Formal Verification of Cryptographic Software
Implementations

Barbara Vieira ', J. Bacelar Aimeida '
Manuel Barbosa ' and Jorge S. Pinto '

Universidade do Minho
Departmento de Informética
HASLab / INESC TEC

December, 2011

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 1/19

Motivation Formally verify cryptographic software

Why should we formally verify cryptographic software?

» Cryptographic algorithms are usually given as high-level specifications;

» Specifications are based on mathematical constructions which do not
directly map into programming language structures (mathematical fields,
arbitrary precision integers, etc);

» Implementations of cryptographic algorithms are by themselves
complicated;

» To obtain high performance in different platforms, cryptographic
algorithms are optimised;

» Optimizations can introduce errors and compromise the security of the
algorithms.

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 2/19

Motivation Formally verify cryptographic software

How can we formally verify cryptographic software?

1. Establishing the security properties that a cryptographic software
implementation must enforce; Eg. memory safety, data confidentiality, etc.

2. Applying formal techniques that can be used to verify if the software
implementations indeed enforce the desired security properties;

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 3/19

Security properties

Security properties

So far, we have addressed:

» Safety properties memory safety (e.g. absence of buffer overflows);
arithmetic safety (e.g. absence of integer overflows);

» Error propagation Analysing the behavior of stream ciphers when a bit in
the ciphertext is flipped over the communication channel;

» Functional correctness Verifying the correctness of cryptographic
algorithm’s implementations with respect to a reference implementation
(the specification acts as a reference implementation — code refactoring);

» Minimising exposure to side-channel attacks Verifying if the
implementations of cryptographic algorithms satisfy security properties
which minimise exposure against certain side-channel attacks.

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 4/19

Deductive verification

Deductive verification

» Formal verification technique which relies on Hoare Logic;
» Aims to establish correctness in software systems;
» ltis based on the Design by Contract approach (pre- and post-conditions);

Our motivation on the use of deductive verification

» One unified methodology to deal with a wide range of security properties;

» It can be used to verify security relevant properties using well-known
verifications tools;

» |t demonstrates a great potential to verify noninterference-like properties
using the self-composition approach;

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 5/19

Deductive verification Verification platforms

Verification platforms

Verification platforms based on Hoare logic

» Annotation language: allows reasoning about program executions —
specifications are introduced using Hoare triples:{ P} C {Q}

» Verification condition generator (VCGen): from an annotated program, it
generates a set of proof obligations

» Proof obligation: formulas in first-order logic whose validity implies that
the software meets its specification

Hoare triple specification

Program
execution

{P} C @}

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 6/19

Deductive verification Frama-C

Frama-C

» Framework for static analysis of C
programs;

» Includes the Jessie plug-in to make
deductive verification;

» The specification language — ACSL
(mostly inspired by JML);

» Automatically generates proof-obligations

associated with memory safety and
absence of integer overflows.

Annotated
program
with ACSL

Frama-¢
(Jessie plug-in)

abligations

(

Proof assistant
Coq, Isabelle, ...

Automatic prover
(Simplify, Alt-Ergo,...)

il

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 7/19

Deductive verification Noninterference

Noninterference

L H L H
Informal definition
A program satisfies noninterference if P 2]
high inputs do not interference with the
computation of low outputs. ﬂ ﬂ il

L H L H

Self-composition

Barthe et al. observed that noninterference of a program P can be reduced to
a property about a single program execution of the program P; P', where P’ is
the re-named copy of P.

{L=U}y PP {L=L"}

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 8/19

Verifying side-channel countermeasures using Frama-c Minimising exposure to side-channel attacks (NaCl security policies)

NaCl security policies

NaCl' cryptographic library countermeasures
NaCl developers observed that to minimise exposure to side-channel attacks it
suffices that cryptographic implementations satisfy:

» No data-dependent branches — there are no conditional branches and
loops with conditions based on input data;

» No data-dependent array indices — there are no array lookups with
indices based on input data;

Goal
Formally verify if the NaCl cryptographic library attests adherence to these
side-channel countermeasures.

Adopted strategy
Formalise these policies as noninterference properties.

"http://nacl.cr.yp.to
barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 9/19

http://nacl.cr.yp.to

Verifying side-channel countermeasures using Frama-c Minimising exposure to side-channel attacks (NaCl security policies)

Minimising exposure to side-channel attacks

Side-channel attack
Any attack that takes advantage of observing specific characteristics of the
physical implementations of cryptographic algorithms;

Examples of addressed timing side-channel attacks

» Cache timing attacks — attacks exploiting the time that a computation (in the
cache) takes to perform;

» Branch prediction analysis attacks — attacks exploiting secret information that
can be leaked through conditional branches;

Informal security property

An attacker capable of observing the instruction pointer and accessed memory
locations cannot recover any sensitive information. :

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 10/19

Verifying side-channel countermeasures using Frama-c Formalising side-channel countermeasures

Formalising side-channel countermeasures as
noninterference (1)

Memory
|pcations

Extending program semantics

Extending program semantics to = @

capture in the post-state the accessed

memory locations and the executed

commands.
Formally

Extended program semantics — (P, S) |} (S', M, C)?, where
» M - list of memory locations accessed during program execution;
» C - list of commands executed by the program during its execution;

2Standard program (big-step) semantics — (P, S) |} S';

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 11/19

Verifying side-channel countermeasures using Frama-c Formalising side-channel countermeasures

Formalising side-channel countermeasures as
noninterference (2)

<—r
eI
t——N
Fe— "

For low-equal initial states, executing
two instances of the same program,
they must produce the same accessed
memory locations and execute the
same sequence of commands.

P P

-

I <—
r<—
z =
0&=
Io—
[+—
z o=
0=

Security property formalised as noninterference
Low integrity inputs should not interfere with the accessed memory locations
neither with the executed commands.

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 12/19

Verifying side-channel countermeasures using Frama-c Formalising side-channel countermeasures

Verifying side-channel countermeasures using
self-composition

To express security directly over the program state we transform the original
program to include sufficient trace information®:

» Control-flow — list containing the evaluation of the conditions of all conditional
branches and loops;

» Memory access — for each array variable is created a list containing the
accessed array indexes during program execution;

Security property formalisation (using Hoare triples)

{L="1"} P,P {Vx. My=M,NC=C"}
where
> My, M)’(— lists containing the accessed indexes in array x

> C,C’ -lists containing the evaluation of the conditions of all conditional branches and
loops;

-~

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 13/19

3Recall that memory and control-flow traces are not part of the program state;

Verifying side-channel countermeasures using Frama-c Verification using Frama-c

Verifying side-channel countermeasures using Frama-c

» Transform the original program to include two different kind of lists as
ghost variables: control-flow list and array access lists;

» If the code includes loops, each loop invariant must also refer the ghost
variables;

» Annotate the program with pre- and post-conditions to express the
security definition;

» Use Frama-—C to automatically discharge all the proof obligations

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 14/19

Verifying side-channel countermeasures using Frama-c Example

Example

mulmod function (also extracted from the NaCl core library) computes the
modular multiplication operation.

static void mulmod(unsigned int h[17],const unsigned int r[17]) {

unsigned int hr[17]; unsigned int i; unsigned int j; unsigned int u;
for (i = 0;i < 17;++i) {

u=0;

for (j = 0;j <= is++]) u += h[j] * r[i — jI;

for (j =i + 1;] < 17;++j) u += 320 = h[j] * r[i + 17 — j1;

hr[i] = u;

for (i = 0;i < 17;++i) h[i] = hr[i];
squeeze (h);

}

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 15/19

Verifying side-channel countermeasures using Frama-c Example
Example (internalising trace information)

static void mulmod(unsigned int h[17], const unsigned int r[17]) {
unsigned int hr[17]; unsigned int i; unsigned int j; unsigned int u;
for (i = 0; i < 17; ++i) {
u=0;
for (j = 0; J <= 05 ++]) {u+=h[j] = r[i |];
//@ ghost append_h(j); append_r(i-j); append_cflow(j<=i); }
//@ ghost append_cflow(j<=i);

for (k = i + 1; k < 17; ++k) { u += 320 * h[k] * r[i + 17 - k];
//@ ghost append_h(k); append_r(i+17-k); append_cflow(k<17); }

//@ ghost append_cflow (k<17);

hr[i] = u;

//@ ghost append_hr(i); append_cflow(i<17);}

//@ ghost append_cflow(i<17);

for (i = 0; i < 17; ++i) { h[i] = hr[i];
//@ ghost append_h(i); append_hr(i); append_cflow(i<17);}
//@ ghost append_cflow(i<17);
squeeze (h);
//@ ghost append_h(0);
}

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 16/19

Verifying side-channel countermeasures using Frama-c Example

Example (pre- and post-conditions)

/%@ requires Imem_h == Imem_ht;
@ requires Imem_hr == Imem_hrt;
@ requires Imem_r == Imem_r1;
@ requires Imem_cflow == Imem_cflow1;
@ ensures Imem_h ==Imem_h1 && Imem_r == Imem_r1 &&
@ Imem_hr ==Imem_hr1 && Imem_cflow == Imem_cflow1;
@«/

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 17/19

Conclusions

Summary and conclusions

» Deductive verification techniques help to improve the development of
cryptographic software, by reducing the error rating and giving better
guarantees that the software indeed behaves as prescribed;

» We have demonstrated how the NaCl security policies can be formalised
and verified using tools such as the Jessie plug-in from the Frama-C
framework;

» Further directions: study how the annotations process can be automated
(since it looks like it is simple and amenable of optimisation).

-~

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 18/19

Conclusions Bibliography

Bibliography

@ J. Bacelar Almeida , M. Barbosa, J. Sousa Pinto and Barbara Vieira
Deductive verification of cryptographic software.
NASA Journal of Innovations in Systems and Software Engineering, 2010.

[@ J. Bacelar Aimeida, Manuel Barbosa, Jorge S. Pinto, and Barbara Vieira
Formal verification of side-channel countermeasures using
self-composition.

Science of Computer Programming, 2011.

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 19/19

	Motivation
	

	Security properties
	Deductive verification
	Verification platforms
	Frama-C
	

	Verifying side-channel countermeasures using Frama-c
	Minimising exposure to side-channel attacks (NaCl security policies)
	Formalising side-channel countermeasures
	Verification using Frama-c
	

	Conclusions
	

