
Formal Verification of Cryptographic Software
Implementations

Bárbara Vieira 1, J. Bacelar Almeida 1

Manuel Barbosa 1 and Jorge S. Pinto 1

1Universidade do Minho
Departmento de Informática

HASLab / INESC TEC

December, 2011

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 1 / 19

Motivation Formally verify cryptographic software

Why should we formally verify cryptographic software?

I Cryptographic algorithms are usually given as high-level specifications;

I Specifications are based on mathematical constructions which do not
directly map into programming language structures (mathematical fields,
arbitrary precision integers, etc);

I Implementations of cryptographic algorithms are by themselves
complicated;

I To obtain high performance in different platforms, cryptographic
algorithms are optimised;

I Optimizations can introduce errors and compromise the security of the
algorithms.

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 2 / 19

Motivation Formally verify cryptographic software

How can we formally verify cryptographic software?

1. Establishing the security properties that a cryptographic software
implementation must enforce; Eg. memory safety, data confidentiality, etc.

2. Applying formal techniques that can be used to verify if the software
implementations indeed enforce the desired security properties;

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 3 / 19

Security properties

Security properties

So far, we have addressed:

I Safety properties memory safety (e.g. absence of buffer overflows);
arithmetic safety (e.g. absence of integer overflows);

I Error propagation Analysing the behavior of stream ciphers when a bit in
the ciphertext is flipped over the communication channel;

I Functional correctness Verifying the correctness of cryptographic
algorithm’s implementations with respect to a reference implementation
(the specification acts as a reference implementation – code refactoring);

I Minimising exposure to side-channel attacks Verifying if the
implementations of cryptographic algorithms satisfy security properties
which minimise exposure against certain side-channel attacks.

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 4 / 19

Deductive verification

Deductive verification

I Formal verification technique which relies on Hoare Logic;

I Aims to establish correctness in software systems;

I It is based on the Design by Contract approach (pre- and post-conditions);

Our motivation on the use of deductive verification

I One unified methodology to deal with a wide range of security properties;

I It can be used to verify security relevant properties using well-known
verifications tools;

I It demonstrates a great potential to verify noninterference-like properties
using the self-composition approach;

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 5 / 19

Deductive verification Verification platforms

Verification platforms

Verification platforms based on Hoare logic

I Annotation language: allows reasoning about program executions –
specifications are introduced using Hoare triples:{P} C {Q}

I Verification condition generator (VCGen): from an annotated program, it
generates a set of proof obligations

I Proof obligation: formulas in first-order logic whose validity implies that
the software meets its specification

Hoare triple specification

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 6 / 19

Deductive verification Frama-C

Frama-C

I Framework for static analysis of C
programs;

I Includes the Jessie plug-in to make
deductive verification;

I The specification language – ACSL
(mostly inspired by JML);

I Automatically generates proof-obligations
associated with memory safety and
absence of integer overflows.

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 7 / 19

Deductive verification Noninterference

Noninterference

Informal definition
A program satisfies noninterference if
high inputs do not interference with the
computation of low outputs.

Self-composition
Barthe et al. observed that noninterference of a program P can be reduced to
a property about a single program execution of the program P;P ′, where P ′ is
the re-named copy of P. {

L = L′
}

P;P ′
{

L = L′
}

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 8 / 19

Verifying side-channel countermeasures using Frama-c Minimising exposure to side-channel attacks (NaCl security policies)

NaCl security policies

NaCl1 cryptographic library countermeasures
NaCl developers observed that to minimise exposure to side-channel attacks it
suffices that cryptographic implementations satisfy:

I No data-dependent branches – there are no conditional branches and
loops with conditions based on input data;

I No data-dependent array indices – there are no array lookups with
indices based on input data;

Goal
Formally verify if the NaCl cryptographic library attests adherence to these
side-channel countermeasures.

Adopted strategy
Formalise these policies as noninterference properties.

1http://nacl.cr.yp.to
barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 9 / 19

http://nacl.cr.yp.to

Verifying side-channel countermeasures using Frama-c Minimising exposure to side-channel attacks (NaCl security policies)

Minimising exposure to side-channel attacks

Side-channel attack
Any attack that takes advantage of observing specific characteristics of the
physical implementations of cryptographic algorithms;

Examples of addressed timing side-channel attacks

I Cache timing attacks – attacks exploiting the time that a computation (in the
cache) takes to perform;

I Branch prediction analysis attacks – attacks exploiting secret information that
can be leaked through conditional branches;

Informal security property
An attacker capable of observing the instruction pointer and accessed memory
locations cannot recover any sensitive information.

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 10 / 19

Verifying side-channel countermeasures using Frama-c Formalising side-channel countermeasures

Formalising side-channel countermeasures as
noninterference (1)

Extending program semantics
Extending program semantics to
capture in the post-state the accessed
memory locations and the executed
commands.

Formally
Extended program semantics – (P,S) ⇓ (S′,M,C)2, where

I M - list of memory locations accessed during program execution;

I C - list of commands executed by the program during its execution;

2Standard program (big-step) semantics – (P,S) ⇓ S′;
barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 11 / 19

Verifying side-channel countermeasures using Frama-c Formalising side-channel countermeasures

Formalising side-channel countermeasures as
noninterference (2)

For low-equal initial states, executing
two instances of the same program,
they must produce the same accessed
memory locations and execute the
same sequence of commands.

Security property formalised as noninterference
Low integrity inputs should not interfere with the accessed memory locations
neither with the executed commands.

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 12 / 19

Verifying side-channel countermeasures using Frama-c Formalising side-channel countermeasures

Verifying side-channel countermeasures using
self-composition

To express security directly over the program state we transform the original
program to include sufficient trace information3:

I Control-flow – list containing the evaluation of the conditions of all conditional
branches and loops;

I Memory access – for each array variable is created a list containing the
accessed array indexes during program execution;

Security property formalisation (using Hoare triples)

{
L = L′

}
P;P ′

{
∀x . Mx = M ′x ∧C = C′

}
where

I Mx ,M ′x – lists containing the accessed indexes in array x

I C,C′ – lists containing the evaluation of the conditions of all conditional branches and
loops;

3Recall that memory and control-flow traces are not part of the program state;
barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 13 / 19

Verifying side-channel countermeasures using Frama-c Verification using Frama-c

Verifying side-channel countermeasures using Frama-c

I Transform the original program to include two different kind of lists as
ghost variables: control-flow list and array access lists;

I If the code includes loops, each loop invariant must also refer the ghost
variables;

I Annotate the program with pre- and post-conditions to express the
security definition;

I Use Frama-C to automatically discharge all the proof obligations

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 14 / 19

Verifying side-channel countermeasures using Frama-c Example

Example

mulmod function (also extracted from the NaCl core library) computes the
modular multiplication operation.

s t a t i c void mulmod (unsigned i n t h [1 7] , const unsigned i n t r [1 7]) {
unsigned i n t hr [1 7] ; unsigned i n t i ; unsigned i n t j ; unsigned i n t u ;
for (i = 0 ; i < 17;++ i) {

u = 0;
for (j = 0 ; j <= i ;++ j) u += h [j] ∗ r [i − j] ;
for (j = i + 1 ; j < 17;++ j) u += 320 ∗ h [j] ∗ r [i + 17 − j] ;
hr [i] = u ;

}
for (i = 0 ; i < 17;++ i) h [i] = hr [i] ;
squeeze (h) ;

}

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 15 / 19

Verifying side-channel countermeasures using Frama-c Example

Example (internalising trace information)

s t a t i c void mulmod (unsigned i n t h [1 7] , const unsigned i n t r [1 7]) {
unsigned i n t hr [1 7] ; unsigned i n t i ; unsigned i n t j ; unsigned i n t u ;

for (i = 0 ; i < 17; ++ i) {
u = 0;
for (j = 0 ; j <= i ; ++ j) { u += h [j] ∗ r [i j] ;

/ /@ ghost append_h (j) ; append_r (i - j) ; append_cflow (j <= i) ; }
/ /@ ghost append_cflow (j <= i) ;

for (k = i + 1 ; k < 17; ++k) { u += 320 ∗ h [k] ∗ r [i + 17 - k] ;
/ /@ ghost append_h (k) ; append_r (i +17-k) ; append_cflow (k <17) ; }

/ /@ ghost append_cflow (k <17) ;
hr [i] = u ;
/ /@ ghost append_hr (i) ; append_cflow (i <17) ; }
/ /@ ghost append_cflow (i <17) ;

for (i = 0 ; i < 17; ++ i) { h [i] = hr [i] ;
/ /@ ghost append_h (i) ; append_hr (i) ; append_cflow (i <17) ; }

/ /@ ghost append_cflow (i <17) ;
squeeze (h) ;
/ /@ ghost append_h (0) ;

}

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 16 / 19

Verifying side-channel countermeasures using Frama-c Example

Example (pre- and post-conditions)

/∗@ requ i res lmem_h == lmem_h1 ;
@ requ i res lmem_hr == lmem_hr1 ;
@ requ i res lmem_r == lmem_r1 ;
@ requ i res lmem_cflow == lmem_cflow1 ;
@ ensures lmem_h ==lmem_h1 && lmem_r == lmem_r1 &&
@ lmem_hr ==lmem_hr1 && lmem_cflow == lmem_cflow1 ;
@∗ /

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 17 / 19

Conclusions

Summary and conclusions

I Deductive verification techniques help to improve the development of
cryptographic software, by reducing the error rating and giving better
guarantees that the software indeed behaves as prescribed;

I We have demonstrated how the NaCl security policies can be formalised
and verified using tools such as the Jessie plug-in from the Frama-C
framework;

I Further directions: study how the annotations process can be automated
(since it looks like it is simple and amenable of optimisation).

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 18 / 19

Conclusions Bibliography

Bibliography

J. Bacelar Almeida , M. Barbosa, J. Sousa Pinto and Bárbara Vieira
Deductive verification of cryptographic software.
NASA Journal of Innovations in Systems and Software Engineering, 2010.

J. Bacelar Almeida, Manuel Barbosa, Jorge S. Pinto, and Bárbara Vieira
Formal verification of side-channel countermeasures using
self-composition.
Science of Computer Programming, 2011.

barbarasv@di.uminho.pt (UM - HASLab) Formal Verification of Cryptographic Software December, 2011 19 / 19

	Motivation
	

	Security properties
	Deductive verification
	Verification platforms
	Frama-C
	

	Verifying side-channel countermeasures using Frama-c
	Minimising exposure to side-channel attacks (NaCl security policies)
	Formalising side-channel countermeasures
	Verification using Frama-c
	

	Conclusions
	

