
Extracting and Verifying Cryptographic Models
from C Protocol Code by Symbolic Execution

Mihhail Aizatulin1

supervised by
Andrew Gordon23, Jan Jürjens4, Bashar Nuseibeh1

1The Open University

2Microsoft Research Cambridge

3University of Edinburgh

4Dortmund University

December 2011

M. Aizatulin Extracting and Verifying Cryptographic Models from C Code

The Goal

Problem: we often verify formal models of cryptographic
protocols, but what we rely on are their implementations.

Bridge the gap by extracting high-level (pi calculus) models
straight from C code.

We check trace properties such as authentication and weak
secrecy, aiming to be automated and sound.

Assume correctness of cryptographic primitives.

Main limitation so far: model extracted from a single program
path.

M. Aizatulin Extracting and Verifying Cryptographic Models from C Code

Background

Types of properties and languages.

Low-Level
(C, Java)

High-Level
(F#)

Formal
(π, LySa)

low-level (NULL
dereference,
division by zero)

• VCC
• Frama-C
• ESC/Java
• SLAM

N/A N/A

high-level
(secrecy,
authentication)

• CSur
• JavaSec
• ASPIER
• csec-modex

• F7/F∗

• fs2pv/fs2cv

• ProVerif
• CryptoVerif
• AVISPA
• LySatool

M. Aizatulin Extracting and Verifying Cryptographic Models from C Code

Results

C LOC model LOC outcome result type time

simple mac ∼ 250 12 verified symbolic 4s
RPC ∼ 600 35 verified symbolic 5s
NSL ∼ 450 40 verified computat. 5s
CSur ∼ 600 20 flaws found — 5s
Metering ∼ 1000 51 flaws found — 15s

Three implementations (1300 LOC) verified in the symbolic
model.

One of them also verified in the computational model by
application of a computational soundness result.

Found 3 flaws in a Microsoft Research implementation of a
smart metering protocol (1000 LOC) (all fixed now).

M. Aizatulin Extracting and Verifying Cryptographic Models from C Code

Example Flaw

In the smart metering protocol:

uns igned char s e s s i o n k e y [256 / 8] ;
. . .
e n c r y p t e d r e a d i n g = ((uns igned i n t) ∗ s e s s i o n k e y) ˆ ∗ r e a d i n g ;

Extracted model:

let msg3 = (hash2{0, 1} castTo ”unsigned int”) ⊕ reading1 in ...

M. Aizatulin Extracting and Verifying Cryptographic Models from C Code

Overview: What

csec-modex

C source with
event annotations

Models of crypto and
environment

Property
specification

Pi model + verification result

M. Aizatulin Extracting and Verifying Cryptographic Models from C Code

Demo

Abstract protocol:

A
m,hmac(m, kAB)−−−−−−−−−−−→ B.

Concrete protocol:

A
len(m)|1|m|hmac(len(m)|2|m, kAB)−−−−−−−−−−−−−−−−−−−−−−→ B.

M. Aizatulin Extracting and Verifying Cryptographic Models from C Code

Overview: How

C source

Simple instruction language (CVM)

Intermediate model language (IML)

Applied pi

Verification Result

CIL

Symbolic Execution

Message format abstraction

ProVerif

M. Aizatulin Extracting and Verifying Cryptographic Models from C Code

Symbolic Execution: Basic Idea

Symbolic execution is a tool to simplify programs and extract their
meaning.

Concrete: Symbolic:

i n t f (i n t x , i n t y){
return ++x ∗ y++;}

x = 2 y = 3

9

i n t f (i n t x , i n t y){
return ++x ∗ y++;}

x = a y = b

(a+ 1)b

M. Aizatulin Extracting and Verifying Cryptographic Models from C Code

Symbolic Execution with Symbolic Lengths

Output:

stackmsg ptr(heap 2, 0)

heap 2 len(x)|x|y ⊕ k
stackmsg len 4 + len(x) + len(y)

w r i t e (msg , m s g l e n) ;

Generate IML “out(len(x)|x|y ⊕ k);”.

M. Aizatulin Extracting and Verifying Cryptographic Models from C Code

Message Format Abstraction (1)

An IML model:

let A =
in(x);
event(send(x));
out(len(x)|1|x|hmac(x, kAB)).

let B =
in(m);
if len(m) < m{0, 4}+ 5 then
if m{4, 1} = 1 then
let x = m{5,m{0, 4}} in
let h = m{5 +m{0, 4}, len(m)− 5 +m{0, 4}} in
if h = hmac(x, kAB) then
event(accept(x)).

P = !(νkAB ; (!A | !B)).

M. Aizatulin Extracting and Verifying Cryptographic Models from C Code

Message Format Abstraction (2)

Pi calculus translation of the IML model:

reduc d1(c1(x, y)) = x; d2(c1(x, y)) = y.

query ev:accept(x)==> ev:send(x).

let A =
in(x);
event(send(x));
out(c1(x, hmac(x, kAB))).

let B =
in(m);
let x = d1(m) in
let h = d2(m) in
if h = hmac(x, kAB) then
event(accept(x)).

process !(νkAB ; (!A | !B)).

M. Aizatulin Extracting and Verifying Cryptographic Models from C Code

Message Format Abstraction (3)

We prove that IML bitstring manipulation expressions implement
pairing.

c1/2 :=λxy. len(x)|1|x|y,
d1/1 :=λx.if len(m) < x{0, 4}+ 5 then

if x{4, 1} = 1 then x{5, x{0, 4}} else ⊥,
d2/1 :=λx.if . . . then x{5 + x{0, 4}, len(x)− 5 + x{0, 4}} else ⊥.

Properties:

all concatenation functions have disjoint ranges,

for all x and y: d1(c1(x, y)) = x and d2(c1(x, y)) = y,

whenever d1(m) 6= ⊥ or d2(m) 6= ⊥, there exist x, y such that
m = c1(x, y).

M. Aizatulin Extracting and Verifying Cryptographic Models from C Code

Current Status

Implementation available from
https://github.com/tari3x/csec-modex

Csec-challenge:
http://research.microsoft.com/csec-challenge

Working on:

Using CryptoVerif for verification of models, removing need
for computational soundness results.

Adding support for arbitrary control flow.

M. Aizatulin Extracting and Verifying Cryptographic Models from C Code

https://github.com/tari3x/csec-modex
http://research.microsoft.com/csec-challenge

Thank you!

M. Aizatulin Extracting and Verifying Cryptographic Models from C Code

