w |). w0,j |= r1 ⇒ ∃k ∈ (j .. |w |). w j ,k |= r2)
∧
(w |= {r1} 7→ {r2} =
∀j ∈ (0 .. |w |). w0,j |= r1 ⇒ ((∃k ∈ (j .. |w |). w j ,k |= r2) ∨ (∀k ∈ (j .. |w |). ∃w ′. w j ,k w ′ |= r2)))
∧
(w |= f abort b = w |= f ∨ w |= b ∨ ∃j ∈ (1 .. |w |). ∃w ′. w j |= b ∧ w0,j−1w ′ |= f)

If we define ClockFree(f) to mean f is unclocked, then we validated the unclocked semantics by proving,
using HOL, that:

` ∀f . ClockFree(f) ⇒ ∀w . w |=T f = w |= f

5.2.2. Verifying the translation to the unclocked subsets

For an arbitrary SERE r and FL formula f , B.5 of the LRM defines rewrites for computing an unclocked
SERE T c(r) and an unclocked formula T c(f).

The rewrite rules for SEREs are:

• T c(b) = {¬c[∗]; c ∧ b}
• T c(r1 ; r2) = T c(r1) ; T c(r2)

• T c(r1 : r2) = T c(r1) : T c(r2)

• T c(r1 | r2) = T c(r1) | T c(r2)

• T c(r1 && r2) = T c(r1) && T c(r2)

• T c(r[∗]) = {T c(r)}[∗]
• T c(r@c1) = {¬c1[∗]; {c1:T c1(r)}}

The rewrites for formulas uses the auxiliary definition f1 ⇒ f2 = ¬f1 ∨ f2 where f1 ∨ f2 = ¬(¬f1 ∧¬f2).

14 Michael J. C. Gordon

The rewriting rules for PSL/Sugar formulas are:

• T c(b) = b

• T c(¬f) = ¬T c(f)

• T c(f1 ∧ f2) = (T c(f1) ∧ T c(f2))

• T c(X!f) = X! [¬c U (c ∧ T c(f))]

• T c(f1 U f2) = [(c→ T c(f1)) U (c ∧ T c(f2))]]

• T c({r}(f)) = {T c(r)}([¬c U (c ∧ T c(f)])

• T c({r1}⇒{r2}!) = {T c(r1)}⇒{T c(r2)}!)
• T c({r1}⇒{r2}) = {T c(r1)}⇒{T c(r2)})
• T c(f abort b) = T c(f) abort (c ∧ b)
• T c(f@c1!) = [¬c1 U (c1 ∧ T c1(f))]

These rewrites are represented in HOL by recursively defining terms S CLOCK COMP c r (pretty printed as
T c(r)) for SEREs and F CLOCK COMP c f (pretty printed as T c(f)) for FL formulas.

The definition for SEREs is the following conjunction of equations that defines S CLOCK COMP c r by
recursion on the structure of r:

(T c(b) = (¬c[∗]; c ∧ b)) ∧
(T c(r1; r2) = T c(r1); T c(r2)) ∧
(T c(r1 : r2) = T c(r1) : T c(r2)) ∧
(T c({r1} | {r2}) = {T c(r1)} | {T c(r2)}) ∧
(T c({r1}&&{r2}) = {T c(r1)}&&{T c(r2)}) ∧
(T c(r [∗]) = T c(r)[∗]) ∧
(T c(r@c1) = (¬c1[∗]; c1 : T c1(r)))

For formulas, F CLOCK COMP c f is defined by recursion on the structure of f :

(T c(b) = b) ∧
(T c(¬f) = ¬T c(f)) ∧
(T c(f1 ∧ f2) = T c(f1) ∧ T c(f2)) ∧
(T c(X! f) = X! ([¬c U (c ∧ T c(f))])) ∧
(T c([f1 U f2]) = [(c ⇒ T c(f1)) U (c ∧ T c(f2))]) ∧
(T c({r}(f)) = {T c(r)}([¬c U (c ∧ T c(f))])) ∧
(T c({r1} 7→ {r2}!) = {T c(r1)} 7→ {T c(r2)}!) ∧
(T c({r1} 7→ {r2}) = {T c(r1)} 7→ {T c(r2)}) ∧
(T c(f abort b) = T c(f) abort (c ∧ b)) ∧
(T c(f @c1!) = [¬c1 U (c1 ∧ T c1(f))])

To validate these rewrites and further check the clocked and unclocked semantics we proved

` ∀r w c. w |=c r = w |= T c(r)

and

` ∀f w c. w0 |= c ⇒ (w |=c f = w |= T c(f))

and hence, since ` ∀w . w0 |= T, we have two unconditional equations:

` ∀r w . w |=T
r = w |= T T(r)

` ∀f w . w |=T
f = w |= T T(f)

which allow us to compute the ‘top level’ semantics of any construct by first applying the rewrites and then
using the unclocked semantics.

Validating the PSL/Sugar semantics using automated reasoning 15

5.3. Remarks on the proofs

The proofs of the properties described in Sections 5.2.1 and 5.2.2 took several months of manual effort
(spread out over about a year), they were thus far from automatic. The general structure of the proofs
was structural induction over SEREs and/or formulas, followed by a case split on finite and infinite paths,
followed by invoking first order provers and arithmetical decision procedures. A substantial effort went into
developing numerous lemmas needed to handle the details. The first proofs were about Sugar 2.0 and were
significantly more complex than the subsequent proofs of similar properties about PSL. Sugar 2.0 had strong
and weak clocking as separate primitive notions, whereas PSL only has strong clocking as primitive, and
weak clocking is defined. This meant, for example, that many theorems about Sugar 2.0 required separate
mutually inductive proofs for strong and weak clocking. Also, lemmas using the well-ordering of the natural
numbers were needed for validating the correctness of the clock removal rewrites for Sugar 2.0, but not for
PSL. It is hard to extract general insights from the mass of detail: many of the proofs were complex and
tedious to perform, with large numbers of cases, but there was nothing particularly striking about their
structure. As we went through the cases many sequence of inference steps were repeated. When we redid the
proofs for PSL some of these were packaged into proof scripts (HOL tactics) so that the input to the HOL
system became less bulky.

At the start of the proof effort various ‘tightenings’ of the semantics were developed in collaboration with
the Sugar designers. These were mainly to ensure that quantifications over indices were restricted so that
the uses of the indices were always meaningful. For example, we added the requirement that all terms w (i,j)

occurred in a context where i ≤ j, so that the arbitrary value of w (i,j) when i > j was never invoked. This
process uncovered some minor errors such as “>” occurring when there should have been “≥”.

After the initial phase, more errors were uncovered as a result of unsolvable subgoals being generated,
however no major conceptual problems were uncovered, just ‘semantic typos’.

6. Conclusions and future work

It was quite straightforward to use the semi-formal semantics in the PSL/Sugar documentation to create a
deep embedding of the whole language kernel. Attempting to prove some simple ‘sanity checking’ lemmas
with a theorem prover quickly revealed bugs in the translated semantics (and in the original). Further probing
revealed more bugs. It is hoped that the semantics in the HOL logic that we now have is correct, but one
cannot be absolutely sure, and past experience suggests caution!

PSL/Sugar is a language intended for representing the kind of properties currently checked using assertion
based verification of hardware (ABV [Coh03]). From a theorem proving perspective it is quite low level, and is
inadequate to specify devices using higher level data-types like real numbers (e.g. the specification of floating
point algorithms requires proper real numbers [Har00]). In future research we hope to combine specifications
using higher level mathematical theories for data operations with PSL for sequential behaviour. We also
hope to experiment with augmenting PSL with additional constructs based on Interval Temporal Logic
(ITL) [HMM83, ITL]. We have already explored adding ITL constructs, like the chop-operator, to PSL
formulas and have shown that if this is done then SEREs can be encoded as formulas whilst preserving the
original semantics.

Presumably relatively few people will actually read the formal semantics, so one might ask what is the
point of subjecting it to the kind of scrutiny described here. Some discussion of this was given in Section 2.
Our view is that a formal semantics is more than just documentation. Just as a formal syntax can be fed
into tools to generate useful products, like parsers, so we hope that a formal semantics can be fed into
tools to generate useful products, like simulation monitors. Such products will be standards compliant by
construction, but more research on logic programming methodology is needed before they can be practical
[GHS03].

7. Acknowledgements

The work described here would not have been possible without the help of the Sugar team of Cindy Eisner
and Dana Fisman from IBM. They devised the PSL/Sugar language and the semantics that is formalised
here in higher order logic. They also supplied the LATEX sources for the extracts of the LRM shown in

16 Michael J. C. Gordon

the framed boxes. Both jointly and individually they patiently answered numerous email questions in great
detail, supplied valuable comments and corrections to an earlier version of this paper, and suggested lemmas
and ways of modifying the HOL semantics to get the proofs described in Section 5 to go through.

The anonymous referees spotted several errors in the submitted version of this paper, and made many
suggestions, both detailed and general, for improving the presentation. The submitted paper contained a
detailed discussion of some unfinished proofs about Sugar 2.0. These proofs were all subsequently completed,
but when the semantics was simplified by Accellera, as Sugar 2.0 evolved into PSL, much of the technical
discussion in the submitted paper no longer applied. Rather than discuss the details of proofs for the obsolete
Sugar 2.0 semantics, we provide here a higher level perspective on the issues, whilst trying to incorporate
the spirit of the referees detailed points.

A preliminary version of this paper based on the original Sugar 2.0 semantics was presented as a work-in-
progress contribution at TPHOLs2002 under the title Using HOL to study Sugar 2.0 semantics and appeared
in the NASA Conference Proceedings CP-2002-21173.

Keith Wansbrough’s HOL-to-LATEX tool for typesetting the ASCII syntax of HOL terms simplified the
task of writing this paper and ensures that the various semantics shown are faithful representations of the
HOL sources.

References

[ABG+00] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfsthal. FoCs - automatic generation of simulation
checkers from formal specifications. In Proc. 12th International Conference on Computer Aided Verification
(CAV), LNCS 1855. Springer-Verlag, 2000.

[Acc] Accellera Property Specification Language Reference Manual, Version 1.01.
At http://www.eda.org/vfv/docs/psl_lrm-1.01.pdf.

[BBDE+01] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The temporal logic Sugar. In G. Berry,
H. Comon, and A. Finkel, editors, Proc. 13th International Conference on Computer Aided Verification (CAV),
LNCS 2102. Springer-Verlag, 2001.

[BGG+92] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van Tassel. Experience with embedding
hardware description languages in HOL. In V. Stavridou, T. F. Melham, and R. T. Boute, editors, Theorem
Provers in Circuit Design: Proceedings of the IFIP TC10/WG 10.2 International Conference, Nijmegen, June
1992, IFIP Transactions A-10, pages 129–156. North-Holland, 1992.

[Coh03] Ben Cohen. Using PSL/Sugar with Verilog and VHDL: Guide to Property Specification Language for Assertion-
Based Verification. VhdlCohen Publishing, May 2003. ISBN 0-9705394-4-4.

[EF02] C. Eisner and D. Fisman. Sugar 2.0 proposal presented to the Accellera Formal Verification Technical Committee,
March 2002. At http://www.haifa.il.ibm.com/projects/verification/sugar/Sugar_2.0_Accellera.ps.

[GHS03] Mike Gordon, Joe Hurd, and Konrad Slind. Executing the formal semantics of the Accellera Property Specification
Language by mechanised theorem proving. In Daniel Geist and Enrico Tronci, editors, Proc. 12th Advanced
Research Working Conference on Correct Hardware Design and Verification Methods (CHARME 2003), Lecture
Notes in Computer Science. Springer-Verlag, October 2003. 21 - 24 October 2003, University of L’Aquila, Computer
Science Department, L’Aquila, Italy.

[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: a theorem-proving environment for higher-order
logic. Cambridge University Press, 1993.

[Har00] John Harrison. Formal verification of IA-64 division algorithms. In M. Aagaard and J. Harrison, editors, Theorem
Proving in Higher Order Logics: 13th International Conference, TPHOLs 2000, volume 1869 of Lecture Notes in
Computer Science, pages 234–251. Springer-Verlag, 2000.

[HMM83] J. Halpern, Z. Manna, and B. Moszkowski. A hardware semantics based on temporal intervals. In J. Diaz, editor,
Proceedings of the 10-th International Colloquium on Automata, Languages and Programming, volume 154 of
LNCS, pages 278–291. Springer Verlag, 1983.

[ITL] ITL home page, Antonio Cau, Ben Moszkowski and Hussein Zedan, Software Technology Research Laboratory, De
Montford University. At http://www.cms.dmu.ac.uk/~cau/itlhomepage/.

[Mat] W3C Math Home. At http://www.w3.org/Math.
[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order

Logic, volume 2283 of LNCS. Springer, 2002.
[Ope] OpenMath website. At http://www.openmath.org.
[RSS95] S. Rajan, N. Shankar, and M.K. Srivas. An integration of model-checking with automated proof checking. In Pierre

Wolper, editor, Computer-Aided Verification, CAV ’95, volume 939 of Lecture Notes in Computer Science, pages
84–97, Liege, Belgium, June 1995. Springer-Verlag.

[SH99] K. Schneider and D. Hoffmann. A HOL Conversion for Translating Linear Time Temporal Logic to omega-
Automata. In Theorem Proving in Higher Order Logics (TPHOLs99), number 1690 in Lecture Notes in Computer
Science. Springer-Verlag, 1999.

