Lecture 9

λ -reduction as evaluation

- If $E_1 \longrightarrow E_2$
 - E_2 got from E_1 by 'evaluation'
 - If no (β or η -) redexes in E_2 then it's 'fully evaluated'
- a λ -expression is said to be *in normal form* if it contains no β or η -redexes
 - i.e. if the only conversion rule that can be applied is α -conversion
 - a λ -expression in normal form is 'fully evaluated'
- Examples:
 - Church numerals are all in normal form
 - $(\lambda x. x) \ \underline{0}$ is not in normal form
- Can also define ' δ -normal form'

Church Rosser Theorem

- Statement of the Church-Rosser theorem: If $E_1 = E_2$ then there exists an E such that $E_1 \longrightarrow E$ and $E_2 \longrightarrow E$
- Suppose normal forms E_1 and E_2 are obtained from E by sequences of conversions
 - hence $E = E_1$ and $E = E_2$
 - hence $E_1 = E_2$
 - By Church-Rosser theorem there exists an expression E^\prime
 - $E_1 \longrightarrow E'$ and $E_2 \longrightarrow E'$
 - the only redexes E_1 and E_2 can contain are α -redexes
 - so only way that E_1 and E_2 can be reduced to E' is by α -conversion
 - so E_1 and E_2 must be the same up to renaming of bound variables

Parallel evaluation

- Suppose E is 'evaluated' in two different ways by applying different sequences of reductions until normal forms E_1 and E_2 are obtained
- The Church-Rosser theorem shows that E_1 and E_2 will be the same
 - up to α -conversion
 - i.e. except for having possibly different names of bound variables
- Because the results of reductions do not depend on the order in which they are done, separate redexes can be evaluated in parallel
 - suggests multiprocessor achitectures
 - distributing redexes to processors and collecting results may cancel out theoretical advantages

Church numerals are not equal

- Suppose $m \neq n$ but $\underline{m} = \underline{n}$
- By the Church-Rosser theorem $\underline{m} \longrightarrow E$ and $\underline{n} \longrightarrow E$ for some E
- Consider definitions of \underline{m} and \underline{n}

$$\underline{m} = \lambda f \ x. \ f^m \ x$$
$$\underline{n} = \lambda f \ x. \ f^n \ x$$

- no such E can exist
- only conversions applicable to \underline{m} and \underline{n} are α conversions
- these cannot change the number of function applications in an expression (<u>m</u> contains m applications and <u>n</u> contains n applications)

Corollaries to Church-Rosser Theorem

- Definition: E has a normal form if E = E' for some E' in normal form
- If *E* has a normal form then $E \longrightarrow E'$ for some E' in normal form
 - If E has a normal form then E = E' for some E' in normal form
 - by Church-Rosser theorem there exists E'' such that $E \longrightarrow E''$ and $E' \longrightarrow E''$
 - as E' in normal form only redexes in it are α -redexes
 - so reduction $E' \longrightarrow E''$ must consist only of α conversions
 - thus E'' must be identical to E' except for renaming of bound variables
 - it must thus be in normal form as E' is

Corollaries to CR continued

- If *E* has a normal form and *E* = *E*' then *E*' has a normal form
 - suppose *E* has a normal form and E = E'
 - As E has a normal form, E = E'' where E'' is in normal form
 - hence E' = E'' by the transitivity of =
 - so E' has a normal form
- If E = E' and E and E' are both in normal form, then E and E' are identical up to α -conversion
 - by Church-Rosser there exists E'' such that $E \longrightarrow E''$ and $E' \longrightarrow E''$
 - if E and E' are in normal form, then reductions to E'' must be α -reductions
 - so E and E' are convertable to each other via α -conversions

Exercises

- For each of the following *either* find its normal form *or* show that it has no normal form:
 - (i) add $\underline{3}$
 - (ii) add $\underline{3} \underline{5}$
 - (iii) $(\lambda x. x x) (\lambda x. x)$
 - (iv) $(\lambda x. x x) (\lambda x. x x)$
 - (v) Y
 - (vi) Y $(\lambda y. y)$
 - (vii) Y $(\lambda f \ x. (\texttt{iszero} \ x \to \underline{0} \mid f \ (\texttt{pre} \ x))) \ \underline{7}$

Non-termination

- A λ -expression E can have a normal form
 - even if there's an infinite sequence $E \longrightarrow E_1 \longrightarrow E_2 \cdots$
- Example:
 - $(\lambda x. \underline{1})$ (Y f) has a normal form $\underline{1}$
 - even though:

 $(\lambda x. \underline{1}) (\mathbf{Y} f) \longrightarrow (\lambda x. \underline{1}) (f (\mathbf{Y} f)) \longrightarrow \cdots (\lambda x. \underline{1}) (f^n (\mathbf{Y} f)) \longrightarrow \cdots$

Normalisation theorem

- If *E* has a normal form, then
 - repeatedly reducing the leftmost β or η -redex will terminate with an expression in normal form
- Normalisation theorem gives an algorithm for computing normal forms (when they exist)
- A sequence of reductions in which the leftmost redex is always reduced is called a *normal order reduction sequence*
- Normalization theorem says that
 - if *E* has a normal form
 - then it is got by normal order reduction

- Normal order reduction often inefficient
- Example: by normal order reduction:

$$(\lambda x. \ x x \ x) E$$

is reduced to

$$- E - E -$$

- suppose E is not in normal form
- more efficient to first reduce E to normal form E'
- then reduce

$$(\lambda x. \ x \ x \ x) \ E'$$

to

- avoid reducing E twice
- this is what ML does

Call-by-Value

- ML reduces arguments before substituting
 - disastrous in cases like $(\lambda x.\underline{1})$ $((\lambda x. x x) (\lambda x. x x))$
- Difficult problem to a find an optimal algorithm for choosing the next redex to reduce
- Call-by-value is appropriate when the language has constructs with side effects
 - e.g. assignments, as in ML
- Normal order evaluation is not as inefficient as one might think
 - cunning implementation tricks like graph reduction
- Whether functional programming languages should use normal order or call by value is still a controversial issue

On 'undefined' λ -expressions

- E_1 may not have a normal form even though $E_1 E_2$ does have one
- Example
 - Y has no normal form,
 - but $\Upsilon(\lambda x. \underline{1}) \longrightarrow \underline{1}$
- λ -expressions without a normal form are not 'undefined' functions
 - Y has no normal form but it denotes a perfectly well defined function

Head normal form

- A λ-expression denotes an undefined function if and only if it *cannot* be converted to an expression in *head normal form*
- E is in head normal form if it has the form

$$\lambda V_1 \cdots V_m \cdot V E_1 \cdots E_n$$

- where V_1, \ldots, V_m and V are variables
- and E_1, \ldots, E_n are λ -expressions
- V can either be equal to V_i , for some i, or it can be distinct from all of them

• Y is not undefined because it can be converted to

 $\lambda f. \ f \ ((\lambda x. \ f(x \ x)) \ (\lambda x. \ f(x \ x)))$

- this is in head normal form
- Can be shown that an expression *E* has a head normal form
 - if and only if there exist expressions E_1, \ldots, E_n
 - such that $E E_1 \ldots E_n$ has a normal form
- This supports the interpretation of expressions without head normal forms as denoting undefined functions
 - E being undefined means that $E E_1 \ldots E_n$ never terminates for any E_1, \ldots, E_n

• Recall

- E[E'/V] computed by Subst E E' V
- Normal order reduction in ML

```
fun EvalN (e as Var _ ) = e
| EvalN (Abs(x,e)) = Abs(x, EvalN e)
| EvalN (App(e1,e2)) =
    case EvalN e1
    of (Abs(x,e3)) => EvalN(Subst e3 e2 x)
        | e1' => App(e1', EvalN e2);
> val EvalN = fn : lam -> lam
```

Applicative (call-by-value) order

• With call-by-value, function bodies are not evaluated

```
fun EvalV (e as Var _)
                     = e
   EvalV (e as Abs(_,_)) = e
 EvalV (App(e1,e2))
 =
    let val e2' = EvalV e2
    in
    (case EvalV e1
     of (Abs(x,e3)) => EvalV(Subst e3 e2' x)
     => App(e1',e2'))
          e1'
    end;
  EvalV = fn : lam -> lam
>
```