
Lecture 3

0

Recursionx The factorial function:fun fact(n:int) = if n=0 then 1 else n*fact(n-1);> val fact = fn : int -> intfact 5;> val it = 120 : intx Compiler automatically detects recursive callsfun f n : int = n+1;> val f = fn : int -> intfun f(n:int) = if n=0 then 1 else n*f(n-1);> val f = fn : int -> intf 3;> val it = 6 : intx f 3 results in the evaluation of 3*f(2)x In old MLs, �rst f would have been usedu f(2) would evaluate to 2+1=3u hence the expression f 3 would evaluate to 3*3=9

1

Alternative speci�cation of recursion
x Can use val and fn to de�ne functionsfun f n : int = n+1;> val f = fn : int -> intval f = fn (n:int) => if n=0 then 1 else n*f(n-1);> val f = fn : int -> intf 3;> val it = 9 : intx f in n*f(n-1) is the previous version of fx rec after val forces recursionfun f n : int = n + 1;> val f = fn : int -> intval rec f = fn (n:int) => if n=0 then 1 else n*f(n-1);> val f = fn : int -> intf 3;> val it = 6 : int

2

Testing equality
x Concrete values like integers, booleans andstrings can be tested for equalityx Values of simple datatypes, like pairs andrecords, whose components have concrete typescan also be tested for equalityu (v1,v2) = (v01,v02) i� v1 = v01 and v2 = v02x Many values can be tested for equalityu there are in�nitely many of them

3

Equality types
x In general, cannot test equality of functionsx Thus not possible to overload = on all typesx In old ML = was interpreted on all typesu functions were equal if their addresses were equalu if test yielded true then functions equalu but many mathematically (i.e. extensionally) equalfunctions come out di�erentx Types whose values can be tested for equalityare equality typesu Equality type variables range over equality typesu equality type variables have the form ''�u ordinary type variables have the form '�x = has type ''a * ''a -> bool

4

Examples of equality typesx The ML typechecker infers types containingequality type variablesfun Eq x y = (x = y);> val Eq = fn : ''a -> ''a -> boolfun EqualHd l1 l2 = (hd l1 = hd l2);> val EqualHd = fn : ''a list -> ''a list -> boolx Trying to instantiate an equality type variableto a functional type results in an errorhd = hd;> Error: operator and operand don't agree> operator domain: ''Z * ''Z> operand: ('Y list -> 'Y) * ('X list -> 'X)EqualHd [hd] [hd];> Error: operator and operand don't agree> operator domain: 'Z * 'Z> operand: ''Y list -> ''Y list -> boolx Equality types are controversial:u bene�ts not worth the messinessu future versions of ML may omit them
5

Pattern matching
x Functions can be de�ned by pattern matchingfun fact 0 = 1| fact n = n * (fact(n-1));> val fact = fn : int -> intfact 6;> val it = 720 : intx Suppose function f is de�ned byfun f p1 = e1| f p2 = e2...| f pn = enx f e is evaluated by:u matching e's value with p1, p2, : : :, pn (that order)u until a match is found, say with piu value of f e is then value of eix variables in patterns are locally bound to bitsof e they match

6

Patterns
x Patterns need not be exhaustive- fun foo 0 = 0;***Warning: Patterns in Match not exhaustive: 0=>0> val foo = Fn : int -> intx What if a function is applied to an argumentwhose value doesn't match any pattern?u a run-time error called an exception resultsu exception are covered later- foo 1;Exception raised at top levelException: Match raisedx The wildcard \ " matches anythingfun null [] = true| null _ = false;> val null = fn : 'a list -> bool

7

Examples
x functions hd and tl can be de�ned by:fun hd(x::l) = x;> Warning: match nonexhaustive> val hd = fn : 'a list -> 'afun tl(x::l) = l;> Warning: match nonexhaustive> val tl = fn : 'a list -> 'a listx Almost the same results as the built-in func-tionsu on [] they give di�erent exceptionshd []; (* built-in "hd" *)> uncaught exception Hdfun hd(x::l) = x;> Warning: match nonexhaustive> val hd = fn : 'a list -> 'ahd[]; (* redefined "hd" *)> uncaught Match exception std_in:0.0-0.0

8

The as construct in patterns
x x as p is a pattern thatu matches the same things as pu binds value matched to xfun RemoveDuplicates[] = []| RemoveDuplicates[x] = [x]| RemoveDuplicates(x1::x2::l) =if x1=x2 then RemoveDuplicates(x2::l)else x1::RemoveDuplicates(x2::l);>val RemoveDuplicates = fn : ''a list -> ''a listRemoveDuplicates[1,1,1,2,3,4,5,5,5,5,5,6,7,8,8,8];> val it = [1,2,3,4,5,6,7,8] : int listx Using as:fun RemoveDuplicates[] = []| RemoveDuplicates(l as [x]) = l| RemoveDuplicates(x1::(l as x2::_)) =if x1=x2 then RemoveDuplicates lelse x1::RemoveDuplicates l;

9

Repeated variables not allowed
x Alas:fun RemoveDuplicates[] = []| RemoveDuplicates(l as [x]) = l| RemoveDuplicates(x::(l as x::_)) =RemoveDuplicates l| RemoveDuplicates(x::l) =x::RemoveDuplicates l;> Error: duplicate variable in pattern(s): x

10

Anonymous functions can use patterns
x fn-expressions can use patternsu fn p1 => e1 | : : : | pn => enfn [] => "none"| [_] => "one"| [_,_] => "two"| _ => "many";> val it = fn : 'a list -> string(it [], it[true], it[1,2], it[1,2,3]);> val it = ("none","one","two","many")

11

Patterns and records
x Patterns can be constructed out of recordsu \..." (three dots) acts as a wildcard
fun IsMale({sex="male",...}:persondata) = true| IsMale _ = false;> val IsMale = fn : persondata -> boolIsMale MikeData;> val it = true : boolx An alternative de�nitionfun IsMale({sex=x,...}:persondata) = (x = "male");x A more compact form of this is allowedfun IsMale({sex,...}:persondata) = (sex = "male");x The �eld name sex doubles as a variableu f� � �,v,� � �g abbreviates f� � �,v=v,� � �g

12

The case construct
x The following are equivalent:u case e of p1 => e1 | : : : | pn => enu (fn p1 => e1 | : : : | pn => en) efun RemoveDuplicates[] = []| RemoveDuplicates(l as [x]) = l| RemoveDuplicates(x1::(l as x2::_)) =case x1=x2of true => RemoveDuplicates l| _ => x1::RemoveDuplicates l;> val RemoveDuplicates = fn : ''a list -> ''a list

13

Exceptions
x Exceptions are a kind of event that occur dur-ing evaluationx Can result from run-time errorsu e.g. 1/0x Can be generated explicitlyu e.g. raise Ex

14

Exception values
x Exception values are ML values of type exnx exn is a datatypeu datatypes are explained laterx Exception value constructors:u delared using keyword exceptionu can be used in patterns

15

Exception packets
x An exception event raises an exception packetx An exception packet is a raised exception valueu Exception packets break normal ow-of-controlu they can be trapped using a handlere handle p1 => e1 | : : : | pn => enx Expression evaluation either:u succeeds with a valueu raises an exceptioni.e. fails with an exception packetu doesn't terminate

16

Raised exceptions
x Functions can raise exceptions at run-timex A special kind of value is propagatedu called an exception packetu usually identi�es the cause of the exceptionx Exception packets have namesu usually reect the function that raised the exceptionx Exception packets may also contain valueshd(tl[2]);> uncaught exception Hd1 div 0;> uncaught exception Div(1 div 0)+1000;> uncaught exception Div

17

Declaring exceptions
x Exceptions are declared using the keywordexceptionu they have type exnx Exceptions are raised by evaluating raise eu where e evaluates to an exception valueexception Ex1;exception Ex2;> type exncon Ex1 = - : exn> type exncon Ex2 = - : exn- [Ex1,Ex2];> [-,-] : exn list- raise hd it;Exception raised at top levelWarning: optimisations enabled -some functions may be missing from the traceException: Ex1 raised

18

Exception packets
x \exception name of ty" declaresu an exception packet constructor called nameu that constructs packets containing values of type tyexception Ex3 of string;> exception Ex3Ex3;> val it = fn : string -> exnraise Ex3 "foo";> uncaught exception Ex3x The type exn is a datatypeu see laterx Exceptions can be used in patternsu useful for handling exceptions

19

Handling exceptions
x Exceptions are trapped using exception han-dlersx Example: trapping all exceptions:u Value of \e1 handle => e2" isu value of e1, unless e1 raises an exceptionu in which case it is the value of e2hd[1,2,3] handle _ => 0;> val it = 1 : inthd[] handle _ => 0;> val it = 0 : inthd(tl[2]) handle _ => 0;> val it = 0 : int1 div 0 handle _ => 1000;> val it = 1000 : int

20

Example: half
x The function half only succeeds on non-zeroeven numbersu on 0 it raises Zerou on odd numbers it raises Oddexception Zero; exception Odd;> exception Zero> exception Oddfun half n =if n=0 then raise Zeroelse letval m = n div 2inif n=2*m then m else raise Oddend;> val half = fn : int -> int

21

Some examples of using half
half 4;> val it = 2 : inthalf 0;> uncaught exception Zerohalf 3;> uncaught exception Oddhalf 3 handle _ => 1000;> val it = 1000 : intx Exceptions can be trapped selectivelyu by matching the exception packetx If e raises Exu value of \e handle Ex1 => e1 | : : : | Exn => en" isu the value of ei if Ex equals Exiu otherwise the handle-expression raises Ex

22

