Lecture 1



The ML programming language

e Two widely use descendents of the original ML

e Standard ML and Caml

e Standard ML used in this course

e Available on Thor

e Caml is a lightweight language

e From INRIA in France

Better suited than Standard ML for small machines

Still evolving

Public domain, runs on puny PCs, Macs etc

Pretty similar to Standard ML



Interacting with ML

e ML is an interactive language

e A common way to run it is inside a shell window
from emacs

e The main things one does in ML are:
e evaluate expressions

e perform declarations



Expressions

e The ML prompt is “-”
e As ML reads a phrase it prompts with “=”

e until a complete expression or declaration is found

hammer .thor.cam.ac.uk), /group/clteach/acn/ml/unix/cml
FAM /group/clteach/acn/ml/unix/fam started on 02-Jan-1996 16:03:07
(version 4.2.01 of Jan 25 1995)
Image file /group/clteach/acn/ml/unix/cml.exp
(written on 25-Jan-1995 15:42:47 by FAM version 4.2.01)
[Loading Generic Heap...resexing...relocating by efff1ff8 (bytes)]

Edinburgh ML for D0S/Win32s/Unix
(C) Edinburgh University & A C Norman

- 2+3;

> 5 : int
-2

= +

= 3

> 5 : int
- 1it;

> 5 : int

e Prompts will (usually) not be shown

e As above, output will be flagged with >



Declarations

® Declaration val z=e
e evaluates ¢

e binds the resulting value to z

val x=2%3;
>val x = 6 : int

1t=x;
> val it = false : bool

® Declarations do not affect it

® c; at top level is treated as let it = e;

e ML initially binds it to a special value ()

e the only value of the one-element type unit



Multiple declarations

e To bind the variables zi,...,z, simultaneously
to the values of the expressions ey, ..., ¢,
e val xi=e; and x9=€y9... and x,=€,
eval (x1,x9,...,x,)=(eq,e9,...,€,).

e These two declarations are equivalent

val y=10 and z=x;
>val y = 10 : int
>val z = 6 : int

val (x,y) = (y,x);
> val x = 10 : int
>val y = 6 : int

® let d in e end makes d local to e

let val x=2 in x*y end;
> val it = 12 : int




Comments

e Comments start with (x and end with *)

e nest like parentheses
e can extend over many lines

e can be inserted wherever spaces are allowed

tr(* comments can’t go in the middle of names *)ue
> Error: unbound variable or constructor: tr
> Error: unbound variable or constructor: ue

1 (* this comment is ignored *) < 2;
> val it = true : bool

(* Inside this comment (* another one is nested x*)

’

%)




Functions

e To define function f with formal parameter z
and body e perform the declaration:

e fun fz = ¢

e To apply f to e evaluate f ¢

fun £ x = 2x*x;
> val £ fn : int -> int

f 4;
> val it = 8 : int

e Functions are printed as
e fn in SML/NJ
e Fn in Edinburgh ML

e Function values are not printable
e Functions are printed as fn here

e The type of the function is also printed




Typechecking errors

e Applying a function to an argument of the
wrong type results in a typechecking error

e Error messages are system dependent

e In SML/NJ

- f true;
std_in:12.1-12.6
Error: operator and operand don’t agree
operator domain: int
operand: bool
in expression:
f true

e In Edinburgh ML

- f true;

Type clash in: (f true)
Looking for a: int

I have found a: bool




Binding power of function application

e Function application binds tightly

e Consider: f 3 + 4
e means (f 3)+4

e not f(3+4)



Functions of several arguments

fun add (x:int) (y:int) = x+y;
> val add = fn : int -> int -> int

add 3 4;
> val it = 7 : int
n : int -> int

f 4;
> val it = 7 : int

e Application associates to the left

e add 3 4 means (add 3)4

e In add 3

e add is applied to 3
e the result has type int -> int
e which adds 3 to its argument

e add takes its arguments ‘one at a time’

10



Overloading

e DML needs help to tell whether:
e + is addition of integers

e or addition of reals

® + 1s overloaded

- fun add x y = x+y;
Type checking error in: (syntactic context unknown)
Unresolvable overloaded identifier: +

Definition cannot be found for the type:(’a * ’a) -> ’a

® Only built-in operators are overloaded

e users cannot overload their operators

11




