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The Goal

Problem: we often verify formal models of cryptographic
protocols, but what we rely on are their implementations.

Bridge the gap by extracting high-level (pi calculus) models
straight from C code.

We check trace properties such as authentication and weak
secrecy, aiming to be automated and sound.

Assume correctness of cryptographic primitives.

Main limitation so far: model extracted from a single program
path.
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Background

Types of properties and languages.

Low-Level
(C, Java)

High-Level
(F#)

Formal
(π, LySa)

low-level (NULL
dereference,
division by zero)

• VCC
• Frama-C
• ESC/Java
• SLAM

N/A N/A

high-level
(secrecy,
authentication)

• CSur
• JavaSec
• ASPIER
• csec-modex

• F7/F∗

• fs2pv/fs2cv

• ProVerif
• CryptoVerif
• AVISPA
• LySatool
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Results

C LOC model LOC outcome result type time

simple mac ∼ 250 12 verified symbolic 4s
RPC ∼ 600 35 verified symbolic 5s
NSL ∼ 450 40 verified computat. 5s
CSur ∼ 600 20 flaws found — 5s
Metering ∼ 1000 51 flaws found — 15s

Three implementations (1300 LOC) verified in the symbolic
model.

One of them also verified in the computational model by
application of a computational soundness result.

Found 3 flaws in a Microsoft Research implementation of a
smart metering protocol (1000 LOC) (all fixed now).
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Example Flaw

In the smart metering protocol:

uns igned char s e s s i o n k e y [256 / 8 ] ;
. . .
e n c r y p t e d r e a d i n g = ( ( uns igned i n t ) ∗ s e s s i o n k e y ) ˆ ∗ r e a d i n g ;

Extracted model:

let msg3 = (hash2{0, 1} castTo ”unsigned int”) ⊕ reading1 in ...
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Overview: What

csec-modex

C source with
event annotations

Models of crypto and
environment

Property
specification

Pi model + verification result
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Demo

Abstract protocol:

A
m,hmac(m, kAB)−−−−−−−−−−−→ B.

Concrete protocol:

A
len(m)|1|m|hmac(len(m)|2|m, kAB)−−−−−−−−−−−−−−−−−−−−−−→ B.
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Overview: How

C source

Simple instruction language (CVM)

Intermediate model language (IML)

Applied pi

Verification Result

CIL

Symbolic Execution

Message format abstraction

ProVerif
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Symbolic Execution: Basic Idea

Symbolic execution is a tool to simplify programs and extract their
meaning.

Concrete: Symbolic:

i n t f ( i n t x , i n t y ){
return ++x ∗ y++;}

x = 2 y = 3

9

i n t f ( i n t x , i n t y ){
return ++x ∗ y++;}

x = a y = b

(a+ 1)b
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Symbolic Execution with Symbolic Lengths

Output:

stackmsg  ptr(heap 2, 0)

heap 2 len(x)|x|y ⊕ k
stackmsg len 4 + len(x) + len(y)

w r i t e ( msg , m s g l e n ) ;

Generate IML “out(len(x)|x|y ⊕ k);”.
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Message Format Abstraction (1)

An IML model:

let A =
in(x);
event(send(x));
out(len(x)|1|x|hmac(x, kAB)).

let B =
in(m);
if len(m) < m{0, 4}+ 5 then
if m{4, 1} = 1 then
let x = m{5,m{0, 4}} in
let h = m{5 +m{0, 4}, len(m)− 5 +m{0, 4}} in
if h = hmac(x, kAB) then
event(accept(x)).

P = !(νkAB ; (!A | !B)).
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Message Format Abstraction (2)

Pi calculus translation of the IML model:

reduc d1(c1(x, y)) = x; d2(c1(x, y)) = y.

query ev:accept(x)==> ev:send(x).

let A =
in(x);
event(send(x));
out(c1(x, hmac(x, kAB))).

let B =
in(m);
let x = d1(m) in
let h = d2(m) in
if h = hmac(x, kAB) then
event(accept(x)).

process !(νkAB ; (!A | !B)).
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Message Format Abstraction (3)

We prove that IML bitstring manipulation expressions implement
pairing.

c1/2 :=λxy. len(x)|1|x|y,
d1/1 :=λx.if len(m) < x{0, 4}+ 5 then

if x{4, 1} = 1 then x{5, x{0, 4}} else ⊥,
d2/1 :=λx.if . . . then x{5 + x{0, 4}, len(x)− 5 + x{0, 4}} else ⊥.

Properties:

all concatenation functions have disjoint ranges,

for all x and y: d1(c1(x, y)) = x and d2(c1(x, y)) = y,

whenever d1(m) 6= ⊥ or d2(m) 6= ⊥, there exist x, y such that
m = c1(x, y).
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Current Status

Implementation available from
https://github.com/tari3x/csec-modex

Csec-challenge:
http://research.microsoft.com/csec-challenge

Working on:

Using CryptoVerif for verification of models, removing need
for computational soundness results.

Adding support for arbitrary control flow.
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Thank you!
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