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Preface
This course aims to teach both the theory and practice of functional programming.The theory consists of the �-calculus and the practice will be illustrated using theprogramming language Standard ML.The �eld of Functional Programming splits into those who prefer `lazy' languageslike Haskell and those who prefer `strict' languages like ML. The practical partsof this course almost exclusively emphasise the latter, but the material on the �-calculus underlies both approaches.The chapters on the �-calculus have been largely condensed from Part II of thebook:M.J.C. Gordon, Programming Language Theory and its Implementa-tion, Prentice Hall International Series in Computer Science, 1988 (cur-rently out of print).The introduction to ML in Chapter 4 started life as part of:Gordon, M.J.C., Milner, A.J.R.G. and Wadsworth, C.P., EdinburghLCF: a mechanized logic of computation, Springer Lecture Notes inComputer Science, Springer-Verlag, 1979.The ML parts of this were updated substantially in the technical report:G. Cousineau, M. Gordon, G. Huet, R. Milner, L. Paulson, andC. Wadsworth, The ML handbook, INRIA (1986).I translated the introduction of this report into Standard ML and added some newmaterial to get Chapter 4. The case studies were written by me at great speed,and so are bound to contain numerous mistakes! They aim to show how ML-basedfunctional programming can be used in practice.The following people have contributed in various ways to the material cited aboveor to these notes: Graham Birtwistle, Shiu Kai Chin, Avra Cohn, Jan van Eijck,Mike Fourman, Elsa Gunter, Peter Hancock, Martin Hyland, Tom Melham, AllanC. Milne, Nicholas Ouruso�, David Shepherd and Roger Stokes.
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Chapter 1Introduction to the �-calculus
The �-calculus (or lambda-calculus) is a theory of functions that was originallydeveloped by the logician Alonzo Church as a foundation for mathematics. Thiswork was done in the 1930s, several years before digital computers were invented. Alittle earlier (in the 1920s) Moses Sch�on�nkel developed another theory of functionsbased on what are now called `combinators'. In the 1930s, Haskell Curry redis-covered and extended Sch�on�nkel's theory and showed that it was equivalent tothe �-calculus. About this time Kleene showed that the �-calculus was a universalcomputing system; it was one of the �rst such systems to be rigorously analysed.In the 1950s John McCarthy was inspired by the �-calculus to invent the program-ming language LISP. In the early 1960s Peter Landin showed how the meaning ofimperative programming languages could be speci�ed by translating them into the�-calculus. He also invented an in
uential prototype programming language calledISWIM [24]. This introduced the main notations of functional programming andin
uenced the design of both functional and imperative languages. Building on thiswork, Christopher Strachey laid the foundations for the important area of denota-tional semantics [13, 33]. Technical questions concerning Strachey's work inspiredthe mathematical logician Dana Scott to invent the theory of domains, which is nowone of the most important parts of theoretical computer science. During the 1970sPeter Henderson and Jim Morris took up Landin's work and wrote a number ofin
uential papers arguing that functional programming had important advantagesfor software engineering [17, 16]. At about the same time David Turner proposedthat Sch�on�nkel and Curry's combinators could be used as the machine code ofcomputers for executing functional programming languages. Such computers couldexploit mathematical properties of the �-calculus for the parallel evaluation of pro-grams. During the 1980s several research groups took up Henderson's and Turner'sideas and started working on making functional programming practical by designingspecial architectures to support it, some of them with many processors.We thus see that an obscure branch of mathematical logic underlies importantdevelopments in programming language theory, such as:(i) The study of fundamental questions of computation.(ii) The design of programming languages.(iii) The semantics of programming languages.(iv) The architecture of computers.1.1 Syntax and semantics of the �-calculusThe �-calculus is a notation for de�ning functions. The expressions of the notationare called �-expressions and each such expression denotes a function. It will beseen later how functions can be used to represent a wide variety of data and data-structures including numbers, pairs, lists etc. For example, it will be demonstrated1



2 Chapter 1. Introduction to the �-calculushow an arbitrary pair of numbers (x; y) can be represented as a �-expression. Asa notational convention, mnemonic names are assigned in bold or underlined toparticular �-expressions; for example 1 is the �-expression (de�ned in Section 2.3)which is used to represent the number one.There are just three kinds of �-expressions:(i) Variables: x, y, z etc. The functions denoted by variables are determinedby what the variables are bound to in the environment . Binding is done byabstractions (see 3 below). We use V , V1, V2 etc. for arbitrary variables.(ii) Function applications or combinations: if E1 and E2 are �-expressions,then so is (E1 E2); it denotes the result of applying the function denoted byE1 to the function denoted by E2. E1 is called the rator (from `operator')and E2 is called the rand (from `operand'). For example, if (m;n) denotesa function representing the pair of numbers m and n (see Section 2.2) andsum denotes the addition function1 �-calculus (see Section 2.5), then theapplication (sum(m;n)) denotes m+n.(iii) Abstractions: if V is a variable and E is a �-expression, then �V: E is anabstraction with bound variable V and body E. Such an abstraction denotesthe function that takes an argument a and returns as result the functiondenoted by E in an environment in which the bound variable V denotes a.More speci�cally, the abstraction �V: E denotes a function which takes anargument E0 and transforms it into the thing denoted by E[E0=V ] (the resultof substituting E0 for V in E, see Section 1.8). For example, �x: sum(x; 1)denotes the add-one function.Using BNF, the syntax of �-expressions is just:< �-expression> ::= <variable>j (< �-expression> < �-expression>)j (� <variable> : < �-expression>)If V ranges over the syntax class < variable > and E, E1, E2, : : : etc. range overthe syntax class < �-expression >, then the BNF simpli�es to:E ::= Vvariables6j (E1 E2)| {z }applications(combinations)6 j �V: E| {z }abstractions6The description of the meaning of �-expressions just given above is vague andintuitive. It took about 40 years for logicians (Dana Scott, in fact [32]) to make itrigorous in a useful way. We shall not be going into details of this.Example: (�x: x) denotes the `identity function': ((�x: x) E) = E. 2Example: (�x: (�f: (f x))) denotes the function which when applied to E yields(�f: (f x))[E=x], i.e. (�f: (f E)). This is the function which when applied to E0yields (f E)[E0=f] i.e. (E0 E). Thus((�x: (�f: (f x))) E) = (�f: (f E))and ((�f: (f E)) E0) = (E0 E)2 1Note that sum is a �-expression, whereas + is a mathematical symbol in the `metalanguage'(i.e. English) that we are using for talking about the �-calculus.



1.2. Notational conventions 3Exercise 1Describe the function denoted by (�x: (�y: y)). 2Example: Section 2.3 describes how numbers can be represented by �-expressions.Assume that this has been done and that 0, 1, 2, : : : are �-expressions which rep-resent 0, 1, 2, : : :, respectively. Assume also that add is a �-expression denoting afunction satisfying: ((add m) n) = m+n:Then (�x: ((add 1) x)) is a �-expression denoting the function that transformsn to 1 + n, and (�x: (�y: ((add x)y))) is a �-expression denoting the func-tion that transforms m to the function which when applied to n yields m+n,namely �y: ((add m)y)). 2The relationship between the function sum in (ii) at the beginning of this section(page 2) and the function add in the previous example is explained in Section 2.5.1.2 Notational conventionsThe following conventions help minimize the number of brackets one has to write.1. Function application associates to the left, i.e. E1 E2 � � � En means(( � � � (E1 E2) � � � ) En). For example:E1 E2 means (E1 E2)E1 E2 E3 means ((E1 E2)E3)E1 E2 E3 E4 means (((E1 E2)E3)E4)2. �V: E1 E2 : : : En means (�V: (E1 E2 : : : En)). Thus the scope of `�V 'extends as far to the right as possible.3. �V1 � � � Vn: E means (�V1: ( � � � : (�Vn: E) � � � )). For example:�x y: E means (�x: (�y: E))�x y z: E means (�x: (�y: (�z: E)))�x y z w: E means (�x: (�y: (�z: (�w: E))))Example: �x y: add y x means (�x: (�y: ((add y) x))). 21.3 Free and bound variablesAn occurrence of a variable V in a �-expression is free if it is not within the scopeof a `�V ', otherwise it is bound. For example(�x: y x)(�y: x y)free6bound6 free6bound6



4 Chapter 1. Introduction to the �-calculus1.4 Conversion rulesIn Chapter 2 it is explained how �-expressions can be used to represent data objectslike numbers, strings etc. For example, an arithmetic expression like (2 + 3) � 5can be represented as a �-expression and its `value' 25 can also be represented as a�-expression. The process of `simplifying' (2+ 3)� 5 to 25 will be represented by aprocess called conversion (or reduction). The rules of �-conversion described beloware very general, yet when they are applied to �-expressions representing arithmeticexpressions they simulate arithmetical evaluation.There are three kinds of �-conversion called �-conversion, �-conversion and �-conversion (the original motivation for these names is not clear). In stating theconversion rules the notation E[E0=V ] is used to mean the result of substitutingE0 for each free occurrence of V in E. The substitution is called valid if and onlyif no free variable in E0 becomes bound in E[E0=V ]. Substitution is described inmore detail in Section 1.8.The rules of �-conversion� �-conversion.Any abstraction of the form �V: E can be converted to�V 0: E[V 0=V ] provided the substitution of V 0 for V in E isvalid.� �-conversion.Any application of the form (�V: E1) E2 can be converted toE1[E2=V ], provided the substitution of E2 for V in E1 is valid.� �-conversion.Any abstraction of the form �V: (E V ) in which V has no freeoccurrence in E can be reduced to E.The following notation will be used:� E1 �!� E2 means E1 �-converts to E2.� E1 �!� E2 means E1 �-converts to E2.� E1 �!� E2 means E1 �-converts to E2.In Section 1.4.4 below this notation is extended.The most important kind of conversion is �-conversion; it is the one that can beused to simulate arbitrary evaluation mechanisms. �-conversion is to do with thetechnical manipulation of bound variables and �-conversion expresses the fact thattwo functions that always give the same results on the same arguments are equal (seeSection 1.7). The next three subsections give further explanation and examples ofthe three kinds of conversion (note that `conversion' and `reduction' are used belowas synonyms).



1.4. Conversion rules 51.4.1 �-conversionA �-expression (necessarily an abstraction) to which �-reduction can be applied iscalled an �-redex . The term `redex' abbreviates `reducible expression'. The ruleof �-conversion just says that bound variables can be renamed provided no `name-clashes' occur.Examples �x: x �!� �y: y�x: f x �!� �y: f yIt is not the case that �x: �y: add x y �!� �y: �y: add y ybecause the substitution (�y: add x y)[y=x] is not valid since the y that replacesx becomes bound. 21.4.2 �-conversionA �-expression (necessarily an application) to which �-reduction can be applied iscalled a �-redex . The rule of �-conversion is like the evaluation of a function callin a programming language: the body E1 of the function �V: E1 is evaluated in anenvironment in which the `formal parameter' V is bound to the `actual parameter'E2.Examples (�x: f x) E �!� f E(�x: (�y: add x y)) 3 �!� �y: add 3 y(�y: add 3 y) 4 �!� add 3 4It is not the case that(�x: (�y: add x y)) (square y) �!� �y: add (square y) ybecause the substition (�y: add x y)[(square y)=x] is not valid, since y is free in(square y) but becomes bound after substitution for x in (�y: add x y). 2It takes some practice to parse �-expressions according to the conventions of Sec-tion 1.2 so as to identify the �-redexes. For example, consider the application:(�x: �y: add x y) 3 4:Putting in brackets according to the conventions expands this to:(((�x: (�y: ((add x) y))) 3) 4)which has the form: ((�x: E) 3) 4where E = (�y: add x y)(�x: E) 3 is a �-redex and could be reduced to E[3=x].



6 Chapter 1. Introduction to the �-calculus1.4.3 �-conversionA �-expression (necessarily an abstraction) to which �-reduction can be applied iscalled an �-redex . The rule of �-conversion expresses the property that two functionsare equal if they give the same results when applied to the same arguments. Thisproperty is called extensionality and is discussed further in Section 1.7. For example,�-conversion ensures that �x: (sin x) and sin denote the same function. Moregenerally, �V: (E V ) denotes the function which when applied to an argument E0returns (E V )[E0=V ]. If V does not occur free in E then (E V )[E0=V ] = (E E0).Thus �V: E V and E both yield the same result, namely E E0, when applied to thesame arguments and hence they denote the same function.Examples �x: add x �!� add�y: add x y �!� add xIt is not the case that �x: add x x �!� add xbecause x is free in add x. 21.4.4 Generalized conversionsThe de�nitions of �!� , �!� and �!� can be generalized as follows:� E1 �!� E2 if E2 can be got from E1 by �-converting any subterm.� E1 �!� E2 if E2 can be got from E1 by �-converting any subterm.� E1 �!� E2 if E2 can be got from E1 by �-converting any subterm.Examples ((�x: �y: add x y) 3) 4 �!� (�y: add 3 y) 4(�y: add 3 y) 4 �!� add 3 42The �rst of these is a �-conversion in the generalized sense because (�y: add 3 y)4is obtained from ((�x: �y: add x y)3)4 (which is not itself a �-redex) by reducingthe subexpression (�x: �y: add x y)3. We will sometimes write a sequence ofconversions like the two above as:((�x: �y: add x y) 3) 4 �!� (�y: add 3 y) 4 �!� add 3 4Exercise 2Which of the three �-reductions below are generalized conversions (i.e. reductionsof subexpressions) and which are conversions in the sense de�ned on page 4? 2



1.5. Equality of �-expressions 7(i) (�x: x) 1 �!� 1(ii) (�y: y) ((�x: x) 1) �!� (�y: y)1 �!� 1(iii) (�y: y) ((�x: x) 1) �!� (�x: x) 1 �!� 1In reductions (ii) and (iii) in the exercise above one starts with the same �-expression, but reduce redexes in di�erent orders.An important property of �-reductions is that no matter in which order one doesthem, one always ends up with equivalent results. If there are several disjointredexes in an expression, one can reduce them in parallel. Note, however, that somereduction sequences may never terminate. This is discussed further in connectionwith the normalization theorem of Chapter 2.9. It is a current hot research topic in`�fth-generation computing' to design processors which exploit parallel evaluationto speed up the execution of functional programs.1.5 Equality of �-expressionsThe three conversion rules preserve the meaning of �-expressions, i.e. if E1 canbe converted to E2 then E1 and E2 denote the same function. This property ofconversion should be intuitively clear. It is possible to give a mathematical de�nitionof the function denoted by a �-expression and then to prove that this function isunchanged by �-, �- or �-conversion. Doing this is surprisingly di�cult [33] and isbeyond the scope of this book.We will simply de�ne two �-expressions to be equal if they can be transformed intoeach other by a sequence of (forwards or backwards) �-conversions. It is importantto be clear about the di�erence between equality and identity . Two �-expressionsare identical if they consist of exactly the same sequence of characters; they areequal if one can be converted to the other. For example, �x: x is equal to �y: y,but not identical to it. The following notation is used:� E1 � E2 means E1 and E2 are identical.� E1 = E2 means E1 and E2 are equal.Equality (=) is de�ned in terms of identity (�) and conversion (�!� , �!� and �!� )as follows. Equality of �-expressionsIf E and E0 are �-expressions then E = E0 if E � E0 or there exist expressionsE1, E2, . . . , En such that:1. E � E12. E0 � En3. For each i either(a) Ei �!� Ei+1 or Ei �!� Ei+1 or Ei �!� Ei+1 or(b) Ei+1 �!� Ei or Ei+1 �!� Ei or Ei+1 �!� Ei.



8 Chapter 1. Introduction to the �-calculusExamples (�x: x) 1 = 1(�x: x) ((�y: y) 1) = 1(�x: �y: add x y) 3 4 = add 3 42From the de�nition of = it follows that:(i) For any E it is the case that E = E (equality is re
exive).(ii) If E = E0, then E0 = E (equality is symmetric).(iii) If E = E0 and E0 = E00, then E = E00 (equality is transitive).If a relation is re
exive, symmetric and transitive then it is called an equivalencerelation. Thus = is an equivalence relation.Another important property of = is that if E1 = E2 and if E01 and E02 are two�-expressions that only di�er in that where one contains E1 the other contains E2,then E01 = E02. This property is called Leibnitz's law . It holds because the samesequence of reduction for getting from E1 to E2 can be used for getting from E01 toE02. For example, if E1 = E2, then by Leibnitz's law �V: E1 = �V: E2.It is essential for the substitutions in the �- and �-reductions to be valid. The va-lidity requirement disallows, for example, �x: (�y: x) being �-reduced to �y: (�y: y)(since y becomes bound after substitution for x in �y: x). If this invalid substitutionwere permitted, then it would follow by the de�nition of = that:�x: �y: x = �y: �y: yBut then since: (�x: (�y: x)) 1 2 �!� (�y: 1) 2 �!� 1and (�y: (�y: y)) 1 2 �!� (�y: y) 2 �!� 2one would be forced to conclude that 1 = 2. More generally by replacing 1 and 2by any two expressions, it could be shown that any two expressions are equal!Exercise 3Find an example which shows that if substitutions in �-reductions are allowed tobe invalid, then it follows that any two �-expressions are equal. 2Example: If V1, V2, . . . , Vn are all distinct and none of them occur free in any ofE1, E2,. . . , En, then(�V1 V2 � � �Vn: E) E1 E2 � � �En= ((�V1: (�V2 � � �Vn: E))E1) E2 � � �En�!� ((�V2 � � �Vn: E)[E1=V1]) E2 � � �En= (�V2 : : : Vn: E[E1=V1])E2 � � �En...= E[E1=V1][E2=V2] � � � [En=Vn]2



1.6. The �! relation 9Exercise 4In the last example, where was the assumption used that V1, V2,. . . , Vn are alldistinct and that none of them occur free in any of E1, E2,. . . , En? 2Exercise 5Find an example to show that if V1 = V2, then even if V2 is not free in E1, it is notnecessarily the case that:(�V1V2:E) E1 E2 = E[E1=V1][E2=V2]2Exercise 6Find an example to show that if V1 6= V2, but V2 occurs free in E1, then it is notnecessarily the case that:(�V1V2: E) E1 E2 = E[E1=V1][E2=V2]21.6 The �! relationIn the previous section E1 = E2 was de�ned to mean that E2 could be obtainedfrom E1 by a sequence of forwards or backwards conversions. A special case ofthis is when E2 is got from E1 using only forwards conversions. This is writtenE1 �! E2. De�nition of �!If E and E0 are �-expressions, then E �! E0 if E � E0 or there exist expressionsE1, E2, . . . ,En such that:1. E � E12. E0 � En3. For each i either Ei �!� Ei+1 or Ei �!� Ei+1 or Ei �!� Ei+1.Notice that the de�nition of �! is just like the de�nition of = on page 7 exceptthat part (b) of 3 is missing.Exercise 7Find E, E0 such that E = E0 but it is not the case that E �! E0. 2Exercise 8[very hard!] Show that if E1 = E2, then there exists E such that E1 �! Eand E2 �! E. (This property is called the Church-Rosser theorem. Some of itsconsequences are discussed in Chapter 2.9.) 2



10 Chapter 1. Introduction to the �-calculus1.7 ExtensionalitySuppose V does not occur free in E1 or E2 andE1 V = E2 VThen by Leibnitz's law (see page 8)�V: E1 V = �V: E2 Vso by �-reduction applied to both sidesE1 = E2It is often convenient to prove that two �-expressions are equal using this property,i.e. to prove E1 = E2 by proving E1 V = E2 V for some V not occuring free in E1or E2. We will refer to such proofs as being by extensionality.Exercise 9Show that (�f g x: f x (g x)) (�x y: x) (�x y: x) = �x: x2
1.8 SubstitutionAt the beginning of Section 1.4 E[E0=V ] was de�ned to mean the result of substi-tuting E0 for each free occurrence of V in E. The substitution was said to be validif no free variable in E0 became bound in E[E0=V ]. In the de�nitions of �- and�-conversion, it was stipulated that the substitutions involved must be valid. Thus,for example, it was only the case that(�V: E1) E2 �!� E1[E2=V ]as long as the substitution E1[E2=V ] was valid.It is very convenient to extend the meaning of E[E0=V ] so that we don't haveto worry about validity. This is achieved by the de�nition below which has theproperty that for all expressions E, E1 and E2 and all variables V and V 0:(�V: E1) E2 �! E1[E2=V ] and �V: E �! �V 0: E[V 0=V ]To ensure this property holds, E[E0=V ] is de�ned recursively on the structure ofE as follows:



1.8. Substitution 11E E[E0=V ]V E0V 0 (where V 6= V 0) V 0E1 E2 E1[E0=V ] E2[E0=V ]�V: E1 �V: E1�V 0: E1 (where V 6= V 0 and �V 0: E1[E0=V ]V 0 is not free in E0)�V 0: E1 (where V 6= V 0 and �V 00: E1[V 00=V 0][E0=V ]V 0 is free in E0) where V 00 is a variablenot free in E0 or E1This particular de�nition of E[E0=V ] is based on (but not identical to) the one inAppendix C of [2].To illustrate how this works consider (�y: y x)[y=x]. Since y is free in y, the lastcase of the table above applies. Since z does not occur in y x or y,(�y: y x)[y=x] � �z: (y x)[z=y][y=x] � �z: (z x)[y=x] � �z: z yIn the last line of the table above, the particular choice of V 00 is not speci�ed. Anyvariable not occurring in E0 or E1 will do.A good discussion of substitution can be found in the book by Hindley and Seldin[19] where various technical properties are stated and proved. The following exerciseis taken from that book.Exercise 10Use the table above to work out(i) (�y: x (�x: x))[(�y: y x)=x].(ii) (y (�z: x z))[(�y: z y)=x].2It is straightforward, but rather tedious, to prove from the de�nition of E[E0=V ]just given that indeed(�V: E1) E2 �! E1[E2=V ] and �V: E �! �V 0: E[V 0=V ]for all expressions E, E1 and E2 and all variables V and V 0.In Chapter 3 it will be shown how the theory of combinators can be used to decom-pose the complexities of substitution into simpler operations. Instead of combinatorsit is possible to use the so-called nameless terms of De Bruijn [6]. De Bruijn's ideais that variables can be thought of as `pointers' to the �s that bind them. Instead of`labelling' �s with names (i.e. bound variables) and then pointing to them via thesenames, one can point to the appropriate � by giving the number of levels `upwards'needed to reach it. For example, �x: �y: x y would be represented by ��2 1. As a



12 Chapter 1. Introduction to the �-calculusmore complicated example, consider the expression below in which we indicate thenumber of levels separating a variable from the � that binds it.3z }| {2z }| {�x: �y: x y (�y: x y y)| {z }1 | {z }1In De Bruijn's notation this is ��2 1 �3 1 1.A free variable in an expression is represented by a number bigger than the depth of�s above it; di�erent free variables being assigned di�erent numbers. For example,�x: (�y: y x z) x y wwould be represented by �(�1 2 3) 1 2 4Since there are only two �s above the occurrence of 3, this number must denote afree variable; similarly there is only one � above the second occurrence of 2 and theoccurrence of 4, so these too must be free variables. Note that 2 could not be usedto represent w since this had already been used to represent the free y; we thuschose the �rst available number bigger than 2 (3 was already in use representing z).Care must be taken to assign big enough numbers to free variables. For example,the �rst occurrence of z in �x: z (�y: z) could be represented by 2, but the secondoccurrence requires 3; since they are the same variable we must use 3.Example: With De Bruijn's scheme �x: x (�y: x y y) would be represented by�1(�2 1 1). 2Exercise 11What �-expression is represented by �2(�2)? 2Exercise 12Describe an algorithm for computating the De Bruijn representation of the expres-sion E[E0=V ] from the representations of E and E0. 2



Chapter 2Representing Things in the�-calculus
The �-calculus appears at �rst sight to be a very primitive language. However,it can be used to represent most of the objects and structures needed for modernprogramming. The idea is to code these objects and structures in such a way thatthey have the required properties. For example, to represent the truth values trueand false and the Boolean function : (`not'), �-expressions true, false and not aredevised with the properties that:not true = falsenot false = trueTo represent the Boolean function ^ (`and') a �-expression and is devised suchthat: and true true = trueand true false = falseand false true = falseand false false = falseand to represent _ (`or') an expression or such that:or true true = trueor true false = trueor false true = trueor false false = falseThe �-expressions used to represent things may appear completely unmotivated at�rst. However, the de�nitions are chosen so that they work together in unison.We will write LET � = �-expressionto introduce � as a new notation. Usually � will just be a name such as trueor and. Such names are written in bold face, or underlined, to distinguish themfrom variables. Thus, for example, true is a variable but true is the �-expression�x: �y: x (see Section 2.1 below) and 2 is a number but 2 is the �-expression�f x: f(f x) (see Section 2.3).Sometimes � will be a more complicated form like the conditional notation (E !E1 j E2).2.1 Truth-values and the conditionalThis section de�nes �-expressions true, false, not and (E ! E1 j E2) with thefollowing properties: 13



14 Chapter 2. Representing Things in the �-calculus
not true = falsenot false = true(true! E1 j E2) = E1(false! E1 j E2) = E2The �-expressions true and false represent the truth-values true and false, notrepresents the negation function : and (E ! E1 j E2) represents the conditional `ifE then E1 else E2'.There are in�nitely many di�erent ways of representing the truth-values and nega-tion that work; the ones used here are traditional and have been developed over theyears by logicians. LET true = �x: �y: xLET false = �x: �y: yLET not = �t: t false trueIt is easy to use the rules of �-conversion to show that these de�nitions have thedesired properties. For example:not true = (�t: t false true) true (de�nition of not)= true false true (�-conversion)= (�x: �y: x) false true (de�nition of true)= (�y: false) true (�-conversion)= false (�-conversion)Similarly not false = true.Conditional expressions (E ! E1 j E2) can be de�ned as follows:LET (E ! E1 j E2) = (E E1 E2)This means that for any �-expressions E, E1 and E2, (E ! E1 j E2) stands for(E E1 E2).The conditional notation behaves as it should:(true! E1 j E2) = true E1 E2= (�x y: x) E1 E2= E1and (false! E1 j E2) = false E1 E2= (�x y: y) E1 E2= E2



2.2. Pairs and tuples 15Exercise 13Let and be the �-expression �x y: (x! y j false). Show that:and true true = trueand true false = falseand false true = falseand false false = false2Exercise 14Devise a �-expression or such that:or true true = trueor true false = trueor false true = trueor false false = false22.2 Pairs and tuplesThe following abbreviations represent pairs and n-tuples in the �-calculus.LET fst = �p: p trueLET snd = �p: p falseLET (E1; E2) = �f: f E1 E2(E1; E2) is a �-expression representing an ordered pair whose �rst component(i.e. E1) is accessed with the function fst and whose second component (i.e. E2)is accessed with snd. The following calculation shows how the various de�nitionsco-operate together to give the right results.fst (E1; E2) = (�p: p true) (E1; E2)= (E1; E2) true= (�f: f E1 E2) true= true E1 E2= (�x y: x) E1 E2= E1Exercise 15Show that snd(E1; E2) = E2.2A pair is a data-structure with two components. The generalization to n componentsis called an n-tuple and is easily de�ned in terms of pairs.LET (E1; E2; : : : ; En) = (E1; (E2; (� � � (En�1; En) � � �)))



16 Chapter 2. Representing Things in the �-calculus(E1; : : : ; En) is an n-tuple with components E1, : : :, En and length n. Pairs are 2-tuples. The abbreviations de�ned next provide a way of extracting the componentsof n-tuples. LET E n# 1 = fst ELET E n# 2 = fst(snd E)...LET E n# i = fst(snd(snd(� � � (snd| {z }i�1 snds E) � � �))) (if i < n)...LET E n# n = snd(snd(: : : (snd| {z }n�1 snds E) : : :)))It is easy to see that these de�nitions work, for example:(E1; E2; : : : ; En) n# 1 = (E1; (E2; (: : :))) n# 1= fst (E1; (E2; (: : :)))= E1(E1; E2; : : : ; En) n# 2 = (E1; (E2; (: : :))) n# 2= fst (snd (E1; (E2; (: : :))))= fst (E2; (: : :))= E2In general (E1; E2; : : : ; En) n# i = Ei for all i such that 1 � i � n.ConventionWe will usually just write E # i instead of E n# i when it is clear from the contextwhat n should be. For example,(E1; : : : ; En) # i = Ei (where 1 � i � n)2.3 NumbersThere are many ways to represent numbers by �-expressions, each with their ownadvantages and disadvantages [38, 22]. The goal is to de�ne for each number n a �-expression n that represents it. We also want to de�ne �-expressions to represent theprimitive arithmetical operations. For example, we will need �-expressions suc, pre,add and iszero representing the successor function (n 7! n + 1), the predecessorfunction (n 7! n�1), addition and a test for zero, respectively. These �-expressionswill represent the numbers correctly if they have the following properties:



2.3. Numbers 17suc n = n+1 (for all numbers n)pre n = n�1 (for all numbers n)add m n = m+n (for all numbers m and n)iszero 0 = trueiszero (suc n) = falseThe representation of numbers described here is the original one due to Church. Inorder to explain this it is convenient to de�ne fn x to mean n applications of f tox. For example, f5 x = f(f(f(f(f x))))By convention f0 x is de�ned to mean x. More generally:LET E0 E0 = E0LET En E0 = E(E(� � � (E| {z }n Es E0) � � �))Note that En(EE0) = En+1 E0 = E(En E0); we will use the fact later.Example: f4x = f(f(f(f x))) = f(f3x) = f3(f x)2Using the notation just introduced we can now de�ne Church's numerals. Noticehow the de�nition of the �-expression n below encodes a unary representation of n.LET 0 = �f x: xLET 1 = �f x: f xLET 2 = �f x: f(f x)...LET n = �f x: fn x...The representations of suc, add and iszero are now magically pulled out of a hat.The best way to see how they work is to think of them as operating on unaryrepresentations of numbers. The exercises that follow should help.LET suc = �n f x: n f(f x)LET add = �m n f x: m f (n f x)LET iszero = �n: n (�x: false) true



18 Chapter 2. Representing Things in the �-calculusExercise 16Show:(i) suc 0 = 1(ii) suc 5 = 6(iii) iszero 0 = true(iv) iszero 5 = false(v) add 0 1 = 1(vi) add 2 3 = 52Exercise 17Show for all numbers m and n:(i) suc n = n+1(ii) iszero (suc n) = false(iii) add 0 n = n(iv) add m 0 = m(v) add m n = m+ n2The predecesor function is harder to de�ne than the other primitive functions.The idea is that the predecessor of n is de�ned by using �f x: fn x (i.e. n) toobtain a function that applies f only n�1 times. The trick is to `throw away' the�rst application of f in fn. To achieve this, we �rst de�ne a function prefn thatoperates on pairs and has the property that:(i) prefn f (true; x) = (false; x)(ii) prefn f (false; x) = (false; f x)From this it follows that:(iii) (prefn f)n (false; x) = (false; fn x)(iv) (prefn f)n (true; x) = (false; fn�1 x) (if n > 0)Thus n applications of prefn to (true; x) result in n�1 applications of f to x. Withthis idea, the de�nition of the predecessor function pre is straightforward. Beforegiving it, here is the de�nition of prefn:LET prefn = �f p: (false; (fst p! snd p j (f(snd p))))Exercise 18Show prefn f (b; x) = (false; (b! x j f x)) and hence:



2.3. Numbers 19(i) prefn f (true; x) = (false; x)(ii) prefn f (false; x) = (false; f x)(iii) (prefn f)n (false; x) = (false; fn x)(iv) (prefn f)n (true; x) = (false; fn�1 x) (if n > 0)2The predecessor function pre can now be de�ned.LET pre = �n f x: snd (n (prefn f) (true; x))It follows that if n > 0pre n f x = snd (n (prefn f) (true; x)) (de�nition of pre)= snd ((prefn f)n (true; x)) (de�nition of n)= snd(false; fn�1 x) (by (v) above)= fn�1 xhence by extensionality (Section 1.7 on page 10)pre n = �f x: fn�1 x= n�1 (de�nition of n�1)Exercise 19Using the results of the previous exercise (or otherwise) show that(i) pre (suc n) = n(ii) pre 0 = 02The numeral system in the next exercise is the one used in [2] and has some advan-tages over Church's (e.g. the predecessor function is easier to de�ne).Exercise 20 LET b0 = �x:xLET b1 = (false;b0)LET b2 = (false;b1)...LET dn+1 = (false; bn)...Devise �-expressions dsuc, diszero, dpre such that for all n:(i) dsuc bn = dn+1



20 Chapter 2. Representing Things in the �-calculus(ii) diszero b0 = true(iii) diszero (dsuc bn) = false(iv) dpre (dsuc bn) = bn22.4 De�nition by recursionTo represent the multiplication function in the �-calculus we would like to de�ne a�-expression, mult say, such that:mult m n = add n (add n ( � � � (add n 0) � � � ))| {z }m addsThis would be achieved if mult could be de�ned to satisfy the equation:mult m n = (iszero m! 0 j add n (mult (pre m) n))If this held then, for example,mult 2 3 = (iszero 2! 0 j add 3 (mult (pre 2) 3)) (by the equation)= add 3 (mult 1 3)(by properties of iszero, the conditional and pre)= add 3 (iszero 1! 0 j add 3 (mult (pre 1) 3))(by the equation)= add 3 (add 3 (mult 0 3))(by properties of iszero, the conditional and pre)= add 3 (add 3 (iszero 0! 0 j add 3 (mult (pre 0) 3)))(by the equation)= add 3 (add 3 0) (by properties of iszero and the conditional)The equation above suggests that mult be de�ned by:mult = �m n: (iszero m! 0 j add n (multN.B.6 (pre m) n))Unfortunately, this cannot be used to de�ne mult because, as indicated by thearrow,mult must already be de�ned for the �-expression to the right of the equalsto make sense.Fortunately, there is a technique for constructing �-expressions that satisfy arbitraryequations. When this technique is applied to the equation above it gives the desiredde�nition of mult. First de�ne a �-expression Y that, for any expression E, hasthe following odd property: Y E = E (Y E)This says that Y E is unchanged when the function E is applied to it. In general,if E E0 = E0 then E0 is called a �xed point of E. A �-expression Fix with theproperty that Fix E = E(Fix E) for any E is called a �xed-point operator . Thereare known to be in�nitely many di�erent �xed-point operators [28]; Y is the mostfamous one, and its de�nition is:



2.4. De�nition by recursion 21LET Y = �f: (�x: f(x x)) (�x: f(x x))It is straightforward to show that Y is indeed a �xed-point operator:Y E = (�f: (�x: f(x x)) (�x: f(x x))) E (de�nition of Y)= (�x: E(x x)) (�x: E(x x)) (�-conversion)= E ((�x: E(x x)) (�x: E(x x))) (�-conversion)= E (Y E) (the line before last)This calculation shows that every �-expression E has a �xed point.Armed with Y, we can now return to the problem of solving the equation formult.Suppose multfn is de�ned byLET multfn = �f6m n: (iszero m! 0 j add n (f6(pre m) n))and then de�ne mult by: LET mult = Y multfnThen:mult m n = (Y multfn) m n (de�nition of mult)=multfn (Y multfn) m n (�xed-point property of Y)=multfn mult m n (de�nition of mult)= (�f m n: (iszero m! 0 j add n (f (pre m) n))) mult m n(de�nition of multfn)= (iszero m! 0 j add n (mult (pre m) n)) (�-conversion)An equation of the form f x1 � � � xn = E is called recursive if f occurs free in E.Y provides a general way of solving such equations. Start with an equation of theform: f x1 : : : xn = g fgwhere g fg is some �-expression containing f. To obtain an f so that thisequation holds de�ne: LET f = Y (�f x1 : : : xn:g fg )The fact that the equation is satis�ed can be shown as follows:f x1 : : : xn = Y (�f x1 : : : xn:g fg ) x1 : : : xn (de�nition of f)= (�f x1 : : : xn:g fg ) (Y (�f x1 : : : xn:g fg )) x1 : : : xn(�xed-point property)= (�f x1 : : : xn:g fg ) f x1 : : : xn (de�nition of f)= g fg (�-conversion)Exercise 21Construct a �-expression eq such thateq m n = (iszero m! iszero n j(iszero n! false j eq (pre m) (pre n)))2



22 Chapter 2. Representing Things in the �-calculusExercise 22Show that if Y1 is de�ned by:LET Y1 = Y (�y f: f(y f))then Y1 is a �xed-point operator, i.e. for any E:Y1 E = E (Y1 E)2The �xed-point operator in the next exercise is due to Turing (Barendregt [2], page132).Exercise 23Show that (�x y: y (x x y)) (�x y: y (x x y)) is a �xed-point operator. 2The next exercise also comes from Barendregt's book, where it is attributed to Klop.Exercise 24Show that Y2 is a �xed-point operator, where:LET $ = �abcdefghijklmnopqstuvwxyzr:r(thisisafixedpointcombinator)LET Y2 = $$$$$$$$$$$$$$$$$$$$$$$$$$2Exercise 25Is it the case that Y f �! f (Y f)? If so prove it; if not �nd a �-expression bYsuch that bY f �! f (bY f). 2In the pure �-calculus as de�ned on page 1, �-expressions could only be applied toa single argument; however, this argument could be a tuple (see page 16). Thus onecan write: E(E1; : : : ; En)which actually abbreviates:E(E1; (E2; (� � � (En�1; En) � � �)))For example, E(E1; E2) abbreviates E(�f: f E1 E2).2.5 Functions with several argumentsIn conventional mathematical usage, the application of an n-argument function fto arguments x1, : : : , xn would be written as f(x1; : : : ; xn). There are two ways ofrepresenting such applications in the �-calculus:(i) as (f x1 : : : xn), or(ii) as the application of f to an n-tuple (x1; : : : ; xn).



2.5. Functions with several arguments 23In case (i), f expects its arguments `one at a time' and is said to be curried after alogician called Curry (the idea of currying was actually invented by Sch�on�nkel [31]).The functions and, or and add de�ned earlier were all curried. One advantage ofcurried functions is that they can be `partially applied'; for example, add 1 is theresult of partially applying add to 1 and denotes the function n 7! n+1.Although it is often convenient to represent n-argument functions as curried, it isalso useful to be able to represent them, as in case (ii) above, by �-expressionsexpecting a single n-tuple argument. For example, instead of representing + and �by �-expressions add and mult such thatadd m n = m+nmult m n = m�nit might be more convenient to represent them by functions, sum and prod say,such that sum (m;n) = m+nprod (m;n) = m�nThis is nearer to conventional mathematical usage and has applications that willbe encountered later. One might say that sum and prod are uncurried versions ofadd and mult respectively.De�ne: LET curry = �f x1 x2: f (x1; x2)LET uncurry = �f p: f (fst p) (snd p)then de�ning sum = uncurry addprod = uncurry multresults in sum and prod having the desired properties; for example:sum (m;n) = uncurry add (m;n)= (�f p: f (fst p) (snd p))add (m;n)= add (fst (m;n)) (snd (m;n))= add m n= m+nExercise 26Show that for any E: curry (uncurry E) = Euncurry (curry E) = Ehence show that: add = curry summult = curry prod2We can de�ne n-ary functions for currying and uncurrying. For n > 0 de�ne:



24 Chapter 2. Representing Things in the �-calculus
LET curryn = �f x1 � � �xn: f (x1; : : : ; xn)LET uncurryn = �f p: f (p n# 1) � � � (p n# n)If E represents a function expecting an n-tuple argument, then curryn E representsthe curried function which takes its arguments one at a time. If E represents acurried function of n arguments, then uncurryn E represents the uncurried versionwhich expects a single n-tuple as argument.Exercise 27Show that:(i) curryn (uncurryn E) = E(ii) uncurryn (curryn E) = E2Exercise 28Devise �-expressions En1 and En2 built out of curry and uncurry such thatcurryn = En1 and uncurryn = En2 . 2The following notation provides a convenient way to write �-expressions whichexpect tuples as arguments.Generalized �-abstractionsLET �(V1; : : : ; Vn): E = uncurryn (�V1 : : : Vn: E)Example: �(x; y): mult x y abbreviates:uncurry2 (�x y: mult x y) = (�f p: f (p 2# 1) (p 2# 2)) (�x y: mult x y)= (�f p: f (fst p) (snd p)) (�x y: mult x y)= �p: mult (fst p)(snd p)Thus: (�(x; y): mult x y) (E1; E2) = (�p: mult (fst p) (snd p)) (E1; E2)=mult (fst(E1; E2)) (snd(E1; E2))=mult E1 E22This example illustrates the rule of generalized �-conversion in the box below. Thisrule can be derived from ordinary �-conversion and the de�nitions of tuples andgeneralized �-abstractions. The idea is that a tuple of arguments is passed to eachargument position in the body of the generalized abstraction; then each individualargument can be extracted from the tuple without a�ecting the others.



2.6. Mutual recursion 25Generalized �-conversion(�(V1; : : : ; Vn): E) (E1; : : : ; En) = E[E1; : : : ; En=V1; : : : ; Vn]where E[E1; : : : ; En=V1; : : : ; Vn] is the simultaneous substitution of E1; : : : ; Enfor V1; : : : ; Vn respectively and none of these variables occur free in any ofE1; : : : ; En.It is convenient to extend the notation �V1 V2 : : : Vn: E described on page 3 sothat each Vi can either be an identi�er or a tuple of identi�ers. The meaning of�V1 V2 : : : Vn: E is still �V1:(�V2:(� � � (�Vn: E) � � �)), but now if Vi is a tuple ofidenti�ers then the expression is a generalized abstraction.Example: �f (x; y): f x y means �f: (�(x; y): f x y) which in turn means�f: uncurry (�x y: f x y) which equals �f: (�p: f (fst p) (snd p)). 2Exercise 29Show that if the only free variables in E are x1, : : : , xn and f , then if:f = Y (�f (x1; : : : ; xn): E)then f (x1; : : : ; xn) = E[f=f]2Exercise 30De�ne a �-expression div with the property that:div (m;n) = (q; r)where q and r are the quotient and remainder of dividing n into m. 22.6 Mutual recursionTo solve a set of mutually recursive equations like:f1 = F1 f1 � � � fnf2 = F2 f1 � � � fn...fn = Fn f1 � � � fnwe simply de�ne for 1 � i � nfi = Y (�(f1; : : : fn): (F1 f1 � � � fn; : : : ; Fn f1 � � � fn)) # iThis works because if~f = Y (�(f1; : : : fn): (F1 f1 � � � fn; : : : ; Fn f1 � � � fn))then fi =~f # i and hence:~f = (�(f1; : : : ; fn): (F1 f1 � � � fn; : : : ; Fn f1 � � � fn))~f= (F1(~f # 1) � � � (~f # n); : : : ; Fn(~f # 1) � � � (~f # n))= (F1 f1 � � � fn; : : : ; Fn f1 � � � fn) (since ~f # i = fi).Hence: fi = Fi f1 � � � fn



26 Chapter 2. Representing Things in the �-calculus2.7 Representing the recursive functionsThe recursive functions form an important class of numerical functions. Shortlyafter Church invented the �-calculus, Kleene proved that every recursive functioncould be represented in it. This provided evidence for Church's thesis , the hypothe-sis that any intuitively computable function could be represented in the �-calculus.It has been shown that many other models of compution de�ne the same class offunctions that can be de�ned in the �-calculus.In this section it is described what it means for an arithmetic function to be repre-sented in the �-calculus. Two classes of functions, the primitive recursive functionsand the recursive functions, are de�ned and it is shown that all the functions inthese classes can be represented in the �-calculus.In Section 2.3 it was explained how a number n is represented by the �-expressionn. A �-expression f is said to represent a mathematical function f if for all numbersx1, : : :, xn: f(x1; : : : ; xn) = y if f(x1; : : : ; xn) = y2.7.1 The primitive recursive functionsA function is called primitive recursive if it can be constructed from 0 and thefunctions S and U in (de�ned below) by a �nite sequence of applications of theoperations of substitution and primitive recursion (also de�ned below).The successor function S and projection functions U in (where n and i are numbers)are de�ned by:(i) S(x) = x+ 1(ii) U in(x1; x2; : : : ; xn) = xiSubstitutionSuppose g is a function of r arguments and h1, : : : , hr are r functions each of narguments. We say f is de�ned from g and h1, : : : , hr by substitution if:f(x1; : : : ; xn) = g(h1(x1; : : : ; xn); : : : ; hr(x1; : : : ; xn))Primitive recursionSuppose g is a function of n�1 arguments and h is a function of n+1 arguments.We say f is de�ned from g and h by primitive recursion if:f(0; x2; : : : ; xn) = g(x2; : : : ; xn)f(S(x1); x2; : : : ; xn) = h(f(x1; x2; : : : ; xn); x1; x2; : : : ; xn)g is called the base function and h is called the step function. It can proved thatfor any base and step function there always exists a unique function de�ned fromthem by primitive recursion. This result is called the primitive recursion theorem;proofs of it can be found in textbooks on mathematical logic.Example: The addition function sum is primitive recursive because:sum(0; x2) = x2sum(S(x1); x2) = S(sum(x1; x2))2



2.7. Representing the recursive functions 27It is now shown that every primitive recursive function can be represented by �-expressions.It is obvious that the �-expressions 0, suc, �p: p n# i represent the initial functions0, S and U in respectively.Suppose function g of r variables is represented by g and functions hi (1 � i � r)of n variables are represented by hi. Then if a function f of n variables is de�nedby substitution by:f(x1; : : : ; xn) = g(h1(x1; : : : ; xn); : : : ; hr(x1; : : : ; xn))then f is represented by f where:f = �(x1; : : : ; xn): g(h1(x1; : : : ; xn); : : : ;hr(x1; : : : ; xn))Suppose function f of n variables is de�ned inductively from a base function g ofn�1 variables and an inductive step function h of n+1 variables. Thenf(0; x2; : : : ; xn) = g(x2; : : : ; xn)f(S(x1); x2; : : : ; xn) = h(f(x1; x2; : : : ; xn); x1; x2; : : : ; xn)Thus if g represents g and h represents h then f will represent f iff (x1; x2; : : : ; xn) =(iszero x1 ! g(x2; : : : ; xn) jh(f (pre x1; x2; : : : ; xn);pre x1; x2; : : : ; xn))Using the �xed-point trick, an f can be constructed to satisfy this equation byde�ning f to be:Y(�f: �(x1; x2; : : : ; xn):(iszero x1 ! g(x2; : : : ; xn) jh(f(pre x1; x2; : : : ; xn);pre x1; x2; : : : ; xn)))Thus any primitive recursive function can be represented by a �-expression.2.7.2 The recursive functionsA function is called recursive if it can be constructed from 0, the successor functionand the projection functions (see page 26) by a sequence of substitutions, primitiverecursions and minimizations .MinimizationSuppose g is a function of n arguments. We say f is de�ned from g by minimizationif: f(x1; x2; : : : ; xn) = `the smallest y such that g(y; x2; : : : ; xn)=x1'The notation MIN(f) is used to denote the minimization of f . Functions de�nedby minimization may be unde�ned for some arguments. For example, if one is thefunction that always returns 1, i.e. one(x) = 1 for every x, then MIN(one) is onlyde�ned for arguments with value 1. This is obvious because if f(x) = MIN(one)(x),then: f(x) = `the smallest y such that one(y)=x'and clearly this is only de�ned if x = 1. ThusMIN(one)(x) =8<: 0 if x = 1unde�ned otherwise



28 Chapter 2. Representing Things in the �-calculusTo show that any recursive function can be represented in the �-calculus it is neces-sary to show how to represent the minimization of an arbitrary function. Supposeg represents a function g of n variables and f is de�ned by:f = MIN(g)Then if a �-expressionmin can be devised such thatmin x f (x1; : : : ; xn) representsthe least number y greater than x such thatf(y; x2; : : : ; xn) = x1then g will represent g where:g = �(x1; x2; : : : ; xn): min 0 f (x1; x2; : : : ; xn)min will clearly have the desired property if:min x f (x1; x2; : : : ; xn) =(eq (f(x; x2; : : : ; xn)) x1)! x jmin (suc x) f (x1; x2; : : : ; xn))where eq m n is equal to true if m = n and false otherwise (a suitable de�nitionof eq occurs on page 21). Thus min can simply be de�ned to be:Y(�m:�x f (x1; x2; : : : ; xn):(eq (f(x; x2; : : : ; xn)) x1 ! x j m (suc x) f (x1; x2; : : : ; xn)))Thus any recursive function can be represented by a �-expression.Higher-order primitive recursionThere are functions which are recursive but not primitive recursive. Here is a versionof Ackermann's function,  , de�ned by: (0; n) = n+1 (m+1; 0) =  (m; 1) (m+1; n+1) =  (m; (m+1; n))However, if one allows functions as arguments, then many more recursive functionscan be de�ned by a primitive recursion. For example, if the higher-order functionrec is de�ned by primitive recursion as follows:rec(0; x2; x3) = x2rec(S(x1); x2; x3) = x3(rec(x1; x2; x3))then  can be de�ned by: (m;n) = rec (m; S; f 7! (x 7! rec(x; f(1); f))) (n)where x 7! �(x) denotes the function1 that maps x to �(x). Notice that the thirdargument of rec , viz. x3, must be a function. In the de�nition of  we also tookx2 to be a function, viz. S.1Note that �x: �(x) is an expression of the �-calculus whereas x 7! �(x) is a notation of informalmathematics.



2.8. Extending the �-calculus 29Exercise 31Show that the de�nition of  in terms of rec works, i.e. that with  de�ned asabove:  (0; n) = n+1 (m+1; 0) =  (m; 1) (m+1; n+1) =  (m; (m+1; n))2A function which takes another function as an argument, or returns another functionas a result, is called higher-order . The example  shows that higher-order primitiverecursion is more powerful than ordinary primitive recursion2. The use of operatorslike rec is one of the things that makes functional programming very powerful.2.7.3 The partial recursive functionsA partial function is one that is not de�ned for all arguments. For example, thefunction MIN(one) described above is partial. Another example is the divisionfunction, since division by 0 is not de�ned. Functions that are de�ned for allarguments are called total .A partial function is called partial recursive if it can be constructed from 0, the suc-cessor function and the projection functions by a sequence of substitutions, primitiverecursions and minimizations. Thus the recursive functions are just the partial re-cursive functions which happen to be total. It can be shown that every partialrecursive function f can be represented by a �-expression f in the sense that(i) f(x1; : : : ; xn) = y if f(x1; : : : ; xn) = y(ii) If f(x1; : : : ; xn) is unde�ned then f(x1; : : : ; xn) has no normal form.Note that despite (ii) above, it is not in general correct to regard expressions withno normal form as being `unde�ned'.Exercise 32Write down the �-expression that represents MIN(f), where f(x) = 0 for all x. 22.8 Extending the �-calculusAlthough it is possible to represent data-objects and data-structures with �-expressions, it is often ine�cient to do so. For example, most computers havehardware for arithmetic and it is reasonable to use this, rather than �-conversion,to compute with numbers. A mathematically clean way of `interfacing' computationrules to the �-calculus is via so called �-rules .The idea is to add a set of new constants and then to specify rules, called a �-rules,for reducing applications involving these constants. For example, one might addnumerals and + as new constants, together with the �-rule:+ m n �!� m+n(E1 �!� E2 means E2 results by applying a �-rule to some subexpression of E1).When adding such constants and rules to the �-calculus one must be careful not todestroy its nice properties, e.g. the Church-Rosser theorem (see page 31).2The kind of primitive recursion de�ned in Section 2.7.1 is �rst-order primitive recursion.



30 Chapter 2. Representing Things in the �-calculusIt can be shown that �-rules are safe if they have the form:c1 c2 � � � cn �!� ewhere c1, : : :, cn are constants and e is either a constant or a closed abstraction(such �-expressions are sometimes called values).For example, one might add as constants Suc, Pre, IsZero, �0, �1, �2, � � � withthe �-rules: Suc �n �!� �n+1Pre �n+1 �!� �nIsZero �0 �!� trueIsZero �n+1 �!� falseHere �n represents the number n, Suc, Pre, IsZero are new constants (not de�ned�-expressions like suc, pre, iszero), and true and false are the previously de�nedexpressions (which are both closed abstractions).2.9 Theorems about the �-calculusIf E1 �! E2 then E2 can be thought of as having been got from E1 by `evaluation'.If there are no (�- or �-) redexes in E2 then it can be thought of as `fully evaluated'.A �-expression is said to be in normal form if it contains no �- or �-redexes (i.e. ifthe only conversion rule that can be applied is �-conversion). Thus a �-expressionin normal form is `fully evaluated'.Examples(i) The representations of numbers are all in normal form.(ii) (�x: x) 0 is not in normal form.2Suppose an expression E is `evaluated' in two di�erent ways by applying two di�er-ent sequences of reductions until two normal forms E1 and E2 are obtained. TheChurch-Rosser theorem stated below shows that E1 and E2 will be the same exceptfor having possibly di�erent names of bound variables.Because the results of reductions do not depend on the order in which they are done,separate redexes can be evaluated in parallel. Various research projects are currentlytrying to exploit this fact by designing multiprocessor architectures for evaluating�-expressions. It is too early to tell how successful this work will be. There isa possibility that the communication overhead of distributing redexes to di�erentprocessors and then collecting together the results will cancel out the theoreticaladvantages of the approach. Let us hope this pessimistic possibility can be avoided.It is a remarkable fact that the Church-Rosser theorem, an obscure mathematicalresult dating from before computers were invented, may underpin the design of thenext generation of computing systems.Here is the statement of the Church-Rosser theorem. It is an example of somethingthat is intuitively obvious, but very hard to prove. Many properties of the �-calculusshare this property.



2.9. Theorems about the �-calculus 31The Church-Rosser theoremIf E1 = E2 then there exists an E such that E1 �! E and E2 �! E.It is now possible to see why the Chuch-Rosser theorem shows that �-expressionscan be evaluated in any order. Suppose an expression E is `evaluated' in twodi�erent ways by applying two di�erent sequences of reductions until two normalforms E1 and E2 are obtained. Since E1 and E2 are obtained from E by sequencesof conversions, it follows by the de�nition of = that E = E1 and E = E2 and henceE1 = E2. By the Church-Rosser theorem there exists an expression, E0 say, suchthat E1 �! E0 and E2 �! E0. Now if E1 and E2 are in normal form, then theonly redexes they can contain are �-redexes and so the only way that E1 and E2can be reduced to E0 is by changing the names of bound variables. Thus E1 andE2 must be the same up to renaming of bound variables (i.e. �-conversion).Another application of the Church-Rosser theorem is to show that if m 6= n thenthe �-expressions representing m and n are not equal, i.e. m 6= n. Suppose m 6= nbut m = n; by the Church-Rosser theorem m �! E and n �! E for some E. Butit is obvious from the de�nitions of m and n, namelym = �f x: fm xn = �f x: fn xthat no such E can exist. The only conversions that are applicable to m and n are�-conversions and these cannot change the number of function applications in anexpression (m contains m applications and n contains n applications).A �-expression E has a normal form if E = E0 for some E0 in normal form. Thefollowing corollary relates expressions in normal form to those that have a normalform; it summarizes some of the statements made above.Corollary to the Church-Rosser theorem(i) If E has a normal form then E �! E0 for some E0 in normal form.(ii) If E has a normal form and E = E0 then E0 has a normal form.(iii) If E = E0 and E and E0 are both in normal form, then E and E0 areidentical up to �-conversion.Proof(i) If E has a normal form then E = E0 for some E0 in normal form. By theChurch-Rosser theorem there exists E00 such that E �! E00 and E0 �! E00.As E0 is in normal form the only redexes it can have are �-redexes, so thereduction E0 �! E00 must consist of a sequence of �-conversions. Thus E00must be identical to E0 except for some renaming of bound variables; it mustthus be in normal form as E0 is.(ii) Suppose E has a normal form and E = E0. As E has a normal form, E = E00where E00 is in normal form. Hence E0 = E00 by the transitivity of = (seepage 8) and so E0 has a normal form.



32 Chapter 2. Representing Things in the �-calculus(iii) This was proved above.2Exercise 33For each of the following �-expressions either �nd its normal form or show that ithas no normal form:(i) add 3(ii) add 3 5(iii) (�x: x x) (�x: x)(iv) (�x: x x) (�x: x x)(v) Y(vi) Y (�y: y)(vii) Y (�f x: (iszero x! 0 j f (pre x))) 72Notice that a �-expression E might have a normal form even if there exists anin�nite sequence E �! E1 �! E2 � � � . For example (�x: 1) (Y f) has a normalform 1 even though:(�x: 1) (Y f) �! (�x: 1) (f (Y f)) �! � � � (�x: 1) (fn (Y f)) �! � � �The normalization theorem stated below tells us that such blind alleys can alwaysbe avoided by reducing the leftmost �- or �-redex, where by `leftmost' is meant theredex whose beginning � is as far to the left as possible.Another important point to note is that E1 may not have a normal form even thoughE1 E2 does have one. For example, Y has no normal form, but Y (�x: 1) �! 1. Itis a common mistake to think of �-expressions without a normal form as denoting`unde�ned' functions; Y has no normal form but it denotes a perfectly well de�nedfunction3. Analysis beyond the scope of this book (see Wadsworth's paper [37])shows that a �-expression denotes an unde�ned function if and only if it cannot beconverted to an expression in head normal form, where E is in head normal form ifit has the form �V1 � � � Vm: V E1 � � � Enwhere V1, : : : , Vm and V are variables and E1, : : : , En are �-expressions (V caneither be equal to Vi, for some i, or it can be distinct from all of them). It followsthat the �xed-point operator Y is not unde�ned because it can be converted to�f: f ((�x: f(x x)) (�x: f(x x)))which is in head normal form.It can be shown that an expression E has a head normal form if and only if thereexist expressions E1, : : : , En such that E E1 : : : En has a normal form. Thissupports the interpretation of expressions without head normal forms as denotingunde�ned functions: E being unde�ned means that E E1 : : : En never terminatesfor any E1, : : : , En. Full details on head normal forms and their relation tode�nedness can be found in Barendregt's book [2].3The mathematical characterization of the function denoted by Y can be found in Stoy's book[33].



2.10. Call-by-value and Y 33The normalization theoremIf E has a normal form, then repeatedly reducing the leftmost �- or �-redex(possibly after an �-conversion to avoid invalid substitutions) will terminatewith an expression in normal form.The remark about �-conversion in the statement of the theorem is to cover caseslike: (�x: (�y: x y)) y �! �y0: y y0where �y: x y �! �y0: x y0 has been �-converted so as to avoid the invalid substi-tution (�y: x y)[y=x] = �y: y y.A sequence of reductions in which the leftmost redex is always reduced is called anormal order reduction sequence.The normalization theorem says that if E has a normal form (i.e. for some E0in normal form E = E0) then it can be found by normal order reduction. This,however, is not usually the `most e�cient' way to �nd it. For example, normalorder reduction requires (�x:gxgxg ) Eto be reduced to gEgEgIf E is not in normal form then it would be more e�cient to �rst reduce E to E0say (where E0 is in normal form) and then to reduce(�x:g xgxg ) E0to gE0gE0gthereby avoiding having to reduce E twice.Note, however, that this `call-by-value' scheme is disastrous in cases like(�x:1) ((�x: x x) (�x: x x))It is a di�cult problem to �nd an optimal algorithm for choosing the next redex toreduce. For recent work in this area see Levy's paper [25].Because normal order reduction appears so ine�cient, some programming languagesbased on the �-calculus, e.g. LISP, have used call by value even though it doesn'talways terminate. Actually, call by value has other advantages besides e�ciency,especially when the language is `impure', i.e. has constructs with side e�ects (e.g. as-signments). On the other hand, recent research suggests that maybe normal orderevaluation is not as ine�cient as was originally thought if one uses cunning im-plementation tricks like graph reduction (see page 40). Whether functional pro-gramming languages should use normal order or call by value is still a controversialissue.2.10 Call-by-value and YRecall Y: LET Y = �f: (�x: f(x x)) (�x: f(x x))



34 Chapter 2. Representing Things in the �-calculusUnfortunately Y doesn't work with call-by-value, because applicative order causesit to go into a loop. Y f �! f(Y f)�! f(f(Y f))�! f(f(f(Y f)))...To get around this, de�ne:LET Ŷ = �f: (�x: f(�y: x x y)) (�x: f(�y: x x y))Note that Ŷ is Y with \x x" �-converted to \�y: x x y". Ŷ doesn't goes into aloop with call-by-value: Ŷ f �! f(�y: Ŷ f y)Call-by-value doesn't evaluate �s, hence the looping is avoided.



Chapter 3Combinators
Combinators provide an alternative theory of functions to the �-calculus. Theywere originally introduced by logicians as a way of studying the process of substitu-tion. More recently, Turner has argued that combinators provide a good `machinecode' into which functional programs can be compiled [34]. Several experimentalcomputers have been built based on Turner's ideas (see e.g. [8]) and the resultsare promising. How these machines work is explained in Section 3.3. Combinatorsalso provide a good intermediate code for conventional machines; several of the bestcompilers for functional languages are based on them (e.g. [11, 1]).There are two equivalent ways of formulating the theory of combinators:(i) within the �-calculus, or(ii) as a completely separate theory.The approach here is to adopt (i) as it is slightly simpler, but (ii) was how it wasdone originally1. It will be shown that any �-expression is equal to an expressionbuilt from variables and two particular expressions, K and S, using only functionapplication. This is done by mimicking �-abstractions using combinations of K andS. It will be demonstrated how �-reductions can be simulated by simpler opera-tions involving K and S. It is these simpler operations that combinator machinesimplement directly in hardware. The de�nitions of K and S areLET K = �x y: xLET S = �f g x: (f x) (g x)From these de�nitions it is clear by �-reduction that for all E1, E2 and E3:K E1 E2 = E1S E1 E2 E3 = (E1 E3) (E2 E3)Any expression built by application (i.e. combination) from K and S is called acombinator; K and S are the primitive combinators .In BNF, combinators have the following syntax:<combinator> ::= K j S j (<combinator> <combinator>)A combinatory expression is an expression built from K, S and zero or more vari-ables. Thus a combinator is a combinatory expression not containing variables. In1The two-volume treatise Combinatory Logic [9, 10] is the de�nitive reference, but the morerecent textbooks [19, 2] are better places to start.35



36 Chapter 3. CombinatorsBNF, the syntax of combinatory expressions is:<combinatory expression>::= K j Sj <variable>j (<combinatory expression> <combinatory expression>)Exercise 34De�ne I by: LET I = �x: xShow that I = S K K. 2The identity function I de�ned in the last exercise is often taken as a primitivecombinator, but as the exercise shows this is not necessary as it can be de�ned fromK and S.3.1 Combinator reductionIf E and E0 are combinatory expressions then the notation E �!c E0 is used ifE � E0 or if E0 can be got from E by a sequence of rewritings of the form:(i) K E1 E2 �!c E1(ii) S E1 E2 E3 �!c (E1 E3) (E2 E3)(iii) I E �!c ENote that the reduction I E �!c E is derivable from (i) and (ii).Example S K K x �!c K x (K x) by (ii)�!c x by (i)2This example shows that for any E: I E �!c E.Any sequence of combinatory reductions, i.e. reductions via �!c , can be expandedinto a sequence of �-conversions. This is clear because K E1 E2 and S E1 E2 E3reduce to E1 and (E1 E3) (E2 E3), respectively, by sequences of �-conversions.3.2 Functional completenessA surprising fact is that any �-expression can be translated to an equivalent combi-natory expression. This result is called the functional completeness of combinatorsand is the basis for compilers for functional languages to the machine code of com-binator machines.The �rst step is to de�ne, for an arbitrary variable V and combinatory expressionE, another combinatory expression ��V: E that simulates �V: E in the sense that��V: E = �V: E. This provides a way of using K and S to simulate adding `�V ' toan expression.



3.2. Functional completeness 37If V is a variable and E is a combinatory expression, then the combinatory expres-sion ��V: E is de�ned inductively on the structure of E as follows:(i) ��V: V = I(ii) ��V: V 0 = K V 0 (if V 6= V 0)(iii) ��V: C = K C (if C is a combinator)(iv) ��V: (E1 E2) = S (��V: E1) (��V: E2)Note that ��V: E is a combinatory expression not containing V .Example: If f and x are variables and f 6= x, then:��x: f x = S (��x: f) (��x: x)= S (K f) I2The following theorem shows that ��V: E simulates �-abstraction.Theorem (��V: E) = �V: EProofWe show that (��V: E) V = E. It then follows immediately that �V: (��V: E) V =�V:E and hence by �-reduction that ��V: E = �V: E.The proof that (��V: E) V = E is by mathematical induction on the `size' of E.The argument goes as follows:(i) If E = V then:(��V: E) V = I V = (�x: x) V = V = E(ii) If E = V 0 where V 0 6= V then:(��V: E) V = K V 0 V = (�x y: x) V 0 V = V 0 = E(iii) If E = C where C is a combinator, then:(��V: E) V = K C = (�x y: x) C V = C = E(iv) If E = (E1 E2) then we can assume by induction that:(��V: E1) V = E1(��V: E2) V = E2and hence(��V: E) V = (��V: (E1 E2)) V= (S (��V: E1) (��V: E2)) V= (�f g x: f x (g x)) (��V: E1) (��V: E2) V= (��V: E1) V ((��V: E2) V )= E1 E2 (by induction assumption)= E2



38 Chapter 3. CombinatorsThe notation ��V1 V2 � � � Vn: Eis used to mean ��V1: ��V2: � � � ��Vn: ENow de�ne the translation of an arbitrary �-expression E to a combinatory expres-sion (E)C:(i) (V )C = V(ii) (E1 E2)C = (E1)C (E2)C(iii) (�V: E)C = ��V: (E)CTheorem For every �-expression E we have: E = (E)CProofThe proof is by induction on the size of E.(i) If E = V then (E)C = (V )C = V(ii) If E = (E1 E2) we can assume by induction thatE1 = (E1)CE2 = (E2)Chence (E)C = (E1 E2)C = (E1)C (E2)C = E1 E2 = E(iii) If E = �V: E0 then we can assume by induction that(E0)C = E0hence (E)C = (�V: E0)C= ��V: (E0)C (by translation rules)= ��V: E0 (by induction assumption)= �V: E0 (by previous theorem)= E2This theorem shows that any �-expression is equal to a �-expression built up fromK and S and variables by application, i.e. the class of �-expressions E de�ned bythe BNF: E ::= V j K j S j E1 E2is equivalent to the full �-calculus.A collection of n combinators C1, : : : , Cn is called an n-element basis (Barendregt[2], Chapter 8) if every �-expression E is equal to an expression built from Cis andvariables by function applications. The theorem above shows that K and S form a2-element basis. The exercise below (from Section 8.1.5. of Barendregt) shows thatthere exists a 1-element basis.



3.3. Reduction machines 39Exercise 35Find a combinator, X say, such that any �-expression is equal to an expression builtfrom X and variables by application. Hint: Let hE1; E2; E3i = �p: p E1 E2 E3 andconsider hK;S;Ki hK;S;Ki hK;S;Ki and hK;S;Ki hhK;S;Ki hK;S;Kii 2Examples:��f: ��x: f (x x) = ��f: (��x: f (x x))= ��f: (S (��x: f) (��x: x x))= ��f: (S (Kf) (S(��x: x) (��x: x)))= ��f: (S (Kf) (S I I))= S (��f: S (Kf)) (��f: S I I)= S (S (��f: S) (��f: K f)) (K (S I I))= S (S (K S) (S (��f: K) ( ��f: f))) (K (S I I))= S (S (K S) (S (K K) I)) (K (S I I))(Y)C = (�f: (�x: f(x x)) (�x: f(x x)))C= ��f: ((�x: f(x x)) (�x: f(x x)))C= ��f: ((�x: f(x x))C (�x: f(x x))C)= ��f: (��x: (f(x x))C) (��x: (f(x x))C)= ��f: (��x: f(x x)) (��x: f(x x))= S (��f: ��x: f(x x)) (��f: ��x: f(x x))= S(S(S(KS)(S(KK)I))(K(SII)))(S(S(KS)(S(KK)I))(K(SII)))23.3 Reduction machinesUntil David Turner published his paper [34], combinators were regarded as a mathe-matical curiosity. In his paper Turner argued that translating functional languages,i.e. languages based on the �-calculus, to combinators and then reducing the result-ing expressions using the rewrites given on page 36 is a practical way of implement-ing these languages.Turner's idea is to represent combinatory expressions by trees. For example,S (f x) (K y) z would be represented by:

���� AAAA���� AAAA ���� AAAA���� @@@@���
� AAAA

mf mxmS mK my
mz

�� �� �



40 Chapter 3. CombinatorsSuch trees are represented as pointer structures in memory. Special hardware or�rmware can then be implemented to transform such trees according to the rulesof combinator reduction de�ning �!c .For example, the tree above could be transformed to:
���� AAAA ���� AAAA���� AAAA ���� AAAA���� @@@@
mf mx mK mymz mz� �� ��

using the transformation
���� AAAA���

� AAAA���
� AAAA ���� AAAA ���� AAAA���� @@@@

mS ��SS1 ��SS2
��SS3 ��SS1 ��SS3 ��SS2 ��SS3� � � � ��-

which corresponds to the reduction S E1 E2 E3 �!c (E1 E3) (E2 E3).Exercise 36What tree transformation corresponds to K E1 E2 �!c E1? How would this trans-formation change the tree above? 2Notice that the tree transformation for S just given duplicates a subtree. Thiswastes space; a better transformation would be to generate one subtree with twopointers to it, i.e.
���� AAAA���

� AAAA���
� AAAA ���� �������� @@@@"  !�mS ��SS1 ��SS2
��SS3

��SS3��SS1 ��SS2� � � � ��-
This generates a graph rather than a tree. For further details of such graph reduc-tions see Turner's paper [34].It is clear from the theorem above that a valid way of reducing �-expressions is:



3.4. Improved translation to combinators 41(i) Translating to combinators (i.e. E 7! (E)C).(ii) Applying the rewritesK E1 E2 �!c E1S E1 E2 E3 �!c (E1 E3) (E2 E3)until no more rewriting is possible.An interesting question is whether this process will `fully evaluate' expressions. Ifsome expression E is translated to combinators, then reduced using �!c , is theresulting expression as `fully evaluated' as the result of �-reducing E directly, or isit only partially evaluated? Surprisingly, there doesn't seem to be anything in theliterature on this important question2. However, combinator machines have beenbuilt and they appear to work [8]!It is well known that if E1 �! E2 in the �-calculus, then it is not necessarily thecase that (E1)C �!c (E2)C. For example, takeE1 = �y: (�z: y) (x y)E2 = �y: yExercise 37With E1 and E2 as above show that E1 �! E2 in the �-calculus, but it is not thecase that (E1)C �!c (E2)C. 2A combinatory expression is de�ned to be in combinatory normal form if it containsno subexpressions of the form K E1 E2 or S E1 E2 E3. Then the normalizationtheorem holds for combinatory expressions, i.e. always reducing the leftmost com-binatory redex will �nd a combinatory normal form if it exists.Note that if E is in combinatory normal form, then it does not necessarily followthat it is a �-expression in normal form.Example: S K is in combinatory normal form, but it contains a �-redex, namely:(�f: (�g x: (f x (g x))) (�x y: x)2Exercise 38Construct a combinatory expression E which is in combinatory normal form, buthas no normal form. 23.4 Improved translation to combinatorsThe examples on page 39 show that simple �-expressions can translate to quitecomplex combinatory expressions via the rules on page 38.To make the `code' executed by reduction machines more compact, various opti-mizations have been devised.Examples2The most relevant paper I could �nd is one by Hindley [18]. This compares �-reductionwith combinatory reduction, but not in a way that is prima facie relevant to the termination ofcombinator machines.



42 Chapter 3. Combinators(i) Let E be a combinatory expression and x a variable not occurring in E. Then:S (K E) I x �!c (K E x) (I x) �!c E xhence S (KE) I x = E x (because E1 �!c E2 implies E1 �! E2), so byextensionality (Section 1.7, see on page 10):S (K E) I = E(ii) Let E1, E2 be combinatory expressions and x a variable not occurring in eitherof them. Then:S (K E1) (K E2) x �!c K E1 x (K E2) x �!c E1 E2Thus S (K E1) (K E2) x = E1 E2Now K (E1 E2) x �!c E1 E2hence K (E1 E2) x = E1 E2. ThusS (K E1) (K E2) x = E1 E2 = K (E1 E2) xIt follows by extensionality that:S (K E1) (K E2) = K (E1 E2)2Since S (K E) I = E for any E, whenever a combinatory expression of the formS (K E) I is generated, it can be `peephole optimized' to just E. Similarly, wheneveran expression of the form S (K E1) (K E2) is generated, it can be optimized toK (E1 E2).Example: On page 39 it was shown that:��f: ��x: f(x x) = S (S (K S) (S (K K) I)) (K (S I I))Using the optimization S (K E) I = E this simpli�es to:��f: ��x: f(x x) = S (S (K S) K) (K (S I I))23.5 More combinatorsIt is easier to recognize the applicability of the optimization S (K E) I = E if I hasnot been expanded to S K K, i.e. if I is taken as a primitive combinator. Variousother combinators are also useful in the same way; for example, B and C de�nedby: LET B = �f g x: f (g x)LET C = �f g x: f x g



3.6. Curry's algorithm 43These have the following reduction rules:B E1 E2 E3 �!c E1 (E2 E3)C E1 E2 E3 �!c E1 E3 E2Exercise 39Show that with B, C de�ned as above:S (K E1) E2 = B E1 E2S E1 (K E2) = C E1 E2(where E1, E2 are any two combinatory expressions). 2Using B and C, one can further optimize the translation of �-expressions to com-binators by replacing expressions of the form S (K E1) E2 and S E1 (K E2) byB E1 E2 and C E1 E2.3.6 Curry's algorithmCombining the various optimizations described in the previous section leads toCurry's algorithm for translating �-expressions to combinatory expressions. Thisalgorithm consists in using the de�nition of (E)C given on page 38, but wheneveran expression of the form S E1 E2 is generated one tries to apply the followingrewrite rules:1. S (K E1) (K E2) �! K (E1 E2)2. S (K E) I �! E3. S (K E1) E2 �! B E1 E24. S E1 (K E2) �! C E1 E2If more than one rule is applicable, the earlier one is used. For example,S (K E1) (K E2) is translated to K (E1 E2), not to B E1 (K E2).Exercise 40Show that using Curry's algorithm, Y is translated to the combinator:S (C B (S I I)) (C B (S I I))2Exercise 41Show that: S (S (K S) (S (K K) I)) (K (S I I)) = C B (S I I)2



44 Chapter 3. Combinators3.7 Turner's algorithmIn a second paper, Turner proposed that Curry's algorithm be extended to useanother new primitive combinator called S0 [35]. This is de�ned by:LET S0 = �c f g x: c (f x) (g x)and has the reduction rule:S0 C E1 E2 E3 �!c C (E1 E3) (E2 E3)where C, E1, E2, E3 are arbitrary combinatory expressions. The reason why `C' isused is that S0 has the property that if C is a combinator (i.e. contains no variables),then for any E1 and E2:��x: C E1 E2 = S0 C (��x: E1) (��x: E2)This can be shown using extensionality. Clearly x is a variable not occurring in��x: C E1 E2 or S0 C (��x: E1) (��x: E2) (exercise: why?), so it is su�cient toshow: (��x: C E1 E2) x = (S0 C (��x: E1) (��x: E2)) xFrom the de�nition of ��x it easily follows that:��x: C E1 E2 = S (S (K C) (��x: E1)) (��x: E2)hence (��x: C E1 E2) x = (S (S (K C) (��x: E1)) (��x: E2) x= S (K C) (��x: E1) x ((��x: E2)) x)= K C x ((��x: E1) x) ((��x: E2) x)= C ((��x: E1) x) ((��x: E2)) x)But (S0 C (��x: E1) (��x: E2) x = C ((��x: E1) x) ((��x: E2)) x) also, and so:(��x: C E1 E2) x = (S0 C (��x: E1) (��x: E2)) xExercise 42Where in the argument above did we use the assumption that C is a combinator?2Turner's combinator S0 is useful when translating �-expressions of the form�Vn � � � V2 V1: E1 E2 (it will be seen shortly why it is convenient to number thebound variables in descending order). To see this, following Turner [35], temporarilyde�ne E0 to mean ��V1: EE00 to mean ��V2: (��V1: E)E000 to mean ��V3: (��V2: (��V1: E))...Recall that:(�Vn � � � V2 V1: E1 E2)C = ��Vn: ( � � � (��V2: (��V1: (E1 E2)C))) � � � )The next exercise shows that:��Vn: : : : ��V2: ��V1: (E1 E2)gets very complicated as n increases.



3.7. Turner's algorithm 45Exercise 43Show that:(i) ��x1: E1 E2 = S E01 E02(ii) ��x2: (��x1: E1 E2) = S (B S E001 ) E002(iii) ��x3: (��x2: (��x1: E1 E2)) = S (B S (B (B S) E0001 )) E0002(iv) ��x4: (��x3: (��x2: (��x1: E1 E2))) =S (B S (B (B S) (B (B (B S))) E00001 )) E000022The size of ��Vn: : : : ��V2: ��V1: (E1 E2) is proportional to the square of n. UsingS0, the size can be made to grow linearly with n:��x2: (��x1: E1 E2) = ��x2: S E01 E02= S0 S (��x2: E01) (��x2: E02)= S0 S E001 E002��x3: (��x2: (��x1: E1 E2)) = ��x3: S0 S E001 E002= S0 (S0 S) (��x3: E001 ) (��x3: E002 )= S0 (S0 S) E0001 E0002��x4: (��x3: (��x2: (��x1: E1 E2))) = ��x4: S0 (S0 S) E0001 E0002= S0 (S0 (S0 S)) (��x4: E0001 ) (��x4: E0002 )= S0 (S0 (S0 S)) E00001 E00002Just as B and C were introduced to simplify combinatory expressions of the formS (K E1) E2 and S E1 (K E2) respectively, Turner also devised B0 and C0 with ananalogous role for S0. The properties required are:S0 C (K E1) E2 = B0 C E1 E2S0 C E1 (K E2) = C0 C E1 E2(where C is any combinator, and E1, E2 are arbitrary combinatory expressions).This is achieved if B0 and C0 are de�ned by:LET B0 = �c f g x: c f (g x)LET C0 = �c f g x: c (f x) gClearly B0 and C0 will have the property that for arbitrary �-expressions C, E1,E2 and E3: B0 C E1 E2 E3 �!c C E1 (E2 E3)C0 C E1 E2 E3 �!c C (E1 E3) E2Exercise 44Show that for arbitrary �-expressions E1, E2 and E3:(i) S0 E1 (K E2) E3 = B0 E1 E2 E3



46 Chapter 3. Combinators(ii) S0 E1 E2 (K E3) = C0 E1 E2 E3(iii) S (B E1 E2) E3 = S0 E1 E2 E3(iv) B (E1 E2) E3 = B0 E1 E2 E3(v) C (B E1 E2) E3 = C0 E1 E2 E32Turner's algorithm for translating �-expressions to combinatory expressions is de-scribed by him [35] as follows:Use the algorithm of Curry but whenever a term beginning in S, B orC is formed use one of the following transformations if it is possible todo so S (B K A) B �! S0 K A B;B (K A) B �! B0 K A B;C (B K A) B �! C0 K A B:Here A and B stand for arbitrary terms as usual andK is any term com-posed entirely of constants. The correctness of the new algorithm canbe inferred from the correctness of the Curry algorithm by demonstrat-ing that in each of the above transformations the left- and right-handsides are extensionally equal. In each case this follows directly from thede�nitions of the combinators involved.Since Turner's pioneering papers appeared, many people have worked on improvingthe basic idea. For example, John Hughes has devised a scheme for dynamicallygenerating an `optimal' set of primitive combinators (called supercombinators) foreach program [20]. The idea is that the compiler will generate combinatory expres-sions built out of the supercombinators for the program being compiled. It willalso dynamically produce `microcode' to implement the reduction rules for thesesupercombinators. The result is that each program runs on a reduction machinetailored specially for it. Most current high-performance implementations of func-tional languages use supercombinators [1, 11]. Another avenue of research is to usecombinators based on the De Bruijn notation brie
y described on page 11. The`Categorical Abstract Machine' [26] uses this approach.



Chapter 4A Quick Overview of ML
There are two widely use descendents of the original ML: Standard ML and Caml1.These notes2 describe the former. Several implementations of Standard ML exist.These all support the same core language, but di�er in extensions, error messagedetails etc. AT&T's public domain \Standard ML of New Jersey" (SML/NJ) andthe commercial system PolyML3 are used for research applications in the CambridgeComputer Laboratory. The ML implementation on Thor for teaching is \EdinburghML" from the University of Edinburgh (with enhancements due to Arthur Normanof Cambridge). The di�erent outputs produced by SML/NJ and Edinburgh MLwill be sometimes shown, but the examples that follow are presented in the systemneutral style of Paulson's book (which is closer to Edinburgh ML than SML/NJ).4.1 Interacting with MLML is an interactive language. A common way to run it is inside a shell windowfrom emacs. The programs are then tested by `cutting and pasting' from the textwindow to the shell window.The two main things one does in ML are evaluate expressions and perform decla-rations.What follows is a session in which simple uses of various ML constructs are illus-trated. To make the session easier to follow, it is split into a sequence of boxedsub-sessions.4.2 ExpressionsThe top-level ML prompt is \-". As ML reads a phrase it prompts with \=" untila complete expression or declaration is found. Neither the initial prompt - nor theintermediate prompt = will normally be shown here, except in sessions which areincluded to illustrate the behaviour of particular ML implementations (e.g. the nexttwo boxes).SML/NJ is called \sml" on Computer Lab machines. The following seesion showsit being run and the expression 2+3 being evaluated.1Readers interested in Caml should consult the Web page http://pauillac.inria.fr/caml/.Caml is a lightweight language better suited than Standard ML for use on small machines. All theconstructs described in this course are in Caml, though the syntactic details di�er slightly fromStandard ML2This overview has evolved from the description of the original ML in Section 2.1 of:M.J.C. Gordon, A.J.R.G Milner and C.P. Wadsworth Edinburgh LCF: A MechanizedLogic of Computation, Lecture Notes in Computer Science 78, Springer-Verlag 1979.3PolyML was originally developed at the Cambridge Computer Laboratory and then licenced�rst to Imperial Software Technology and then to Abstract Hardware Limited. It has an integratedpersistant storage system (database) and is less memory hungry than Standard ML of New Jersey.47



48 Chapter 4. A Quick Overview of ML1woodcock% smlStandard ML of New Jersey, Version 0.93, February 15, 1993val it = () : unit-2+3;val it = 5 : int-it;val it = 5 : intAfter SML/NJ starts up it prints a message followed by val it = () : unit, (thiswill be explained later). It then prompts for user input with -, the user then input2+3; followed by a carriage return; ML then responded with val it = 5 : int, anew line, and then prompted again. This output shows that 2+3 evaluates to thevalue 5 of type int.The user then input it; followed by a carriage return, and the system respondedwith val it = 5 : int again. In general, to evaluate an expression e one inputse followed by a semi-colon and then a carriage return; the system then prints e'svalue and type in the format shown. The value of the last expression evaluated attop level is remembered in the identi�er it. This is shown explicitly in the outputfrom SML/NJ, but not in the output from Edinburgh ML shown in the followingbox (which, after Edinburgh ML has been run, has the same input as the precedingone). 2hammer.thor.cam.ac.uk% /group/clteach/acn/ml/unix/cmlFAM /group/clteach/acn/ml/unix/fam started on 02-Jan-1996 16:03:07(version 4.2.01 of Jan 25 1995)Image file /group/clteach/acn/ml/unix/cml.exp(written on 25-Jan-1995 15:42:47 by FAM version 4.2.01)[Loading Generic Heap...resexing...relocating by efff1ff8 (bytes)]Edinburgh ML for DOS/Win32s/Unix (C) Edinburgh University & A C Norman- 2+3;> 5 : int- it;> 5 : intUnless explicity indicated otherwise, the boxed sessions that follow use the formatillustrated by: 32+3;> val it = 5 : intit;> val it = 5 : intPrompts (-) are not shown, system output is indicated by > and the values ofexpressions are shown explicitly bound to it. Sometimes part of the output will beomitted (e.g. the type).4.3 DeclarationsThe declaration val x=e evaluates e and binds the resulting value to x.



4.4. Comments 494val x=2*3;> val x = 6 : intit=x;> val it = false : boolNotice that declarations do not a�ect it.Inputting e; at top level is actually treated as inputting the declaration let it = e;.The ML system (both SML/NJ and Edinburgh ML) initially binds it to a specialvalue (), which is the only value of the one-element type unit.To bind the variables x1; : : : ; xn simultaneously to the values of the expressionse1; : : : ; en one can perform:� either the declaration val x1=e1 and x2=e2 : : : and xn=en� or val (x1; x2; : : : ; xn)=(e1; e2; : : : ; en).These two declarations are equivalent. 5val y=10 and z=x;> val y = 10 : int> val z = 6 : intval (x,y) = (y,x);> val x = 10 : int> val y = 6 : intA declaration d can be made local to the evaluation of an expression e by evaluatingthe expression let d in e end. 6let val x=2 in x*y end;> val it = 12 : intx;> val it = 10 : int4.4 CommentsComments start with (* and end with *). They nest like parentheses, can extendover many lines and can be inserted wherever spaces are allowed. 7tr(* comments can't go in the middle of names *)ue;> Error: unbound variable or constructor: tr> Error: unbound variable or constructor: ue1 (* this comment is ignored *) < 2;> val it = true : bool(* Inside this comment (* another one is nested *) ! *)4.5 FunctionsTo de�ne a function f with formal parameter x and body e one performs thedeclaration: fun f x = e. To apply the function f to an actual parameter e oneevaluates the expression: f e.



50 Chapter 4. A Quick Overview of ML8fun f x = 2*x;> val f = fn : int -> intf 4;> val it = 8 : intFunctions are printed as fn in SML/NJ and Fn in Edinburgh ML, since a functionas such is not printable. After fn or Fn is printed, the type of the function is alsoprinted. Functions are printed as fn in these notes.Applying a function to an argument of the wrong type results in a typecheckingerror. The particular error message depends on the ML system used. In SML/NJ:9- f true;std_in:12.1-12.6 Error: operator and operand don't agree (tycon mismatch)operator domain: intoperand: boolin expression:f trueIn Edinburgh ML: 10- f true;Type clash in: (f true)Looking for a: intI have found a: boolApplication binds more tightly than anything else in the language; thus, for ex-ample, f 3 + 4 means (f 3)+4 not f(3+4). Functions of several arguments can bede�ned: 11fun add (x:int) (y:int) = x+y;> val add = fn : int -> int -> intadd 3 4;> val it = 7 : intval f = add 3;> val f = fn : int -> intf 4;> val it = 7 : intApplication associates to the left, so add 3 4 means (add 3)4. In the expressionadd 3, the function add is applied to 3; the resulting value is the function of typeint -> int which adds 3 to its argument. Thus add takes its arguments `one at atime'.Without the explicit typing of the formal parameters, ML cannot tell whether the+ is addition of integers or reals. The symbol + is overloaded. If the extra typeinformation is omitted, an error results. In SML/NJ: 12- fun add x y = x+y;std_in:5.16 Error: overloaded variable "+" cannot be resolvedIn Edinburgh ML: 13- fun add x y = x+y;Type checking error in: (syntactic context unknown)Unresolvable overloaded identifier: +Definition cannot be found for the type: ('a * 'a) -> 'a



4.6. Type abbreviations 51This kind of typechecking error is relatively rare. Much more common are errorsresulting from applying functions to arguments of the wrong type.The function add could alternatively have been de�ned to take a single argument ofthe product type int * int: 14fun add(x,y):int = x+y;> val add = fn : int * int -> intadd(3,4);> val it = 7 : intlet val z = (3,4) in add z end;> val it = 7 : intadd 3;> std_in:2.1-2.5 Error: operator and operand don't agree (tycon mismatch)> operator domain: int * int> operand: int> in expression:> add 3The error message shown here is the one generated by SML/NJ. Notice that thistime the result of the function has had its type given explicitly. In general, itis su�cient to explicitly type any subexpression as long as this disambiguates alloverloaded operators.As well as taking structured arguments (e.g. (3,4)) functions may also return struc-tured results. 15fun sumdiff(x:int,y:int) = (x+y,x-y);> val sumdiff = fn : int * int -> int * intsumdiff(3,4);> val it = (7,~1) : int * int4.6 Type abbreviationsTypes can be given names: 16type intpair = int * int;> type intpair definedfun addpair ((x,y):intpair) = x+y;> val addpair = fn : intpair -> int(3,5);> val it = (3,5) : int * int(3,5):intpair;> val it = (3,5) : intpairaddpair(3,5);> val it = 8 : intThe new name is simply an abbreviation; intpair and int*int are completely equiv-alent.



52 Chapter 4. A Quick Overview of ML4.7 Operators+ (addition) and * are built-in in�x operators. Users can de�ne their own in�xesusing infix (for left associative operators) and infixr for right associative ones.17infix op1;infixr op2;> infix op1> infixr op2This merely tells the parser to parse e1 op1 e2 as op1(e1,e2) and e1 op2 e2 asop2(e1,e2). 18fun (x:int) op1 (y:int) = x + y;> val op1 = fn : int * int -> int1 op1 2;> val it = 3 : intfun (x:int) op2 (y:int) = x * y;> val op2 = fn : int * int -> int2 op2 3;> val it = 6 : intAn in�x of precedence n can be created by using infix n instead of just infix (andinfixr n instead of just infixr). If the n is omitted a default precedence of 0 isassumed.The ML parser can be told to ignore the in�x status of an occurrence of an identi�erby preceding the occurrence with op. 19op1;> Error: nonfix identifier requiredop op1;> val it = fn : int * int -> intThe in�x status of an operator can be permanently removed using the directivenonfix. 201 + 2;> val it = 3 : intnonfix +;> nonfix +1 + 2;> Error: operator is not a function> operator: int> in expression:> 1 + : overloadedRemoving the in�x status of built-in operators is not recommended. Let's restoreit before chaos results: + is left-associative with precedence 6. 21infix 6 +;> infix 6 +



4.8. Lists 534.8 ListsIf e1; : : : ; en all have type ty then the ML expression [e1,: : :,en] has type (ty list).The standard functions on lists are hd (head), tl (tail), null (which tests whether alist is empty|i.e. is equal to []), and the in�xed operators :: (cons) and @ (append,or concatenation). 22val m = [1,2,(2+1),4];> val m = [1,2,3,4] : int list(hd m , tl m);> val it = (1,[2,3,4]) : int * int list(null m , null []);> val it = (false,true) : bool * bool0::m;> val it = [0,1,2,3,4] : int list[1, 2] @ [3, 4, 5, 6];> val it = [1,2,3,4,5,6] : int list[1,true,2];> std_in:3.1-3.10 Error: operator and operand don't agree (tycon mismatch)> operator domain: bool * bool list> operand: bool * int list> in expression:> true :: 2 :: nilAll the members of a list must have the same type (the error message shown is fromSML/NJ).4.9 StringsA sequence of characters enclosed between quotes (") is a string. 23"this is a string";> val it = "this is a string" : string"";> val it = "" : stringThe empty string is "". A string can be `exploded' into a list of single-characterstrings with the function explode. The inverse of this is implode, which concatenatesa list of single-character strings into a single string. 24explode;> val it = fn : string -> string listexplode "this is a string";> val it => ["t","h","i","s"," ","i","s"," ","a"," ","s","t","r","i","n","g"]> : string listimplode it;> val it = "this is a string" : string



54 Chapter 4. A Quick Overview of ML4.10 RecordsRecords are data-structures with named components. They can be contrasted withtuples whose components are determined by position.A record with �elds x1, : : : , xn whose values are v1, : : : , vn is created by evaluatingthe expression: {x1=v1, : : : , xn=vn}. 25val MikeData ={userid = "mjcg", sex = "male", married = true, children = 2};> val MikeData = {children=2,married=true,sex="male",userid="mjcg"}> : {children:int, married:bool, sex:string, userid:string}The type of {x1=v1, : : : , xn=vn} is {x1:�1, : : : , xn:�n}, where �i is the type of vi.The order in which record components are named does not matter: 26val MikeData' ={sex = "male", userid = "mjcg", children = 2, married = true};> val MikeData' = {children=2,married=true,sex="male",userid="mjcg"}> : {children:int, married:bool, sex:string, userid:string}MikeData = MikeData';> val it = true : boolThe component named x of a record can be extracted using the special operator#x. 27#children MikeData;> val it = 2 : intFunctions which access record components need to be explicitly told the type of therecord they are accessing, since there may be several types of records around withthe same �eld names. 28fun Sex p = #sex p;> Error: unresolved flex record in let patterntype persondata = {userid:string, children:int, married:bool, sex:string};> type persondata = {children:int, married:bool, sex:string, userid:string}fun Sex(p:persondata) = #sex p;> val Sex = fn : persondata -> stringA tuple (v1, : : : , vn) is equivalent to the record {1=v1, : : : , n=vn} (i.e. tuples inML are special cases of records). 29{1 = "Hello", 2 = true, 3 = 0};> val it = ("Hello",true,0) : string * bool * int#2 it;> val it = true : bool4.11 PolymorphismThe list processing functions hd, tl etc. can be used on all types of lists.



4.12. fn-expressions 5530hd [1,2,3];> val it = 1 : inthd [true,false,true];> val it = true : boolhd [(1,2),(3,4)];> val it = (1,2) : int * intThus hd has several types: above it is used with types (int list) -> int,(bool list) -> bool and (int * int) list -> (int * int). In fact if ty is anytype then hd has the type (ty list) -> ty. Functions, like hd, with many typesare called polymorphic, and ML uses type variables 'a, 'b, 'c etc. to represent theirtypes. 31hd;> val it = fn : 'a list -> 'aThe ML function map takes a function f (with argument type 'a and result type'b), and a list l (of elements of type 'a), and returns the list obtained by applyingf to each element of l (which is a list of elements of type 'b). 32map;> val map = fn : ('a -> 'b) -> 'a list -> 'b listfun add1 (x:int) = x+1;> val add1 = fn : int -> intmap add1 [1,2,3,4,5];> val it = [2,3,4,5,6] : int listmap can be used at any instance of its type: above, both 'a and 'b were instantiatedto int; below, 'a is instantiated to (int list) and 'b to bool. Notice that theinstance need not be speci�ed; it is determined by the type checker. 33map null [[1,2], [], [3], []];> val it = [false,true,false,true] : bool listA useful built-in operator is function composition o 34op o;> val it = fn : ('a -> 'b) * ('c -> 'a) -> 'c -> 'bfun add1 n = n+1and add2 n = n+2;> val add1 = fn : int -> int> val add2 = fn : int -> int(add1 o add2) 5;> val it = 8 : int4.12 fn-expressionsThe expression fn x => e evaluates to a function with formal parameter x andwith body e. Thus the declaration fun f x = e is equivalent to val f = fn x => e.Similarly fun f(x,y)z = e is equivalent to val f = fn (x,y) => fn z => e. In thetheory of functions, the symbol � is used instead of fn; expressions like fn x => e aresometimes called �-expressions, because they correspond to �-calulus abstractions�x:e (see Chapter 1).



56 Chapter 4. A Quick Overview of ML35fn x => x+1;> val it = fn : int -> intit 3;> val it = 4 : intThe higher order function map applies a function to each element of a list in turnand returns the list of results. 36map (fn x => x*x) [1,2,3,4];> val it = [1,4,9,16] : int listval doubleup = map (fn x => x@x);> val doubleup = fn : 'a list list -> 'a list listdoubleup [ [1,2], [3,4,5] ];> val it = [[1,2,1,2],[3,4,5,3,4,5]] : int list listdoubleup [];> val it = [] : 'a list list4.13 ConditionalsML has conditionals with syntax if e then e1 else e2 with the expected meaning.The truthvalues are true and false, both of type bool. 37if true then 1 else 2;> val it = 1 : intif 2<1 then 1 else 2;> val it = 2 : inte1 orelse e2 abbreviates if e1 then true else e2 and e1 andalso e2 abbreviatesif e1 then e2 else false.4.14 RecursionThe following de�nes the factorial function: 38fun fact n = if n=0 then 1 else n*fact(n-1);> val fact = fn : int -> intfact 5;> val it = 120 : intNotice that the compiler automatically detects recursive calls. In earlier versions ofML, recursion had to be explicitly indicated.Consider: 39fun f n : int = n+1;> val f = fn : int -> intfun f n = if n=0 then 1 else n*f(n-1);> val f = fn : int -> intf 3;> val it = 6 : int



4.15. Equality types 57Here f 3 results in the evaluation of 3*f(2). In earlier versions of ML, the �rstf would have been used, so that f(2) would have evaluated to 2+1=3, hence theexpression f 3 would have evaluated to 3*3=9.An alternative style of de�ning functions in Standard ML that avoids enforcedrecursion uses val and fn. 40fun f n : int = n+1;> val f = fn : int -> intval f = fn n => if n=0 then 1 else n*f(n-1);> val f = fn : int -> intf 3;> val it = 9 : intHere, the occurrence of f in n*f(n-1) is interpreted as the previous version of f.The keyword rec after val can be used to force a recursive interpretation: 41fun f n : int = n + 1;> val f = fn : int -> intval rec f = fn n => if n=0 then 1 else n*f(n-1);> val f = fn : int -> intf 3;> val it = 6 : intWith val rec the occurrence of f in n*f(n-1) is interpreted recursively.4.15 Equality typesSimple `concrete' values like integers, booleans and strings are easy to test forequality. Values of simple datatypes, like pairs and records, whose componentshave concrete types are also easy to test for equality. For example, (v1,v2) is equalto (v01,v02) if and only if v1 = v01 and v2 = v02. There is thus a large class of typeswhoses values can be tested for equality. However, in general it is undecidableto test the equality of functions. It is thus not possible to overload = to workproperly on all types. In old versions of ML, = was interpreted on functions bytesting the equality of the addresses in memory of the data-structure representingthe functions. If such a test yielded true then the functions were certainly equal,but many mathematically (i.e. extensionally) equal functions were di�erent usingthis interpretation of =.In Standard ML, those types whose values can be tested for equality are called\equality types" and are treated specially. Special type variables that are con-strained only to range over equality types are provided. These have the form ''�,whereas ordinary type variables have the form '�. The built-in function = hastype ''a * ''a -> bool. Starting from this, the ML typechecker can infer typescontaining equality type variables. 42fun Eq x y = (x = y);> val Eq = fn : ''a -> ''a -> boolfun EqualHd l1 l2 = (hd l1 = hd l2);> val EqualHd = fn : ''a list -> ''a list -> boolTrying to instantiate an equality type variable to a functional type results in anerror. In SML/NJ:



58 Chapter 4. A Quick Overview of ML43hd = hd;> Error: operator and operand don't agree (equality type required)> operator domain: ''Z * ''Z> operand: ('Y list -> 'Y) * ('X list -> 'X)> in expression:> = (hd,hd)EqualHd [hd] [hd];> Error: operator and operand don't agree (tycon mismatch)> operator domain: 'Z * 'Z> operand: ''Y list -> ''Y list -> bool> in expression:> - : overloaded EqualHdThe use of equality types in Standard ML is considered controversial: some peoplethink they are too messy for the bene�t they provide. It is possible that futureversions of ML will drop equality types.4.16 Pattern matchingFunctions can be de�ned by pattern matching. For example here is another de�ni-tion of the factorial function. 44fun fact 0 = 1| fact n = n * (fact(n-1));> val fact = fn : int -> intHere is the Fibonacci function: 45fun fib 0 = 0| fib 1 = 1| fib n = fib(n-1) + fib(n-2);> val fib = fn : int -> intSuppose function f is de�ned by: 46fun f p1 = e1| f p2 = e2...| f pn = enAn expression f e is evaluated by successively matching the value of e with thepatterns p1, p2, : : :, pn (in that order) until a match is found, say with pi. Then thevalue of f e is the value of ei. During the match variables in the patterns may bebound to components of e's value and then the variables have these values duringthe evaluation of ei. For example, evaluation fib 8 causes 8 to be matched with 0then 1, both of which fail, and then with n which succeeds, binding n to 8. Theresult is then the value of fib(8-1) + fib(8-2) which (after some recursive calls),evaluates to 21. 47fib 8;> val it = 21 : intPatterns can be quite elaborate and are typically composed with `constructors' (seeSection 4.19 below).The patterns in a function de�nition need not be exhaustive. In SML/NJ;



4.16. Pattern matching 5948- fun foo 0 = 0;std_in:33.1-33.13 Warning: match nonexhaustive0 => ...val foo = fn : int -> intIn Edinburgh ML: 49- fun foo 0 = 0;***Warning: Patterns in Match not exhaustive: 0=>0> val foo = Fn : int -> intIf a function is de�ned with a non-exhaustive match, and then applied to an argu-ment whose value doesn't match any pattern a special kind of run-time error calledan exception results (see Section 4.18).In SML/NJ: 50- foo 0;val it = 0 : int- foo 1;uncaught Match exception std_in:33.1-33.13In Edinburgh ML: 51- foo 1;Exception raised at top levelWarning: optimisations enabled -some functions may be missing from the traceException: Match raisedMessages warning that a match is non-exhaustive will sometimes be omitted fromthe output shown here.The built-in list-processing functions hd and tl can be de�ned by: 52fun hd(x::l) = x;> Warning: match nonexhaustive> val hd = fn : 'a list -> 'afun tl(x::l) = l;> Warning: match nonexhaustive> val tl = fn : 'a list -> 'a listThese de�nitions give exactly the same results as the built-in functions except on theempty list [], where they di�er in the exceptions raised { exceptions are describedin Section 4.18.if x is a variable and p a pattern, then the pattern x as p is a pattern that matchesthe same things as p, but has the additional e�ect that when a match succeeds thevalue matched is bound to x. Consider the function RemoveDuplicates:The wildcard \_" matches anything: 53fun null [] = true| null _ = false;> val null = fn : 'a list -> bool



60 Chapter 4. A Quick Overview of ML54fun RemoveDuplicates[] = []| RemoveDuplicates[x] = [x]| RemoveDuplicates(x1::x2::l) =if x1=x2 then RemoveDuplicates(x2::l)else x1::RemoveDuplicates(x2::l);>val RemoveDuplicates = fn : ''a list -> ''a listRemoveDuplicates[1,1,1,2,3,4,5,5,5,5,5,6,7,8,8,8];> val it = [1,2,3,4,5,6,7,8] : int listThe repetition (and extra list conses) of x2::l can be avoided as follows: 55fun RemoveDuplicates[] = []| RemoveDuplicates(l as [x]) = l| RemoveDuplicates(x1::(l as x2::_)) =if x1=x2 then RemoveDuplicates l else x1::RemoveDuplicates l;Incidently, note that (alas) duplicate variables are not allowed in patterns: 56fun RemoveDuplicates[] = []| RemoveDuplicates(l as [x]) = l| RemoveDuplicates(x::(l as x::_)) = RemoveDuplicates l| RemoveDuplicates(x::l) = x::RemoveDuplicates l;> Error: duplicate variable in pattern(s): xAnonymous functions (fn-expressions) can be de�ned by pattern matching usingthe syntax: fn p1 => e1 | : : : | pn => en 57fn [] => "none" | [_] => "one" | [_,_] => "two" | _ => "many";> val it = fn : 'a list -> string(it [], it[true], it[1,2], it[1,2,3]);> val it = ("none","one","two","many") : string * string * string * stringPatterns can be constructed out of records, with \..." as a wildcard. 58fun IsMale({sex="male",...}:persondata) = true| IsMale _ = false;> val IsMale = fn : persondata -> boolIsMale MikeData;> val it = true : boolAn alternative de�nition is: 59fun IsMale({sex=x,...}:persondata) = (x = "male");A more compact form of this is allowed. 60fun IsMale({sex,...}:persondata) = (sex = "male");The �eld name sex doubles as a variable. Think of a pattern {� � �,v,� � �} as abbre-viating {� � �,v=v,� � �}.4.17 The case constructThe case construct permits one to compute by cases on an expression of a datatype.The expression case e of p1 => e1 | : : : | pn => en, is an equivalent form for theapplication (fn p1 => e1 | : : : | pn => en) e.



4.18. Exceptions 614.18 ExceptionsSome standard functions raise exceptions at run-time on certain arguments. Whenthis happens a special kind of value (called an exception packet) is propagated whichidenti�es the cause of the exception. These packets have names which usually re
ectthe function that raised the exception; they may also contain values. 61hd(tl[2]);> uncaught exception Hd1 div 0;> uncaught exception Div(1 div 0)+1000;> uncaught exception DivExceptions must be declared using the keyword exception; they have type exn.Exceptions can be explicitly raised by evaluating an expression of the form raise ewhere e evaluates to an exception value. Exceptions are printed slightly di�erentlyin SML/NJ and Edinburgh ML. In SML/NJ: 62- exception Ex1;exception Ex2;exception Ex1exception Ex2- [Ex1,Ex2];val it = [Ex1(-),Ex2(-)] : exn list- raise hd it;uncaught exception Ex1In Edinburgh ML: 63exception Ex1;exception Ex2;> type exncon Ex1 = - : exn> type exncon Ex2 = - : exn- [Ex1,Ex2];> [-,-] : exn list- raise hd it;Exception raised at top levelWarning: optimisations enabled -some functions may be missing from the traceException: Ex1 raisedAn exception packet constructor called name and which constructs packets con-taining values of type ty is declared by exception name of ty. 64exception Ex3 of string;> exception Ex3Ex3;> val it = fn : string -> exnraise Ex3 "foo";> uncaught exception Ex3



62 Chapter 4. A Quick Overview of MLThe type exn is a datatype (see Section 4.19 below) whose constructors are theexceptions. It is the only datatype that can be dynamically extended. All otherdatatypes have to have all their constructors declared at the time when the datatypeis declared.Because exn is a datatype, exceptions can be used in patterns like other constructors.This is useful for handling exceptions.An exception can be trapped (and its contents extracted) using an exception han-dler. An important special case is unconditional trapping of all exceptions. Thevalue of the expression e1 handle _ => e2 is that of e1, unless e1 raises an exception,in which case it is the value of e2. 65hd[1,2,3] handle _ => 0;> val it = 1 : inthd[] handle _ => 0;> val it = 0 : inthd(tl[2]) handle _ => 0;> val it = 0 : int1 div 0 handle _ => 1000;> val it = 1000 : intThe function half, de�ned below, only succeeds (i.e. doesn't raise an exception) onnon-zero even numbers; on 0 it raises Zero, and on odd numbers it raises Odd. 66exception Zero; exception Odd;> exception Zero> exception Oddfun half n =if n=0 then raise Zeroelse letval m = n div 2inif n=2*m then m else raise Oddend;> val half = fn : int -> intSome examples of using half: 67half 4;> val it = 2 : inthalf 0;> uncaught exception Zerohalf 3;> uncaught exception Oddhalf 3 handle _ => 1000;> val it = 1000 : intFailures may be trapped selectively by matching the exception packet; this is doneby replacing the wildcard _ by a pattern. For example, if e raises Ex, then thevalue of e handle Ex1 => e1 | : : : | Exn => en is the value of ei if Ex equals Exiotherwise the handle-expression raises Ex.



4.19. Datatype declarations 6368half(0) handle Zero => 1000;> val it = 1000 : inthalf(1) handle Zero => 1000;> uncaught exception Oddhalf(0) handle Zero => 1000 | Odd => 1001;> val it = 1000 : inthalf(3) handle Zero => 1000 | Odd => 1001;> val it = 1001 : intInstead of having the two exceptions Zero and Odd, one could have a single kind ofexception containing a string. 69exception Half of string;> exception Halffun half n =if n=0 then raise Half "Zero"else letval m = n div 2inif n=2*m then m else raise Half "Odd"end;> val half = fn : int -> intA disadvantage of this approach is that the kind of exception is not printed whenthe exceptions are uncaught. 70half 0;> uncaught exception Halfhalf 3;> uncaught exception Halfhalf(0) handle Half "Zero" => 1000 | Half "Odd" => 1001;> val it = 1000 : inthalf(3) handle Half "Zero" => 1000 | Half "Odd" => 1001;> val it = 1001 : intAlternatively, one can match the contents of the exception packet to a variable, ssay, and then branch on the value matched to s. 71half(0) handle Half s => (if s="Zero" then 1000 else 1001);> val it = 1000 : inthalf(3) handle Half s => (if s="Zero" then 1000 else 1001);> val it = 1001 : int4.19 Datatype declarationsNew types (rather than mere abbreviations) can also be de�ned. Datatypes aretypes de�ned by a set of constructors which can be used to create objects of thattype and also (in patterns) to decompose objects of that type. For example, tode�ne a type card one could use the construct datatype:



64 Chapter 4. A Quick Overview of ML72datatype card = king | queen | jack | other of int;> datatype card> con jack : card> con king : card> con other : int -> card> con queen : cardSuch a declaration declares king, queen, jack and other as constructors and givesthem values. The value of a 0-ary constructor such as king is the constant valueking. The value of a constructor such as other is a constructor function that givenan integer value n produces other(n). 73king;> val it = king : cardother(4+5);> val it = other 9 : cardTo de�ne functions that take their argument from a concrete type, fn-expressionsof the form fn p1 => e1 |: : : | pn => en can be used. Such an expression denotesa function that given a value v selects the �rst pattern that matches v, say pi, bindsthe variables of pi to the corresponding components of the value and then evaluatesthe expression ei. For example, the values of the di�erent cards can be de�ned inthe following way: 74val value = fn king => 500| queen => 200| jack => 100| (other n) => 5*n;> val value = fn : card -> intAlternatively, and perhaps more lucidly, this could be de�ned using a fun declara-tion. 75fun value king = 500| value queen = 200| value jack = 100| value (other n) = 5*n;> val value = fn : card -> intThe notion of datatype is very basic and could enable us to build ML's elementarytypes from scratch. For example, the booleans could be de�ned simply by: 76datatype bool = true | false;> datatype bool> con false : bool> con true : booland the positive integers by: 77datatype int = zero | suc of int;> datatype int> con suc : int -> int> con zero : intIn a similar way, LISP S-expressions could be de�ned by:



4.20. Abstract types 6578datatype sexp = litatom of string| numatom of int| cons of sexp * sexp;> datatype sexp> con cons : sexp * sexp -> sexp> con litatom : string -> sexp> con numatom : int -> sexpfun car (cons(x,y)) = x and cdr (cons(x,y)) = y;> Warning: match nonexhaustive> val car = fn : sexp -> sexp> Warning: match nonexhaustive> val cdr = fn : sexp -> sexpval a1 = litatom "Foo" and a2 = numatom 1;> val a1 = litatom "Foo" : sexp> val a2 = numatom 1 : sexpcar(cons(a1,a2));> val it = litatom "Foo" : sexpcdr(cons(a1,a2));> val it = numatom 1 : sexpNotice the warning from the compiler that the patterns in the de�nitions of car andcdr are not exhaustive; these funtions are only partially speci�ed | namely onlyon lists built with cons (i.e. non-atoms). 79car (litatom "foo");> uncaught exception Match4.20 Abstract typesNew types can also be de�ned by abstraction. For example, a type time could bede�ned as follows: 80exception BadTime;> exception BadTimeabstype time = time of int * intwithfun maketime(hrs,mins) = if hrs<0 orelse 23<hrs orelsemins<0 orelse 59<minsthen raise BadTimeelse time(hrs,mins)and hours(time(t1,t2)) = t1and minutes(time(t1,t2)) = t2end;> type time> val maketime = fn : int * int -> time> val hours = fn : time -> int> val minutes = fn : time -> intThis de�nes an abstract type time and three primitive functions: maketime, hoursand minutes.In general, an abstract type declaration has the form abstype d with b end where dis a datatype speci�cation and b is a binding, i.e. the kind of phrase that can followval. Such a declaration introduces a new type, ty say, as speci�ed by the datatypedeclaration d. However, the constructors declared on ty by d are only availablewithin b. The only bindings that result from executing the abstype declaration arethose speci�ed in b.



66 Chapter 4. A Quick Overview of MLThus an abstract type declaration simultaneously declares a new type togetherwith primitive functions for the type; the representation datatype is not accessibleoutside the with-part of the declaration. 81val t = maketime(8,30);> val t = - : time(hours t , minutes t);> val it = (8,30) : int * intNotice that values of an abstract type are printed as -, since their representation ishidden from the user.4.21 Type constructorsBoth list and * are examples of type constructors; list has one argument (hence'a list) whereas * has two (hence 'a * 'b). Type constructors may have variousprede�ned operations associated with them, for example list has null, hd, tl,. . . etc. Because of pattern matching, it is not necessary to have any prede�nedoperations for *. One can de�ne, for example, fst and snd by. 82fun fst(x,y) = x and snd(x,y) = y;> val fst = fn : 'a * 'b -> 'a> val snd = fn : 'a * 'b -> 'bval p = (8,30);> val p = (8,30) : int * intfst p;> val it = 8 : intsnd p;> val it = 30 : intA type constructor set, that represents sets by lists without repetitions, can bede�ned in the following way: 83abstype 'a set = set of 'a listwithval emptyset = set[]fun isempty(set s) = null sfun member(_, set[]) = false| member(x, set(y::z)) = (x=y) orelse member(x, set z)fun add(x, set[]) = set[x]| add(x, set(y::z)) = if x=ythen set(y::z)else let val set l = add(x, set z) inset(y::l)endend> val emptyset = [] : 'a list> val isempty = fn : 'a set -> bool> val member = fn : ''a * ''a set -> bool> val add = fn : ''a * ''a set -> ''a setNote that the operation add ensures that no repetitions of elements occur in the listrepresenting the set. Here is an example using these sets:



4.22. References and assignment 6784val s = add(1,(add(2,(add(3,emptyset)))));> val s = - : int setmember(3,s);> val it = true : boolmember(5,s);> val it = false : bool4.22 References and assignmentReferences are `boxes' that can contain values. The contents of such boxes canbe changed using the assignment operator :=. The type ty ref is possessed byreferences containing values of type ty.References are created using the ref operator. This takes a value of type ty to avalue of type ty ref. 4 The expression x:=e changes the contents of the referencethat is the value of x to be the value of e. The value of this assignment expressionis the dummy value (); this is the unique value of the one-element type unit.Assignments are executed for a `side e�ect', not for their value.The contents of a reference can be extracted using the ! operator (error messagebelow from SML/NJ). 85x:=1;> std_in:7.1-7.4 Error: operator and operand don't agree (tycon mismatch)> operator domain: 'Z ref * 'Z> operand: int * int> in expression:> := (x,1)val x = ref 1 and y = ref 2;> val x = ref 1 : int ref> val y = ref 2 : int refx;> val it = ref 1 : int refx:=6;> val it = () : unitx;> val it = ref 6 : int ref!x;> val it = 6 : intReferences should only be resorted to in exceptional circumstances as experienceshows that their use increases the probability of errors.4.23 IterationHere is an iterative de�nition of fact using two local references: count and result.4There are some horrible subtleties associated with the types of references, which are ignoredhere. The treatment of references in ML is currently in a state of 
ux.



68 Chapter 4. A Quick Overview of ML86fun fact n =let val count = ref n and result = ref 1in while !count > 0do (result := !count * !result;count := !count-1);!resultend;> val fact = fn : int -> intfact 6;> val it = 720 : intThe semicolon denotes sequencing. When an expression e1;: : :;en is evaluated, eachei is evaluated in turn and the value of the entire expression is the value of en.Evaluating while e do c consists in evaluating e and if the result is true c is eval-uated for its side-e�ect and then the whole process repeats. If e evaluates to false,then the evaluation of while e do c terminates with value ().4.24 Programming in the largeSophisticated features for structuring collections of declarations (`programming inthe large') are provided in Standard ML (but not in earlier versions of ML). Theseare designed to support the use of ML for large scale system building. They accountfor much of the complexity of the language.Standard ML of New Jersey is implemented in itself and makes extensive use ofthese features. Edinburgh ML does not implement them.The concepts of structures, signatures and functors, which provide the structuringconstructs for programming in the large, are not covered in this course (hence theirabsence from Edinburgh ML on Thor will not be a problem).



Chapter 5Case study 1: parsing
The lexical analysis and parsing programs described here are intended to illustratefunctional programming methods and ML, rather than parsing theory. The style ofparsing presented is quite reasonable for small lightweight ad hoc parsers, but wouldbe inappropriate for large applications, which should be handled using heavyweightparser generators like YACC.15.1 Lexical analysisLexical analysis converts sequences of characters into sequences of tokens (also called\words" or \lexemes").For us, a token will be either a number (sequence of digits), an identi�er (a sequenceof letters or digits starting with a letter) or a `special symbol' such as +, *, <, ==>or ++. Special symbols are speci�ed by a table (see below).A number is a sequence of digits, The ML in�x operator <= is overloaded and canbe applied to strings. If x and y are single-character strings, then x<=y just testswhether the ASCII code of x is less then or equal to that of y. Thus a single-character string representing a digit can be characterised by the predicate IsDigit:87fun IsDigit x = "0" <= x andalso x <= "9";> val IsDigit = fn : string -> boolA letter can similarly be characterised by making use of the fact that the ASCIIcodes of all lower case letters are adjacent and also the codes of all upper case lattersare adjacent. 88fun IsLetter x =("a" <= x andalso x <= "z") orelse ("A" <= x andalso x <= "Z");> val IsLetter = fn : string -> boolToken are separated by `separators', which will be taken to be spaces, newlines andtabs, hence: 89fun IsSeparator x = (x = " " orelse x = "\n" orelse x = "\t");> val IsSeparator = fn : string -> boolSingle characters that are not digits, letters or separators will be assumed to bespecial symbols. Multi-character special symbols (e.g. ==>) are considered later.The input is assumed to be supplied as a list of single-charater strings. Lexicalanalysis consists on converting such a list to a list of tokens.Suppose the input just consists of numbers separated by separators. A functionTokenise that did lexical analysis for just this case would need to repeatedly remove1There is an ML based version of YACC. The parser for SML/NJ uses this.69



70 Chapter 5. Case study 1: parsingdigits until a non-digit (e.g. a separator) was reached, and then implode the removedcharacters into a string representing a token and add that to the list of tokens.The function GetNumber takes a list, l say, of single-character strings and returns apair consisting of (i) a string representing a number consisting of all the digits inl up to the �rst non-digit and (ii) the remainder of l after these digits have beenremoved. It is convenient to de�ne GetNum using an auxiliary function GetNumAuxthat has an extra argument buf for accumulating a (reversed) list of charactersmaking up the number. 90fun GetNumAux buf [] = (implode(rev buf), [])| GetNumAux buf (l as (x::l')) =if IsDigit x then GetNumAux (x::buf) l'else (implode(rev buf),l);> val GetNumAux = fn : string list -> string list -> string * string listGetNumAux ["a","b","c"] ["1","2","3"," ","4","5"];> val it = ("cba123",[" ","4","5"]) : string * string listThen GetNum is simply de�ned by: 91val GetNum = GetNumAux [];> val GetNum = fn : string list -> string * string listGetNum ["1","2","3"," ","4","5"];> val it = ("123",[" ","4","5"]) : string * string listThe de�nition of GetNumAux could have been localised to GetNum usinglocal� � �in� � �end.Notice that if the list argument of GetNum doesn't start with a number, then theempty token (implode[]) will be returned. 92GetNum ["a","0","1"];> val it = ("",["a","0","1"]) : string * string listThis problem will go away when we improve the code later on.Identi�ers can be lexically analysed by similar programs: 93fun GetIdentAux buf [] = (implode(rev buf), [])| GetIdentAux buf (l as (x::l')) =if IsLetter x orelse IsDigit xthen GetIdentAux (x::buf) l'else (implode(rev buf),l);> val GetIdentAux = fn : string list -> string list -> string * string listGetIdentAux ["a","b","c"] ["e","f","g","4","5"," ","6","7"];> val it = ("cbaefg45",[" ","6","7"]) : string * string listAn identi�er must start with a letter, so GetIdent is de�ned by: 94exception GetIdentErr;> exception GetIdentErrfun GetIdent (x::l) =if IsLetter x then GetIdentAux [x] l else raise GetIdentErr;> val GetIdent = fn : string list -> string * string listThe lexical analysis of numbers and identi�ers can be streamlined and uni�ed byde�ning a single general function GetTail that takes a predicate as an argument



5.1. Lexical analysis 71and then uses this to test whether to keep accumulating characters in buf or toterminate. Then GetNumAux corresponds to GetTail IsDigit and GetIdentAux toGetTail (fn x => IsLetter x orelse IsDigit x).The de�nition of GetTail is similar to that of GetNumAux and GetIdentAux. 95fun GetTail p buf [] = (implode(rev buf),[])| GetTail p buf (l as x::l') =if p x then GetTail p (x::buf) l' else (implode(rev buf),l);> val GetTail = fn> : (string->bool) -> string list -> string list -> string * string listUsing GetTail, a function to get the next token is easy to de�ne: 96fun GetNextToken [x] = (x,[])| GetNextToken (x::l) =if IsLetter xthen GetTail (fn x => IsLetter x orelse IsDigit x) [x] lelse if IsDigit xthen GetTail IsDigit [x] lelse (x,l);> val GetNextToken = fn : string list -> string * string listTo lexically analyse a list of characters, GetNextToken is repeatedly called and sep-arators are discarded. 97fun Tokenise [] = []| Tokenise (l as x::l') =if IsSeparator xthen Tokenise l'else let val (t,l'') = GetNextToken lin t::(Tokenise l'') end;> val Tokenise = fn : string list -> string listTokenise (explode "123abcde1][ ] 56a");> val it = ["123","abcde1","]","[","]","56","a"] : string listTokenise does not handle multi-character special symbols. These will be speci�ed bya table, represented as a list of pairs, that shows which characters can follow eachinitial segment of each special symbol (such a table represents a state-transitionfunction for an automaton). For example, suppose the special symbols are <=, <<,=>, =, ==> and ->, then the table would be: 98[("<", ["=","<"]),("=", [">","="]),("-", [">"]),("==", [">"])]This is not fully general because if ==> is a special symbol, then the representationabove forces == to be also. A fully general treatment of special symbols is left as anexercise.Some utility functions are needed. Mem tests whether an element occurs in a list.99fun Mem x [] = false| Mem x (x'::l) = (x=x') orelse Mem x l;> val Mem = fn : ''a -> ''a list -> boolMem 3 [1,2,3,4,5,6,7];> val it = true : boolMem 9 [1,2,3,4,5,6,7];> val it = false : bool



72 Chapter 5. Case study 1: parsingNotice the equality types.Get looks up the list of possible successors of a given string in a special-symbol table.100fun Get x [] = []| Get x ((x',l)::rest) = if x=x' then l else Get x rest;> val Get = fn : ''a -> (''a * 'b list) list -> 'b listGet "=" [("<",["=","<"]), ("=",[">","="]), ("-",[">"]), ("==",[">"])];> val it = [">","="] : string listGet "?" [("<",["=","<"]), ("=",[">","="]), ("-",[">"]), ("==",[">"])];> val it = [] : string listThe function GetSymbol takes a special-symbol table and a token and then extendsthe token by removing characters from the input until the table says that no furtherextension is possible. 101fun GetSymbol spectab tok [] = (tok,[])| GetSymbol spectab tok (l as x::l') =if Mem x (Get tok spectab) then GetSymbol spectab (tok^x) l'else (tok,l);> val GetSymbol = fn> : (string * string list) list> -> string -> string list -> string * string listThe function GetNextToken can be enhanced to handle special symbols. It needs totake a special-symbol table as an argument. 102fun GetNextToken spectab [x] = (x,[])| GetNextToken spectab (x::(l as x'::l')) =if IsLetter xthen GetTail (fn x => IsLetter x orelse IsDigit x) [x] lelse if IsDigit xthen GetTail IsDigit [x] lelse if Mem x' (Get x spectab)then GetSymbol spectab (implode[x,x']) l'else (x,l);> val GetNextToken = fn> : (string * string list) list -> string list -> string * string listNow Tokenise can be enhanced to use the new GetNextToken. 103fun Tokenise spectab [] = []| Tokenise spectab (l as x::l') =if IsSeparator xthen Tokenise spectab l'else let val (t,l'') = GetNextToken spectab lin t::(Tokenise spectab l'') end;> val GetNextToken = fn> : (string * string list) list -> string list -> string * string listHere is a particular table: 104val SpecTab = [("=", ["<",">","="]),("<", ["<",">"]),(">", ["<",">"]),("==", [">"])];> val SpecTab => [("=",["<",">","="]),("<",["<",">"]),(">",["<",">"]),("==",[">"])]> : (string * string list) listTokenise SpecTab (explode "a==>b c5 d5==ff+gg7");> val it = ["a","==>","b","c5","d5","==","ff","+","gg7"] : string list



5.2. Simple special cases of parsing 73In the next section the lexical analyset Lex will be used. 105val Lex = Tokenise SpecTab o explode;> val Lex = fn : string -> string listLex "a==>b c5 d5==ff+gg7";> val it = ["a","==>","b","c5","d5","==","ff","+","gg7"] : string list5.2 Simple special cases of parsingBefore giving a complete parser, some special cases are considered.5.2.1 Applicative expressionsExamples of applicative expressions are x, f x, (f x) y, f(f x), f(g x)(h x) etc.Parse trees for such expression can be represented by the recursive datatype tree.106datatype tree = Atom of string | Comb of tree * tree;> datatype tree> con Atom : string -> tree> con Comb : tree * tree -> treeRight associative without bracketsSuppose for the moment: (i) the input is supplied as a list of atoms, (ii) brackets areignored and (ii) application is taken to be right associative. Then a simple parseris: 107fun Parse [next] = Atom next| Parse (next::rest) = Comb(Atom next, Parse rest);> Warning: match nonexhaustive> val Parse = fn : string list -> treeParse["f", "x", "y", "z"];> val it = Comb (Atom "f",Comb (Atom "x",Comb (Atom "y",Atom "z"))) : treeLeft associative without bracketsThe usual convention is for application to be left associative. A parser for this isonly slightly more complex.To parse f x y z the following intermediate parsings need to be done:1. f is parsed to Atom "f"2. f x is parsed to Comb(Atom "f", Atom "x")3. f x y is parsed to Comb(Comb(Atom "f", Atom "x"), Atom "y")Intermediate parse trees will be `passed forward' via a variable t of an auxiliaryfunction Parser.



74 Chapter 5. Case study 1: parsing108fun Parser t [] = t| Parser t (next::rest) = Parser (Comb(t, Atom next)) rest;> val Parser = fn : tree -> string list -> treefun Parse [next] = Atom next| Parse (next::rest) = Parser (Atom next) rest;> Warning: match nonexhaustive> val Parse = fn : string list -> treeParse["f", "x", "y", "z"];> val it = Comb (Comb (Comb (Atom "f",Atom "x"),Atom "y"),Atom "z") : treeRight associative with bracketsBrackets will now be considered. To parse � � � (e) � � �, the parser must be calledrecursively inside the brackets to parse e, and then the presence of the clos-ing bracket must be checked. Such a recursive call needs to return the parsetree for e and the rest of the input list. Thus the type of Parse changes tostring list -> tree * string list.If the parser encounters an unexpected closing bracket then it returns the parse treeso far and the rest of the input. For example, ["x","y",")","z"] should parse to(Comb(Atom "x", Atom "y"), [")","z"]).However, there may be no \parse tree so far" and to handle this case it is convenientto add an empty tree Nil to the type tree. 109datatype tree = Nil | Atom of string | Comb of tree * tree;> datatype tree> con Atom : string -> tree> con Comb : tree * tree -> tree> con Nil : treeRight associative function application is considered �rst. A �rst attempt is: 110exception MissingClosingBracket;> exception MissingClosingBracketfun Parse [] = (Nil,[])| Parse (rest as ")"::_) = (Nil,rest)| Parse ("("::rest) =(case Parse restof (t, ")"::rest') => let val (t',rest'') = Parse rest'in (Comb(t,t'), rest'') end| _ => raise MissingClosingBracket)| Parse (next::rest) = let val (t,rest') = Parse restin (Comb(Atom next,t),rest') end;> val Parse = fn : string list -> tree * string listThis doesn't quite work: 111Parse ["x"];> val it = (Comb (Atom "x",Nil),[]) : tree * string listParse ["x","y","z"];> val it = (Comb (Atom "x",Comb (Atom "y",Comb (Atom "z",Nil))),[])Parse ["x","y",")","z"];> val it =(Comb (Atom "x",Comb (Atom "y",Nil)),[")","z"]) : tree * string listThe empty parse tree Nil returned when Parse exits needs to be removed. This iseasily done by replacing Comb by MkComb, where:



5.2. Simple special cases of parsing 75112fun MkComb(t,Nil) = t| MkComb p = Comb p;Then Parse is rede�ned: 113fun Parse [] = (Nil,[])| Parse (rest as ")"::_) = (Nil,rest)| Parse ("("::rest) =(case Parse restof (t, ")"::rest') => let val (t',rest'') = Parse rest'in (MkComb(t,t'), rest'') end| _ => raise MissingClosingBracket)| Parse (next::rest) = let val (t,rest') = Parse restin (MkComb(Atom next,t),rest') end;> val Parse = fn : string list -> tree * string listParse now works on well-formed expressions. 114Parse ["x"];> val it = (Atom "x",[]) : tree * string listParse ["x","y","z"];> val it => (Comb (Atom "x",Comb (Atom "y",Atom "z")),[]) : tree * string listParse ["x","y",")","z"];val it = (Comb (Atom "x",Atom "y"),[")","z"]) : tree * string listHowever, the empty parse tree Nil can still be generated, but only in pathologicalsituations. 115Parse ["(",")"];> val it = (Nil,[]) : tree * string listParse ["(",")","a"];> val it = (Comb (Nil,Atom "a"),[]) : tree * string listParse ["(",")","(",")"];> val it = (Nil,[]) : tree * string listParse [")","x"];> val it = (Nil,[")","x"]) : tree * string listThis might be acceptable, but probably it is better to distinguish the �rst threeexamples from the last. In the modi�ed version of Parse that follows, () parses tothe `empty atom' Atom "", where "" is the empty string.Here is the revised de�nition of Parse: 116fun Parse [] = (Nil,[])| Parse ("("::")"::rest) = let val (t,rest') = Parse restin (MkComb(Atom "",t),rest') end| Parse (rest as ")"::_) = (Nil,rest)| Parse ("("::rest) =(case Parse restof (t, ")"::rest') => let val (t',rest'') = Parse rest'in (MkComb(t,t'), rest'') end| _ => raise MissingClosingBracket)| Parse (next::rest) = let val (t,rest') = Parse restin (MkComb(Atom next,t),rest') end;> val Parse = fn : string list -> tree * string listThe pathological examples now become:



76 Chapter 5. Case study 1: parsing117Parse ["(",")"];> val it = (Atom "",[]) : tree * string listParse ["(",")","a"];> val it = (Comb (Atom "",Atom "a"),[]) : tree * string listParse ["(",")","(",")"];> val it = (Comb (Atom "",Atom ""),[]) : tree * string listThe second, fourth and �fth clauses of this latest de�nition of Parse contain somerepetition. This can be mitigated by de�ning an auxiliary function for building acombination. BuildComb parse t inp builds a combination whose operator is t andwhose operand is got by calling the supplied parser function parse on the suppliedinput inp. The combination and the remainder of the input are returned. 118fun BuildComb parse t inp =let val (t', rest) = parse inpin (MkComb(t,t'), rest) end;> val BuildComb = fn : ('a -> tree * 'b) -> tree -> 'a -> tree * 'bfun Parse [] = (Nil,[])| Parse ("("::")"::rest) = BuildComb Parse (Atom "") rest| Parse (rest as ")"::_) = (Nil,rest)| Parse ("("::rest) =(case Parse restof (t, ")"::rest') => BuildComb Parse t rest'| _ => raise MissingClosingBracket)| Parse (next::rest) = BuildComb Parse (Atom next) rest;Notice how a mutual recursion is set up between Parse and BuildComb via the func-tion argument parse. This technique will be exploited again.The messy fourth clause of Parse could be simpli�ed with another auxiliary functionthat called a supplied parser and then checked for a given input symbol. 119fun CheckSym parse sym exn inp =case Parse inpof (t, next::rest) => if next=sym then BuildComb parse t restelse raise exn| _ => raise exn;> val CheckSym = fn> : (string list -> tree * 'a)> -> string -> exn -> string list -> tree * 'afun Parse [] = (Nil,[])| Parse ("("::")"::rest) = BuildComb Parse (Atom "") rest| Parse (rest as ")"::_) = (Nil,rest)| Parse ("("::rest) = CheckSym Parse ")" MissingClosingBracket rest| Parse (next::rest) = BuildComb Parse (Atom next) rest;Whether or not this is an improvement is a matter of taste.Left associative with bracketsThe technique used above { passing intermediate parse trees as arguments to anauxiliary function { will be used to parse left-associating applicative expressionswith brackets. Here is a �rst attempt.



5.2. Simple special cases of parsing 77120fun Parser t [] = (t, [])| Parser t ("("::")"::rest) = Parser (Comb(Atom "",t)) rest| Parser t (inp as ")"::_) = (t, inp)| Parser t [next] = (Comb(t,Atom next), [])| Parser t ("("::rest) =(case Parser Nil restof (t', ")"::rest') => Parser (Comb(t,t')) rest'| _ => raise MissingClosingBracket)| Parser t (next::rest) = Parser (Comb(t,Atom next)) rest;val Parse = Parser Nil;This has a familiar problem with Nil 121Parse ["x"];> val it = (Comb (Nil,Atom "x"),[]) : tree * string listParse ["x","(","y","z",")","w"];> val it => (Comb> (Comb> (Comb (Nil,Atom "x"),> Comb (Comb (Nil,Atom "y"),Atom "z")),Atom "w"),> []) : tree * string listThe solution is to use MkComb instead of Comb, where: 122fun MkComb(Nil,t2) = t2| MkComb p = Comb p;fun Parser t [] = (t, [])| Parser t ("("::")"::rest) = Parser (Comb(Atom "",t)) rest| Parser t (inp as ")"::_) = (t, inp)| Parser t [next] = (MkComb(t,Atom next), [])| Parser t ("("::rest) =(case Parser Nil restof (t', ")"::rest') => Parser (MkComb(t,t')) rest'| _ => raise MissingClosingBracket)| Parser t (next::rest) = Parser (MkComb(t,Atom next)) rest;val Parse = Parser Nil;Then: 123Parse ["x"];> val it = (Atom "x",[]) : tree * string listParse ["x","(","y","z",")","w"];> val it = (Comb (Comb (Atom "x",Comb (Atom "y",Atom "z")),Atom "w"),[])> : tree * string list5.2.2 Precedence parsing of in�xesThe parsing of expressions like x + y � z will now be considered. Parse trees arerepresented by: 124datatype tree = Nil| Atom of string| BinOp of string * tree * tree;Binary operators are assumed to have a precedence given by a table represented asa list of pairs.



78 Chapter 5. Case study 1: parsing125val BinopTable =[("*", 7),("+", 6)];The function Lookup gets the precedence of an operator from such a table. 126fun Lookup ((s,n)::tab) x = if x=s then n else Lookup tab x;> Warning: match nonexhaustive> val Lookup = fn : (''a * 'b) list -> ''a -> 'bNote that the use of = forces an equality type. A string is an operator if it is assigneda precedence by the precedence table: 127fun InTable [] x = false| InTable ((s,n)::tab) x = (x=s orelse InTable tab x);> val InTable = fn : (''a * 'b) list -> ''a -> boolThe parser function Parser that follows is quite tricky, but uses many of the princi-ples that have already been illustrated. The main new ingredient are precedences.Assume * (i.e. the ASCII version of �) has higher precedence than =. Consider theparsing of x*y+z versus the parsing of x+y*z.For x*y+z the parser must proceed by:A1: �rst building BinOp("*", Atom "x", Atom "y")A2: then building Atom "z"A3: �nally building Binop("+", BinOp("*", Atom "x", Atom "y"), Atom "z")For x+y*z the parser must proceed by:B1: �rst building Atom "x"B2: then building BinOp("*", Atom "y", Atom "z")A3: �nally building Binop("+", Atom "x", BinOp("*", Atom "y", Atom "z"))In both cases, the left hand argument to the operator must be held whilst the righthand argument is parsed. This will be done by giving Parser an extra parameter:the parse-tree of the already-parsed argument (or Nil). This is the same ideaalready used to parse left associative applicative expressions (in that case, the extraparameter holding the already-parsed rator). The name of the extra parameter willbe t.Precedences are used to decide between A1{A3 and B1{B3. During the parsingthere is a current precedence of the parse. For example, if the data in BinopTableabove is used, then when parsing the second argument of + the precedence will be6 and when parsing the second argument of * the precedence will be 7.If the current precedence is m and a binary operator, op say, is encountered whoseprecedence is n, then:A: if m>n the expression just parsed is the second argument of the operator thatproceeds it (case A1{A3)B: if not m>n then the expression just parsed is the �rst argument of the already-encountered operator op (case B1{B3).



5.2. Simple special cases of parsing 79The expression just parsed will be the parse tree bound to the parse tree parameter(t) of Parser. So in case A above this parameter should be returned immediately.In case B, the parser should be called recursively to get the parse tree, t' say, ofthe second argument of op and then BinOp(op,t,t') returned.With this explanation, I hope the ML code to achieve this is comprehensible. 128fun Parser tab m t [] = (t, [])| Parser tab m t (inp as next::rest) =if InTable tab nextthen let val n = Lookup tab nextin if (m:int) > nthen (t, inp)else let val (t',rest') = Parser tab n Nil restin Parser tab m (BinOp(next,t, t')) rest' endendelse Parser tab m (Atom next) rest;> val Parser = fn> : (string * int) list> -> int -> tree -> string list -> tree * string listval Parse = Parser BinopTable 0 Nil;> val Parse = fn : string list -> tree * string listHere are some examples, 129Parse ["x","*","y","+","z"];> val it = (BinOp ("+",BinOp ("*",Atom "x",Atom "y"),Atom "z"),[])Parse ["x","+","y","*","z"];> val it = (BinOp ("+",Atom "x",BinOp ("*",Atom "y",Atom "z")),[])Parse ["x","+","y","+","z"];> val it = (BinOp ("+",Atom "x",BinOp ("+",Atom "y",Atom "z")),[])> : tree * string listThe last of these examples shows that binary operators are parsed as right asso-ciative. This is because > is used to compare the current precedence with that ofan encountered operator. Since m>m is always false, the e�ect is as though the theoperator on the left is not of higher precedence than the one on the right, henceright associativity. If > is changed to >= then operators will parse as left associative.The general case where some operators are left associative and some right associa-tive can be handled by giving operators both left and right precedences. This isconsidered in Section 5.3.A property of the above parser is that if next is not a known operator (i.e. is notin tab), then the last parse tree parsed (viz t) is thrown away. 130Parse ["x","y","z"];> val it = (Atom "z",[]) : tree * string listInstead of doing this, juxtaposed expressions without any intervening binary op-erators can be interpreted as function applications. First, parse trees have to beupdated to permit this. 131datatype tree = Nil| Atom of string| Comb of tree * tree| BinOp of string * tree * tree;Then the last line of Parser is modi�ed:



80 Chapter 5. Case study 1: parsing132fun Parser tab m t [] = (t, [])| Parser tab m t (inp as next::rest) =if InTable tab nextthen let val n = Lookup tab nextin if (m:int) > nthen (t, inp)else let val (t',rest') = Parser tab n Nil restin Parser tab m (BinOp(next,t, t')) rest' endendelse Parser tab m (Comb(t, Atom next)) rest;> val Parser = fn> : (string * int) list> -> int -> tree -> string list -> tree * string listval Parse = Parser BinopTable 0 Nil;> val Parse = fn : string list -> tree * string listThis almost works: 133Parse ["x","y","z"];> val it = (Comb (Comb (Comb (Nil,Atom "x"),Atom "y"),Atom "z"),[])The usual trick of using MkComb instead of Comb is needed. 134fun MkComb(Nil,t2) = t2| MkComb p = Comb p;fun Parser tab m t [] = (t, [])| Parser tab m t (inp as next::rest) =if InTable tab nextthen let val n = Lookup tab nextin if (m:int) > nthen (t, inp)else let val (t',rest') = Parser tab n Nil restin Parser tab m (BinOp(next,t, t')) rest' endendelse Parser tab m (MkComb(t, Atom next)) rest;val Parse = Parser BinopTable 0 Nil;This works. 135Parse ["x","y","z"];> val it = (Comb (Comb (Atom "x",Atom "y"),Atom "z"),[])Parse ["x","y","+","z"];> val it = (BinOp ("+",Comb (Atom "x",Atom "y"),Atom "z"),[])> : tree * string listNotice that function application binds tighter than binary operators, which is nor-mally what is wanted (though achieved here in a rather ad hoc and accidentalmanner). Two things that Parse doesn't handle are unary operators and brackets.The datatype of parse trees needs to be adjusted to handle unary operators. 136datatype tree = Nil| Atom of string| Comb of tree * tree| Unop of string * tree| BinOp of string * tree * tree;fun MkComb(Nil,t2) = t2| MkComb p = Comb p;



5.2. Simple special cases of parsing 81Unary operators need a precedence. If ~ has higher precedence than + then ~x+yparses as BinOp("+", Unop("~", Atom "x"), Atom "y"). If ~ has lower precedencethan + then ~x+y parses as Unop("~", BinOp("+", Atom "x", Atom "y")).The precendences of unary operators will be held in a table. 137val UnopTable =[("~", 8),("!", 5)];Parsing is now straightforward: both the unary and binory operator tables need tobe passed to Parser and an extra clauses is added to test for unary operators. 138fun Parser (tab as (utab,btab)) m t [] = (t, [])| Parser (tab as (utab,btab)) m t (inp as next::rest) =if InTable utab nextthen let val n = Lookup utab nextin let val (t',rest') = Parser tab n Nil restin Parser tab m (MkComb(t, Unop(next,t'))) rest' endendelse if InTable btab nextthen let val n = Lookup btab nextin if (m:int) > nthen (t, inp)else let val (t',rest') = Parser tab n Nil restin Parser tab m (BinOp(next,t, t')) rest' endendelse Parser tab m (MkComb(t, Atom next)) rest;> val Parse = Parser (UnopTable,BinopTable) 0 Nil;Here are some examples: 139Parse ["x"];> val it = (Atom "x",[]) : tree * string listParse ["~","x"];val it = (Unop ("~",Atom "x"),[]) : tree * string listParse ["~","x","+","y"];> val it = (BinOp ("+",Unop ("~",Atom "x"),Atom "y"),[])Parse ["!","x","+","y"];> val it = (Unop ("!",BinOp ("+",Atom "x",Atom "y")),[])Brackets can be handled in the same way as they were for (left associated) applica-tive expressions.



82 Chapter 5. Case study 1: parsing140fun Parser (tab as (utab,btab)) m t [] = (t, [])| Parser tab m t ("("::")"::rest) = Parser tab m (Comb(Atom "",t)) rest| Parser tab m t (inp as ")"::_) = (t, inp)| Parser tab m t ("("::rest) =(case Parser tab 0 Nil restof (t', ")"::rest') => Parser tab m (MkComb(t,t')) rest'| _ => raise MissingClosingBracket)| Parser (tab as (utab,btab)) m t (inp as next::rest) =if InTable utab nextthen let val n = Lookup utab nextin let val (t',rest') = Parser tab n Nil restin Parser tab m (MkComb(t, Unop(next,t'))) rest' endendelse if InTable btab nextthen let val n = Lookup btab nextin if (m:int) > nthen (t, inp)else let val (t',rest') = Parser tab n Nil restin Parser tab m (BinOp(next,t, t')) rest' endendelse Parser tab m (MkComb(t, Atom next)) rest;val Parse = Parser (UnopTable,BinopTable) 0 Nil;Here are some more examples. 141fun P s = Parse(explode s);> val P = fn : string -> tree * string listP "~(x+y)";> val it = (Unop ("~",BinOp ("+",Atom "x",Atom "y")),[])P "(~x)+y";> val it = (BinOp ("+",Unop ("~",Atom "x"),Atom "y"),[])P "(x+y)(zw)";> val it => (Comb (BinOp ("+",Atom "x",Atom "y"),Comb (Atom "z",Atom "w")),[])5.3 A general top-down precedence parserThe parser just given works by looking at the next item being input and then invokessome action, which depends on the item, to parse the rest of the input. A moregeneral scheme is to associate actions with items and then to have a simple parsingloop that consists in repeatedly reading an item and then executing the associatedaction.2A rather general datatype of parse trees is the following. 142datatype tree = Nil| Atom of string| Comb of tree * tree| Node of string * tree list;Unary operator expressions will parse to trees of the form Node(name,[arg]) andbinary operator expressions to trees of the form Node(name,[arg1,arg2]).The familiar MkComb hack will be needed. The empty parse tree Nil should neverarise as the right component of a combination (since left associative application willbe adopted), so an exception will be raised if it does.2The parser described here is loosely based on Vaughan Pratt's CGOL system (MIT, 1974).



5.3. A general top-down precedence parser 83143exception NilRightArg;fun MkComb(Nil,t2) = t2| MkComb(t1,Nil) = raise NilRightArg| MkComb(t1, t2) = Comb(t1,t2);The action associated with an item may involve recursive calls to the parser. Tohandle this the techique described earlier of passing a parse function as an argumentcan be used (see BuildComb and CheckSym described above). The type of parsefunctions is given by the the following type abbreviation. 144type parser = int -> tree -> string list -> tree * string list;Selected input items will have precedences and actions associated with them. Prece-dences are integers. Intuitively, actions are represented by a functions of typeparser. However, since an action might need to recursively invoke the whole parser,it should be passed a parsing function. In general, an action must be representedby a function of type parser->parser. A symbol table associates precedences andactions to strings. 145type symtab = string -> int * (parser -> parser);The main parsing function is now very simple, since all the detail has been hived-o�into the symbol table. 146fun Parser symtab (m:int) t [] = (t,[])| Parser symtab m t (inp as next::rest) =let val (n,parsefn) = symtab nextin if m>=n then (t,inp)else parsefn (Parser symtab) m t inpend;The parse stops on the empty string. If the input isn't empty, then the next itemis looked up in the symbol table. Left association will be taken as the default, so ifthe current precedence equals or exceeds the precedence of the next item, then theparse stops and the last item parsed (t) is returned, with the rest of the input. Ifthe current precedence is less than the precedence of the next item, then the parseaction associated with the next item in the symbol table is executed. The parsefunction Parser symtab is passed to the parse action, so that it can (if necessary)invoke the whole parse recursively.The de�nition of Parser intuitively has type symtab->parser. However, the actualtype assigned by ML is more general:('a-> int* ((int -> 'b -> 'a list -> 'b * 'a list)-> int -> 'b -> 'a list -> 'b * 'a list))-> int -> 'b -> 'a list -> 'b * 'a listTo constrain the types so that typechecking yields the intuitive type requires somecontortions. The following does it.



84 Chapter 5. Case study 1: parsing147fun Parser (tab:symtab) : parser =fn m=> fn t=> fn [] => (t,[])| (inp as next::rest) =>let val (n,parsefn) = tab nextin if m>=n then (t,inp)else parsefn (Parser tab) m t inpend;> val Parser = fn : symtab -> parserStandard ML seems rather worse than its predecessors in the 
exibility it allows forwriting type constraints.Notice that every input item is supposed to have an entry in the symbol table. Thekind of items that might be encountered include atoms, unary operators, binaryoperators, brackets (both opening and closing) and keywords associated with otherkinds of constructs (e.g. if, then, else, while).Generic functions to construct appropriate symbol table entries for these will nowbe described.The parser is initially invoked with a speci�c symbol table, precedence 0 and t setto Nil.The action associated with an atom, a say, is just to return Atom a. Since the atommay be the argument of some preceding function, whose parse tree will be boundto t, the parse tree that is actually returned by the parse action of an atom isMkComb(t,Atom a). 148fun ParseAtom parse p t (next::rest) =parse p (MkComb(t,Atom next)) rest;The action associated with an opening bracket is to recursively call the parser, checkthat there is a matching closing bracket, remove it, and then continue the parse.The function ParseBracket below is the action invoked by an opening bracket. Ittakes as a parameter the closing bracket it should check for. The parse tree t iscombined, using MkComb, with the parse tree t' of the stu� parsed inside of thebrackets. If t is Nil then the de�nition of MkComb ensures that t' becomes the new`last-thing-parsed' bound to t in the rest of the parse. However if t is not Nil, thenwhat is being parsed must have the form e1 (e2), where t is the parse tree of e1, soa combination is generated (namely, the parse tree of e1 applied to the parse treeof e2). 149exception MissingClosingBracket;fun ParseBracket close parse p t (_::rest) =let val (t', next'::rest') = parse 0 Nil restin if close=next' then parse p (MkComb(t,t')) rest'else raise MissingClosingBracketend;One can ensure that the parsing initiated by an opening bracket will terminate ata closing bracket by giving the closing bracket a su�ciently low precedence in thesymbol table (e.g. 0). Closing brackets should always terminate the current parse,so it is an error to try to execute the parse acton associated with them in the symboltable (the type of the symbol table is such that all items have some action { in thecase of closing brackets this should never actually be invoked). 150exception TerminatorParseErr;fun Terminator parse _ = raise TerminatorParseErr;



5.3. A general top-down precedence parser 85The next function provides a rather general way of specifying parser actions. Theidea is that to parse a given kind of construct the parser is called recursively to geteach constituent and then a node containing the resulting constituent parse trees isreturned. Each recursive invokation of the parser might require some local checkingfor keywords etc. For example, to parse if e then e1 else e2 the parser is calledto get the parse tree of the e, then the presence of then is checked (then must bea terminator) and it is removed, then the parser is invoked to get the parse treefor e1, then the presence of else is checked (else must be a terminator) and it itremoved, then the parser is invoked again to get the parse tree of e2 and �nally anode like Node("COND", [t,t1,t2]) is returned.The function ParseSeq below takes a constructor function mktree (for building anode), invokes the parser a number of times and then builds a parse tree by applyingmktree to the resulting constituent parse trees.Each invokation of the parser can be `wrapped around' with some extra checkingactivity. This is speci�ed by providing a list of functions of type parser->parser:applying such a function to a parser produces a new parser with the checking addedon. The simplest case of this is no checking, which is speci�ed by the identityfunction. 151fun Id x = x;ChkAft is used to modify a parser to check that a given keyword occurs after theparser is invoked. If p:parser is a parser function, then ChkAft s p is a parserfunction that �rst invokes p, then checks for s and deletes it if found and raises anexception otherwise. 152exception ChkAftErr;fun ChkAft s parse m t inp =case parse m t inpof (t', s'::rest) => if s=s' then (t',rest) else raise ChkAftErr;The function ParseSeq below takes a parse tree constructor function mktree of typetree * tree list -> tree for building a node. The �rst parse tree is the one passedas a parameter (t) to the parser and the list of parse trees are the constituents thathave just been parsed.Constructors for building parse trees of unary operator expressions and binary op-erator expressions are MkUnop and MkBinop, respectively.Suppose u is a unary operator and consider e1 u e2: this should parse toComb(ê1, Unop(u, ê2)), where ê1 and ê2 are the parse trees of e1 and e2, respec-tively. The parse tree constructor for unary operators is thus: 153fun MkUnop unop (t,tl) = MkComb(t,Node(unop,tl));Suppose b is a binary operator and consider e1 b e2: this should parse toBinop(b, ê1, ê2), where ê1 and ê2 are the parse trees of e1 and e2, respectively.The parse tree constructor for binary operators is thus: 154fun MkBinop bnop (t,tl) = Node(bnop,t::tl);The function ParseSeq also takes as a parameter a list of parser transformations(e.g. Id or ChkAft f) and returns a parser that recursively invokes the parser oncefor each parser transformation and then builds a parse tree using mktree applied



86 Chapter 5. Case study 1: parsingto the resulting constituent parse trees. For example, the parsing of conditionals isspeci�ed by:[ChkAft "then", ChkAft "else", Id]ParseSeq uses an auxiliary function ParseSeqAux that iterates down the list of sup-plied parse tree transformers invoking them in turn. The de�nitions are short, butadmittedly cryptic! To try to improve their readability type constraints have beenadded to constrain excess polymophism. Without the constraints, ParseSeq gets theincomprehensibly general type:(tree * 'a list -> 'b)-> int-> ((int -> 'b -> 'c list -> 'd)-> int -> tree -> 'c list -> 'a * 'c list) list-> (int -> 'b -> 'c list -> 'd) -> int -> tree -> 'c list -> 'dwith the constraints the type is:(tree * tree list -> tree)-> int -> (parser -> parser) list -> parser -> parserUnfortunately, as with Parser, it is necesary to go to some contortions to achievethis type constraint. Instead of writing:ParseSeq mktree m fl parse n t (_::rest) = ...It is necessary to writefun ParseSeq mktree m fl parse =fn n => fn t => fn (_::rest) => ...and then add the type constraints shown below. 155fun ParseSeqAux m [f:parser->parser] (parse:parser) n inp =let val (t, rest1) = f parse m Nil inpin ([t], rest1) end| ParseSeqAux m (f::fl : (parser->parser)list) parse n inp =let val (t, rest1) = f parse 0 Nil inpin let val (l,rest2) = ParseSeqAux m fl parse 0 rest1in (t::l, rest2) endend;fun ParseSeq mktree m (fl:(parser->parser)list) (parse:parser) : parser =fn n => fn t => fn (_::rest) =>let val (l,rest1) = ParseSeqAux m fl parse n restin parse n (mktree(t,l)) rest1 end;A symbol table is a function of type string -> int * (parser -> parser). Here isan example: 156fun SymTab "*" = (7, ParseSeq (MkBinop "MULT") 8 [Id])| SymTab "+" = (6, ParseSeq (MkBinop "ADD") 5 [Id])| SymTab "~" = (10, ParseSeq (MkUnop "MINUS") 9 [Id])| SymTab "if" = (10, ParseSeq (MkUnop "COND") 0 [ChkAft "then",ChkAft "else",Id])| SymTab "(" = (10, ParseBracket ")")| SymTab ")" = (0, Terminator)| SymTab "then" = (0, Terminator)| SymTab "else" = (0, Terminator)| SymTab x = (10, ParseAtom);



5.3. A general top-down precedence parser 87Notice that the left precedence of * is 7 which is the same as its right precedence.However, the left precedence of + is 6 which is greater than its right precedence5. The e�ect of this is to make * left associative and + right associative. In gen-eral, if the left precedence is less than or equal to the right precedence, then leftassociativity results, otherwise right associativity results.The complete parser P de�ned below uses the lexical analyser Lex and the symboltable above. Assume the code for Lex, as described in Section 5.1, is in the �leLex.ml. 157use "Lex.ml";val P = Parser SymTab 0 Nil o Lex;> val P = fn : string -> tree * string listP "f if x then y + z else y * z";> val it => (Comb> (Atom "f",> Node> ("COND",> [Atom "x",Node ("ADD",[Atom "y",Atom "z"]),> Node ("MULT",[Atom "y",Atom "z"])])),[])



88 Chapter 5. Case study 1: parsing



Chapter 6Case study 2: the �-calculus
It is assumed that integers and (unary and binary) operations over integers areprimitive. The type atom packages these up into a single datatype. Both unaryoperator atoms (Op1) and binary operator atoms (Op2) have a name and a semantics.158datatype atom = Num of int| Op1 of string * (int->int)| Op2 of string * (int*int->int);The application of an atomic operation to a value is de�ned by the function ConApply(see below). The application of a binary operator b to m results in a unary operatornamed mb expecting the other argument.To convert the argument m to a string that can be concatenated with the name of theoperator, a function to convert a number to a string giving its decimal representationis de�ned. 159fun StringOfNum 0 = "0"| StringOfNum 1 = "1"| StringOfNum 2 = "2"| StringOfNum 3 = "3"| StringOfNum 4 = "4"| StringOfNum 5 = "5"| StringOfNum 6 = "6"| StringOfNum 7 = "7"| StringOfNum 8 = "8"| StringOfNum 9 = "9"| StringOfNum n =(StringOfNum(n div 10)) ^ (StringOfNum(n mod 10));StringOfNum 1574;> val it = "1574" : stringNow ConApply can be de�ned. 160fun ConApply(Op1(_,f1), Num m) = Num(f1 m)| ConApply(Op2(x,f2), Num m) = Op1((StringOfNum m^x), fn n => f2(m,n));> val ConApply = fn : atom * atom -> atomConApply(Op2("+",op +), Num 2);> val it = Op1 ("2+",fn) : atomConApply(it, Num 3);> val it = Num 5 : atom�-expressions are represented by the datatype lam. 161datatype lam = Var of string| Con of atom| App of (lam * lam)| Abs of (string * lam);89



90 Chapter 6. Case study 2: the �-calculus6.1 A �-calculus parserIt is convenient to have a �-calculus parser. Assume the code of the parser describedin Section 5.3 is in the �le Parser.ml. 162use "Parser.ml";A sutable symbol table for the �-calculus is: 163fun LamSymTab "*" = (7, ParseSeq (MkBinop "MULT") 7 [Id])| LamSymTab "+" = (6, ParseSeq (MkBinop "ADD") 6 [Id])| LamSymTab "." = (0, Terminator)| LamSymTab "\\" = (10, ParseSeq(MkUnop "Abs") 0 [ChkAft ".", Id])| LamSymTab "(" = (10, ParseBracket ")")| LamSymTab ")" = (0, Terminator)| LamSymTab x = (10, ParseAtom);Note that "\\" is our ASCII representation of �. This is actually just a singlebackslash; the �rst one is the escape character needed to include the second one inthe string!The following function lexically analyses and then parses a string (recall that Parserreturns a parse tree and the remaining input). 164fun ParseLam s =let val (t,[]) = Parser LamSymTab 0 Nil (Lex s)in t end;> Warning: binding not exhaustive> val ParseLam = fn : string -> treeParseLam "(\\x.x+1) 200";> val it => Comb (Node ("Abs",[Atom "x",Node ("ADD",[Atom "x",Atom "1"])]),> Atom "200")> : treeThe output of ParseLam is an element of the general purse parse tree type treede�ned on page 82. This is easily converted to type lam. A function for testingwhether a string represents a number (i.e. is a string of digits) is needed. 165fun IsNumber s =let fun TestDigList [] = true| TestDigList (x::l) = IsDigit x andalso TestDigList lin TestDigList(explode s)end;> val IsNumber = fn : string -> boolIf a string represents a number then the following provides a way of converting itto a number (i.e. value of type int).



6.1. A �-calculus parser 91166fun DigitVal "0" = 0| DigitVal "1" = 1| DigitVal "2" = 2| DigitVal "3" = 3| DigitVal "4" = 4| DigitVal "5" = 5| DigitVal "6" = 6| DigitVal "7" = 7| DigitVal "8" = 8| DigitVal "9" = 9;> Warning: match nonexhaustive> val DigitVal = fn : string -> intfun NumOfString s =let fun ListVal [] = 0| ListVal (x::l) = DigitVal x + 10 * (ListVal l)in ListVal(rev(explode s))end;> val NumOfString = fn : string -> intNumOfString "2001";> val it = 2001 : intArmed with this string-to-number converter, it is routine to convert values of typetree to values of type lam. The fourth clause of the de�nition of Convert below isa little hack to make: \x1 x2 ... xn. e parse as: \x1.\x2. ... \xn. e. This hackmakes use of the fact that sequences of variables parse as left-associated applications.167ParseLam "\\x y z. w";> val it = Node ("Abs",[Comb (Comb (Atom "x",Atom "y"),Atom "z"),Atom "w"])168fun Convert (Atom x) =if IsNumber x then Con(Num(NumOfString x)) else Var x| Convert (Comb(a,b)) =App(Convert a, Convert b)| Convert (Node("Abs",[Atom x, a])) =Abs(x,Convert a)| Convert (Node("Abs",[Comb(a1, Atom x), a2])) =Convert(Node("Abs",[a1, Node("Abs",[Atom x,a2])]))| Convert (Node("ADD",[a,b])) =App(App(Con(Op2("+",(op+))), Convert a), Convert b);> Warning: match nonexhaustive> val Convert = fn : tree -> lamThe function PL (for \Parse Lambda expression") parses a string and then convertsit to a value of type lam. 169val PL = Convert o ParseLam;> val PL = fn : string -> lamPL "x+y";> val it = App (App (Con (Op2 fn),Var "x"),Var "y") : lamPL "(\\x.x+y) y";> val it => App (Abs ("x",App (App (Con (Op2 fn),Var "x"),Var "y")),> Var "y")> : lamHere is the �xed-point operator Y (see Section 2.4):



92 Chapter 6. Case study 2: the �-calculus170PL "\\f. (\\x f.(\\z.x x f)) (\\x f.(\\z.x x f))";> val it => Abs> ("f",> App> (Abs ("x",Abs ("f",Abs ("z",App (App (Var "x",Var "x"),Var "f")))),> Abs ("x",Abs ("f",Abs ("z",App (App (Var "x",Var "x"),Var "f"))))))> : lamAn `unparser' (or `pretty-printer') will be useful for viewing elements of type lam.The one that follows (UPL) is rather crude { for example, it does not attempt toformat expressions across lines, though it does at leat avoid putting brackets aroundvariables.The name UPL stands for \UnParse Lambda expression" and BUPL for \Bracket andUnParse Lambda expression". 171fun UPL (Var x) = x| UPL (Con(Num n)) = StringOfNum n| UPL (Con(Op1(x,_))) = x| UPL (Con(Op2(x,_))) = x| UPL (App(Con(Op1(x,_)),e)) = x ^ " " ^ BUPL e| UPL (App(App(Con(Op2(x,_)),e1),e2)) = BUPL e1 ^ x ^ BUPL e2| UPL (App(e1,e2)) = UPL e1 ^ " " ^ BUPL e2| UPL (Abs(x,e)) = "(\\" ^ x ^ ". " ^ UPL e ^ ")"and BUPL(Var x) = x| BUPL(Con(Num n)) = StringOfNum n| BUPL e = "(" ^ UPL e ^ ")";6.2 Implementing substitutionRecall the de�nition of substitution on page 10.E E[E0=V ]V E0V 0 (where V 6= V 0) V 0E1 E2 E1[E0=V ] E2[E0=V ]�V: E1 �V: E1�V 0: E1 (where V 6= V 0 and �V 0: E1[E0=V ]V 0 is not free in E0)�V 0: E1 (where V 6= V 0 and �V 00: E1[V 00=V 0][E0=V ]V 0 is free in E0) where V 00 is a variablenot free in E0 or E1This is easily implemented in ML. Some auxiliary set-theoretic functions on listsare needed (some of which have been met before). First a test for membership.172fun Mem x [] = false| Mem x (x'::s) = (x=x') orelse Mem x s;> val Mem = fn : ''a -> ''a list -> bool



6.2. Implementing substitution 93Note that the union of two lists de�ned below does not introduce duplicates. 173fun Union [] l = l| Union (x::l1) l2 =if Mem x l2 then Union l1 l2 else x::(Union l1 l2);> val Union = fn : ''a list -> ''a list -> ''a listUnion [1,2,3,4,5] [2,3,4,5,6,7];> val it = [1,2,3,4,5,6,7] : int listSubtract l1 l2 removes all members of l2 from l1 (i.e. is `l1 minus l2'). 174fun Subtract [] l = []| Subtract (x::l1) l2 =if Mem x l2 then Subtract l1 l2 else x::(Subtract l1 l2);> val Subtract = fn : ''a list -> ''a list -> ''a listSubtract [1,2,3,4,5] [3,4,5,6];> val it = [1,2] : int listUsing Mem, Union and Subtract the function Frees to compute a list of the freevariables in a �-expression is easily de�ned. 175fun Frees (Var x) = [x]| Frees (Con c) = []| Frees (App(e1,e2)) = Union (Frees e1) (Frees e2)| Frees (Abs(x,e)) = Subtract (Frees e) [x];> val Frees = fn : lam -> string listPL "\\x.x+y";> val it = Abs ("x",App (App (Con (Op2 fn),Var "x"),Var "y")) : lamFrees it;> val it = ["y"] : string listSubstitution needs to rename variables to avoid `capture'. This will be done bypriming them. 176fun Prime x = x^"'";Prime "x";> val it = "x'" : stringVariant xl x primes x su�cient number of times so that the result does not occurin the list xl. 177fun Variant xl x =if Mem x xl then Variant xl (Prime x) else x;> val Variant = fn : string list -> string -> stringVariant ["x","y","z","y'","w"] "y";> val it = "y''" : stringNow, at last, substitution can be de�ned: Subst E E' V computes E[E'/V] accordingto the table above.



94 Chapter 6. Case study 2: the �-calculus178fun Subst (e as Var x') e' x = if x=x' then e' else e| Subst (e as Con c) e' x = e| Subst (App(e1, e2)) e' x = App(Subst e1 e' x, Subst e2 e' x)| Subst (e as Abs(x',e1)) e' x =if x=x' then eelse if Mem x' (Frees e')then let val x'' = Variant (Frees e' @ Frees e1) x'in Abs(x'', Subst(Subst e1 (Var x'') x') e' x)endelse Abs(x', Subst e1 e' x);> val Subst = fn : lam -> lam -> string -> lamHere are some examples: 179Subst (PL"(\\x.x+y) x") (PL"1") "x";> val it => App (Abs ("x",App (App (Con (Op2 fn),Var "x"),Var "y")),> Con (Num 1))> : lamUPL it;> val it = "(\\x. x+y)(1)" : stringUPL(Subst (PL"\\x.x+y") (PL"x+1") "y");> val it = "(\\x'. x'+(x+1))" : stringA function EvalN can now be de�ned to do normal order reduction (sometimes called`call-by-name' [30]). Note that the evaluation does not `go inside' �-bodies, so doesnot compute normal forms. 180fun EvalN (e as Var _ ) = e| EvalN (e as Con _) = e| EvalN (Abs(x,e)) = Abs(x, e)| EvalN (App(Con a1, Con a2)) = Con(ConApply(a1,a2))| EvalN (App(e1,e2)) =case EvalN e1of (Abs(x,e3)) => EvalN(Subst e3 e2 x)| (e1' as Con a1) => (case EvalN e2of (Con a2) => Con(ConApply(a1,a2))| e2' => App(e1',e2'))| e1' => App(e1', EvalN e2);> val EvalN = fn : lam -> lamHere is a typical example that only terminates with normal order evaluation: 181EvalN (PL"(\\x.1) ((\\x. x x) (\\x. x x))");> val it = Con (Num 1) : lamval true = "x y z.w"6.3 The SECD machineCall-by-value evaluation can be programmed with the function EvalV.



6.3. The SECD machine 95182fun EvalV (e as Var _) = e| EvalV (e as Con _) = e| EvalV (e as Abs(_,_)) = e| EvalV (App(e1,e2)) =let val e2' = EvalV e2in(case EvalV e1of (Abs(x,e3)) => EvalV(Subst e3 e2' x)| (e1' as Con a) => (case e2'of (Con a2) => Con(ConApply(a1,a2))| _ => App(e1',e2'))| e1' => App(e1',e2'))end;The SECD machine is a classical virtual machine for reducing �-expressions usingcall-by-value. It was developed in the 1960's by Peter Landin and has been analysedby Gordon Plotkin [30]. Various more recent practical vitual machines for ML aredescendents of the SECD machine.The name SECD comes from Stack, Environment, Control and Dump which arethe four components of the machine state.The stack of an SECD machine holds a sequence (represented by a list) of atoms andclosures. The environment provides values of variables. A closure is an abstractionpaired with an environment. The mutually recursive datatypes of item and envrepresent items and environments, respectively. Environments are represented byassociation lists of variables (represented by strings) and and items. 183datatype item = Atomic of atom| Closure of (lam * env)and env = EmptyEnv| Env of string * item * env;The function Lookup looks up the value of a variable in an environment (and raisesan exception is the variable doesn't have a variable). 184exception LookupErr;fun Lookup(s,EmptyEnv) = raise LookupErr| Lookup(s,Env(s',i,env)) = if s=s' then i else Lookup(s,env);The control of an SECD is a sequence (represented by a list) of instructions whichare either the special operation Ap or a �-expression. 185datatype instruction = Ap | Exp of lam;A datatype state that represents SECD machine states can now be de�ned. 186type stack = item listand control = instruction list;datatype state = NullState| State of (stack * env * control * state);The transitions of the SECD machine are given by the function Step.



96 Chapter 6. Case study 2: the �-calculus187fun Step(State(v::S, E, [], State(S',E',C',D'))) =State(v::S', E', C', D')| Step(State(S, E, Exp(Var x)::C, D)) =State(Lookup(x,E)::S, E, C, D)| Step(State(S, E, Exp(Con v)::C, D)) =State(Atomic v::S, E, C, D)| Step(State(S, E, Exp(Abs(x,e))::C, D )) =State(Closure(Abs(x,e),E)::S, E, C, D)| Step(State(Closure(Abs(x,e),E')::(v::S), E, Ap::C, D)) =State([], Env(x,v,E'), [Exp e], State(S,E,C,D))| Step(State(Atomic v1::(Atomic v2::S), E, Ap::C, D )) =State(Atomic(ConApply(v1,v2))::S, E, C, D)| Step(State(S, E, Exp(App(e1,e2))::C, D)) =State(S, E, Exp e2::(Exp e1::(Ap::C)), D);The function Run iterates Step until a �nal state is reached and then returns a listof all the intermediate states. 188fun Run(state as State([_],EmptyEnv,[],NullState)) = [state]| Run state = state::Run(Step state);> val Run = fn : state -> state listThe function Eval takes a �-expression and evaluates it using the SECD machine.189fun Eval e =let fun EvalAux(State([v],EmptyEnv,[],NullState)) = v| EvalAux state = EvalAux(Step state)in EvalAux(State([],EmptyEnv,[Exp e],NullState)) end;> val Eval = fn : lam -> itemLoad loads a lambda-expression into an SECD state ready for running. 190fun Load e = State([],EmptyEnv,[Exp e],NullState);> val Load = fn : lam -> stateSECDRun parses a string, loads the resulting �-expression into an SECD state andthen runs the result. SECDEval is similar, but it just Evals the result. 191fun SECDRun s = Run(Load s);> val SECDRun = fn : lam -> state listfun SECDEval s = Eval(PL s);> val SECDEval = fn : string -> itemSECDEval "(\\x.\\y. x+y) 1 2";> val it = Atomic (Num 3) : item
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