Lecture 3

Recursion

® The factorial function:

fun fact(n:int) = if n=0 then 1 else nxfact(n-1);
> val fact = fn : int -> int

fact 5;
> val it = 120 : int

e Compiler automatically detects recursive calls

fun f n : int = n+1;
>val f = fn : int -> int

fun f(n:int) = if n=0 then 1 else n*f(n-1);
>val f = fn : int -> int

f 3;
> val it = 6 : int

e f 3 results in the evaluation of 3xf(2)

e In old MLs, first f would have been used

e f(2) would evaluate to 2+1=3

e hence the expression f 3 would evaluate to 3*3=9

Alternative specification of recursion

e (Can use val and fn to define functions

fun f n : int = n+1;
>val f = fn : int -> int

val f = fn (n:int) => if n=0 then 1 else n*f(n-1);
>val f = fn : int -> int

f 3;
> val it = 9 : int

e f in nxf(n-1) is the previous version of f

® rec after val forces recursion

fun f n : int = n + 1;
> val f fn : int -> int

val rec f = fn (n:int) => if n=0 then 1 else n*xf(n-1);
> val £ fn : int -> int

f 3;
> val it = 6 : int

Testing equality

Concrete values like integers, booleans and
strings can be tested for equality

Values of simple datatypes, like pairs and
records, whose components have concrete types
can also be tested for equality

o (v1,v9) = (vi,v}) iff v =] and vy = v}

Many values can be tested for equality

e there are infinitely many of them

Equality types

e In general, cannot test equality of functions
e Thus not possible to overload = on all types

e In old ML = was interpreted on all types
e functions were equal if their addresses were equal
e if test yielded true then functions equal

e but many mathematically (i.e. extensionally) equal
functions come out different

e Types whose values can be tested for equality
are equality types

e Equality type variables range over equality types
e equality type variables have the form ’’«

e ordinary type variables have the form ’«

e = has type ’’a * ’’a -> bool

Examples of equality types

e The ML typechecker infers types containing
equality type variables

fun Eq x y
> val Eq =

= (X=Y),
fn : ’’a -> ’’a -> bool

fun EqualHd 11 12 = (hd 11 = hd 12);
> val EqualHd = fn : ’’a 1list -> ’’a list -> bool

e Trying to instantiate an equality type variable
to a functional type results in an error

hd = hd;

> Error: operator and operand don’t agree

> operator domain: ’’Z x ’’Z

> operand: (’Y list -> ’Y) * (X list -> ’X)

EqualHd [hd] [hd];

> Error: operator and operand don’t agree

> operator domain: ’Z * ’Z

> operand: ’?Y list -> ’’Y list -> bool

e Equality types are controversial:

e benefits not worth the messiness

e future versions of ML may omit them

Pattern matching

e Functions can be defined by pattern matching

fun fact 0 = 1
| fact n =n *x (fact(n-1));
> val fact = fn : int -> int

fact 6;
> val it = 720 : int

e Suppose function f is defined by

fun f p1 = e
| fp = e
l f Pn = €y

e f e is evaluated by:

e matching e’s value with p;, ps, ..., p, (that order)
e until a match is found, say with p;

e value of f e is then value of ¢;

e variables in patterns are locally bound to bits
of e they match

Patterns

e Patterns need not be exhaustive

- fun foo 0 = 0;
***kWarning: Patterns in Match not exhaustive: 0=>0
> val foo = Fn : int -> int

e What if a function is applied to an argument
whose value doesn’t match any pattern?

e a run-time error called an exception results

e exception are covered later

- foo 1;
Exception raised at top level
Exception: Match raised

e The wildcard “_” matches anything

fun null [] = true
| null = false;

> val null = fn : ’a list -> bool

Examples

e functions hd and t1 can be defined by:

fun hd(x::1) = x;
> Warning: match nonexhaustive
> val hd = fn : ’a list -> ’a

fun t1(x::1) = 1;
> Warning: match nonexhaustive
>val tl = fn : ’a list -> ’a list

® Almost the same results as the built-in func-
tions

e on [] they give different exceptions

hd []; (* built-in "hd" *)
> uncaught exception Hd

fun hd(x::1) = x;
> Warning: match nonexhaustive
> val hd = fn : ’a list -> ’a

hd[]; (¥ redefined "hd" x*)
> uncaught Match exception std_in:0.0-0.0

The as construct in patterns

® 1 as p is a pattern that
e matches the same things as p

e binds value matched to x

fun RemoveDuplicates[] []
| RemoveDuplicates[x] = [x]
| RemoveDuplicates(x1l::x2::1) =
if x1=x2 then RemoveDuplicates(x2::1)
else x1::RemoveDuplicates(x2::1);

>val RemoveDuplicates = fn : ’’a list -> ’’a list

RemoveDuplicates[1,1,1,2,3,4,5,5,5,5,5,6,7,8,8,8];
> val it = [1,2,3,4,5,6,7,8] : int list

e Using as:

|
—
L

fun RemoveDuplicates[]
| RemoveDuplicates(1l as [x]) =1
| RemoveDuplicates(xl::(1 as x2::_)) =
if x1=x2 then RemoveDuplicates 1
else x1::RemoveDuplicates 1;

Repeated variables not allowed

e Alas:

fun RemoveDuplicates[] = []
| RemoveDuplicates(l as [x]) =1
| RemoveDuplicates(x::(1 as x::_)) =
RemoveDuplicates 1
| RemoveDuplicates(x::1) =
x::RemoveDuplicates 1;
> Error: duplicate variable in pattern(s): x

10

Anonymous functions can use patterns

e fn-expressions can use patterns

e fnp =>¢e | ... | p, = ¢,
fn [] => "none"
| [_] => "ope"
| I:_ , _] => "tWO"
| B => nmanyn :
> val it = fn : ’a list -> string

(it [1, itltruel, itl[1,2], it[1,2,3]);
> val it = ("none","one","two","many")

11

Patterns and records

e Patterns can be constructed out of records

14

e “...” (three dots) acts as a wildcard

fun IsMale({sex="male",...}:persondata) = true
| IsMale _ = false;

> val IsMale = fn : persondata -> bool

IsMale MikeData;
> val it = true : bool

® An alternative definition

fun IsMale({sex=x,...}:persondata) = (x = "male");

® A more compact form of this is allowed

fun IsMale({sex,...}:persondata) = (sex = "male");

® The field name sex doubles as a variable

e {---,v,---} abbreviates {---,v=v,---}

12

The case construct

e The following are equivalent:

ecaseeof py=>e | ... | p, => e,
e (fnpy => ¢ | ... | p, = ¢,) €
fun RemoveDuplicates[] = []
| RemoveDuplicates(1l as [x]) =1

| RemoveDuplicates(xl::(1 as x2::_)) =
case x1=x2
of true => RemoveDuplicates 1
| _ => x1::RemoveDuplicates 1;
> val RemoveDuplicates = fn : ’’a list -> ’’a list

13

Exceptions

e Exceptions are a kind of event that occur dur-
ing evaluation

e (Can result from run-time errors

e e.g. 1/0

e Can be generated explicitly

e e.g. raise Ex

14

Exception values

e Exception values are ML values of type exn

® ecxn is a datatype

e datatypes are explained later

e Exception value constructors:
e delared using keyword exception

e can be used in patterns

15

Exception packets

® An exception event raises an exception packet

e An exception packet is a raised exception value

e Exception packets break normal flow-of-control

e they can be trapped using a handler

e handle p1 => e | ... | p, => ¢,

e Expression evaluation either:

e succeeds with a value

e raises an exception
i.e. fails with an exception packet

e doesn’t terminate

16

Raised exceptions

e Functions can raise exceptions at run-time

e A special kind of value is propagated

e called an exception packet

e usually identifies the cause of the exception

e Exception packets have names

e usually reflect the function that raised the exception

e Exception packets may also contain values

hd(t1[2]);
> uncaught exception Hd

1 div O;
> uncaught exception Div

(1 div 0)+1000;
> uncaught exception Div

17

Declaring exceptions

e Exceptions are declared using the keyword
exception

e they have type exn

e Exceptions are raised by evaluating raise ¢

e where ¢ evaluates to an exception value

exception Exl;exception Ex2;

> type exn

con Ex1 = - : exn
> type exn

con Ex2 = - : exn
- [Ex1,Ex2];

> [-,-] : exn list

- raise hd it;
Exception raised at top level
Warning: optimisations enabled -
some functions may be missing from the trace
Exception: Exl raised

18

Exception packets

e “exception name of ty” declares
e an exception packet constructor called name

e that constructs packets containing values of type ty

exception Ex3 of string;
> exception Ex3

Ex3;
> val it = fn : string -> exn

raise Ex3 "foo";
> uncaught exception Ex3

e The type exn is a datatype

e see later

e Exceptions can be used in patterns

e useful for handling exceptions

19

Handling exceptions

e Exceptions are trapped using exception han-
dlers

e Example: trapping all exceptions:
e Value of “e; handle _ => ¢,” is
e value of e;, unless e; raises an exception

e in which case it is the value of e,

hd[1,2,3] handle _ => 0;

> val it = 1 : int

hd[] handle _ => 0;

> val it = 0 : int

hd(t1[2]) handle _ => 0;

> val it = 0 : int

1 div O handle => 1000;

> val it = 1000 : int

20

Example: half

e The function half only succeeds on non-zero
even numbers

e on 0 it raises Zero

e on odd numbers it raises 0dd

exception Zero; exception 0dd;
> exception Zero
> exception 0dd

fun half n =
1f n=0 then raise Zero
else let
val m = n div 2
in
1f n=2*m then m else raise 0dd
end;

> val half = fn : int -> int

21

Some examples of using half

half 4;
> val it = 2 : int

half O;
> uncaught exception Zero

half 3;
> uncaught exception 0dd

half 3 handle => 1000;

> val it = 1000 : int

e Exceptions can be trapped selectively

e by matching the exception packet

e If e raises Ex
e value of “e handle Fxy =>e; | ... | Ex, => ¢,” is

e the value of ¢; if Fr equals Ez;

e otherwise the handle-expression raises Fx

22

