
198

The Rule of Constancy(Derived Frame Rule)
✓

① The following derived rule is used on the next slide

The rule of constancy

⊢ {P} C {Q}
⊢ {P ∧R} C {Q ∧R}

where no variable assigned to in C occurs in R

① Outline of derivation
✉ prove {R} C {R} by induction on C✉ then use Specification Conjunction

① Assume C doesn’t modify V and ⊢ {P} C {P[V +1/V]} then:

⊢ {P ∧ V =v} C {P[V +1/V] ∧ V =v} (assumption + constancy rule)

⊢ {P[V +1/V] ∧ V =v} V :=V +1 {P ∧ V =v+1}(assign. ax + pre. streng.)

⊢ {P ∧ V =v} C; V :=V +1 {P ∧ V =v+1} (sequencing)

① So C; V :=V +1 has P as an invariant and increments V

18

199

Towards the FOR-Rule ✓

① If e1 ≤ e2 the FOR-command is equivalent to:

BEGIN VAR V ; V :=e1; . . . C ; V :=V +1; . . . V :=e2; C END

① Assume C doesn’t modify V and ⊢ {P} C {P[V +1/V]}
① Hence:

⊢ {P[e1/V]} V :=e1 {P ∧ V =e1} (assign. ax + pre. streng.)
...
⊢ {P ∧ V =v} C; V :=V +1 {P ∧ V =v+1} (last slide; V = e1, e1+1, . . . , e2−1)
...
⊢ {P ∧ V =v} C; V :=V +1 {P ∧ V =e2+1}
⊢ {P ∧ V =e2} C {P[V +1/V] ∧ V =e2} (assign. ax + assumption + constancy)

⊢ {P ∧ V =e2} C {P[e2+1/V]} (post. weak.)

① Hence by the sequencing and block rules

⊢ {P}C{P[V +1/V]}
⊢ {P[e1/V]}BEGIN VAR V ;V :=e1; . . . C;V :=V +1; . . . V :=e2;C END{P[e2+1/V]}

19

206

The FOR-Rule ✓

① To rule out the problems that arise when the controlled variable or
variables in the bounds expressions, are changed by the body, we
simply impose a side condition on the rule that stipulates that it
cannot be used in these situations

The FOR-rule

⊢ {P ∧ (E1 ≤ V) ∧ (V ≤ E2)} C {P[V +1/V]}
⊢ {P[E1/V]∧(E1≤E2)} FOR V :=E1 UNTIL E2 DO C {P[E2+1/V]}

where neither V , nor any variable occurring in E1 or E2, is assigned
to in the command C.

① Note (E1 ≤ V) ∧ (V ≤ E2) in precondition of rule hypothesis

✉ added to strengthen rule to allow proofs to use facts about V ’s range of values

① Can be tricky to think up P

26

207

Comment on the FOR-Rule ✓

① The FOR-rule does not enable anything to be deduced about FOR-
commands whose body assigns to variables in the bounds expres-
sions

① This precludes such assignments being used if commands are to be
reasoned about

① Only defining rules of inference for non-tricky uses of constructs
motivates writing programs in a perspicuous manner

① It is possible to devise a rule that does cope with assignments to
variables in bounds expressions

① Consider the rule below (e1, e2 are fresh auxiliary variables):

⊢ {P ∧ (e1 ≤ V) ∧ (V ≤ e2)} C {P[V +1/V]}
⊢ {P[E1/V]∧(E1≤E2)∧(E1=e1)∧(E2=e2)} FOR V :=E1 UNTIL E2 DO C {P[e2+1/V]}

27

208

The FOR-axiom ✓

① To cover the case when E2 < E1, we need the FOR-axiom below

The FOR-axiom

⊢ {P ∧ (E2 < E1)} FOR V :=E1 UNTIL E2 DO C {P}

① This says that when E2 is less than E1 the FOR-command has no effect

28

213

Ensuring Soundness
✓

① It is clear from the discussion of the FOR-rule that it is not always
straightforward to devise correct rules of inference

① It is important that the axioms and rules be sound. There are two
approaches to ensure this

(i) define the language by the axioms and rules of the logic

(ii) prove that the logic is sound for the language

① Approach (i) is called axiomatic semantics

✉ the idea is to define the semantics of the language by requiring that it make

the axioms and rules of inference true

✉ it is then up to implementers to ensure that the logic matches the language

① Approach (ii) is proving soundness of the logic

33

214

Axiomatic Semantics ✓

① One snag with axiomatic semantics is that most existing languages
have already been defined in some other way

✉ usually by informal and ambiguous natural language statements

① The other snag with axiomatic semantics is that by Clarke’s Theo-
rem it is known to be impossible to devise relatively complete Floyd-
Hoare logics for languages with certain constructs

✉ it could be argued that this is not a snag at all but an advantage, because it

forces programming languages to be made logically tractable

① An example of a language defined axiomatically is Euclid

34

215

From Proof rules for the programming language Euclid
✓

35

182

Array assignments
✓

① Syntax: V (E1):=E2

① Semantics: the state is changed by assigning the value of the term
E2 to the E1-th component of the array variable V

① Example: A(X+1) := A(X)+2

✉ if the the value of X is x

✉ and the value of the x-th component of A is n

✉ then the value stored in the (x+1)-th component of A becomes n+2

2

183

Naive Array Assignment Axiom Fails
✓

① The axiom

⊢ {P[E2/A(E1)]} A(E1):=E2 {P}
doesn’t work

① Take P ≡ ‘X=Y ∧ A(Y)=0’, E1 ≡ ‘X’, E2 ≡ ‘1’

✉ since A(X) does not occur in P

✉ it follows that P[1/A(X)] = P

✉ hence the axiom yields: ⊢ {X=Y ∧ A(Y)=0} A(X):=1 {X=Y ∧ A(Y)=0}

① Must take into account possibility that changes to A(X)

may change A(Y), A(Z) etc

✉ since X might equal Y, Z etc (i.e. aliasing)

① Related to the Frame Problem in AI

3

184

Reasoning About Arrays
✓

① The naive array assignment axiom

⊢ {P[E2/A(E1)]} A(E1):=E2 {P}
does not work: changes to A(X) may also change A(Y), A(Z), . . .

① The solution, due to Hoare, is to treat an array assignment

A(E1):=E2

as an ordinary assignment

A := A{E1←E2}

where the term A{E1←E2} denotes an array identical to A, except
that the E1-th component is changed to have the value E2

4

185

Array Assignment axiom
✓

① Array assignment is a special case of ordinary assignment

A:=A{E1←E2}

① Array assignment axiom just ordinary assignment axiom

⊢ {P[A{E1←E2}/A]} A:=A{E1←E2} {P}

① Thus:

The array assignment axiom

⊢ {P[A{E1←E2}/A]} A(E1):=E2 {P}

Where A is an array variable, E1 is an integer valued expression, P is
any statement and the notation A{E1←E2} denotes the array identical
to A, except that A(E1) = E2.

5

186

Array Axioms
✓

① In order to reason about arrays, the following axioms, which define
the meaning of the notation A{E1←E2}, are needed

The array axioms

⊢ A{E1←E2}(E1) = E2

⊢ E1 6= E3 ⇒ A{E1←E2}(E3) = A(E3)

① Second of these is a Frame Axiom

✉ don’t confuse with Frame Rule of Separation Logic (later)

✉ “frame” is a rather overloaded word!

6

252

New Topic: Separation logic
✓

① One of several competing methods for reasoning about pointers

① Details took 30 years to evolve

① Shape predicates due to Rod Burstall in the 1970s

① Separation logic: by O’Hearn, Reynolds and Yang around 2000

① Several partially successful attempts before separation logic

① Very active research area

✉ QMUL, UCL, Cambridge, Harvard, Princeton, Yale

✉ Microsoft

✉ startup Monoidics bought by Facebook

0

253

Pointers and the state ✓

① So far the state just determined the values of variables
✉ values assumed to be numbers

✉ preconditions and postconditions are first-order logic statements

✉ state same as a valuation s : Var→ Val

① To model pointers – e.g. as in C – add heap to state
✉ heap maps locations (pointers) to their contents

✉ store maps variables to values (previously called state)

✉ contents of locations can be locations or values

X 7→ l1 7→ l2 7→ v

store heap heap

Heap semantics

Store = V ar → Val (assume Num ⊆ Val, nil ∈ Val and nil /∈ Num)

Heap = Num ⇀fin Val

State = Store× Heap

① Note: store also called stack or environment; heap also called store

1

254

Adding pointer operations to our language
✓

Expressions:

E::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

Boolean expressions:

B::= T | F | E1=E2 | E1 ≤ E2 | . . .

commands:

C::= V := E value assignments

| V :=[E] fetch assignments

| [E1]:=E2 heap assignments (heap mutation)

| V :=cons(E1, . . . , En) allocation assignments

| dispose(E) pointer disposal

| C1 ; C2 sequences

| IF B THEN C1 ELSE C2 conditionals

| WHILE B DO C while commands

2

255

Pointer manipulation constructs and faulting
✓

① Commands executed in a state (s, h)

① Reading, writing or disposing pointers might fault

① Fetch assignments: V :=[E]

✉ evaluate E to get a location l

✉ fault if l is not in the heap

✉ otherwise assign contents of l in heap to the variable V

① Heap assignments: [E1]:=E2

✉ evaluate E1 to get a location l

✉ fault if the l is not in the heap

✉ otherwise store the value of E2 as the new contents of l in the heap

① Pointer disposal: dispose(E)

✉ evaluate E to get a pointer l (a number)

✉ fault if l is not in the heap

✉ otherwise remove l from the heap

3

256

Allocation assignments
✓

① Allocation assignments: V :=cons(E1, . . . , En)

✉ choose n consecutive locations that are not in the heap, say l, l+1, . . .

✉ extend the heap by adding l, l+1, . . . to it

✉ assign l to the variable V in the store

✉ make the values of E1, E2, . . . be the new contents of l, l+1, . . . in the heap

① Allocation assignments never fault

① Allocation assignments are non-deterministic

✉ any suitable l, l+1, . . . not in the heap can be chosen

✉ always exists because the heap is finite

4

257

Example (different from the background reading)
✓

X:=cons(0,1,2); [X]:=Y+1; [X+1]:=Z; Y:=[Y+Z]

① X:=cons(0,1,2) allocates three new pointers, say l, l+1, l+2
✉ l initialised with contents 0, l+1 with 1 and l+2 with 2

✉ variable X is assigned l as its value in store

① [X]:=Y+1 changes the contents of l
✉ l gets value of Y+1 as new contents in heap

① [X+1]:=Z changes the contents of l+1
✉ l+1 gets the value of Z as new contents in heap

① Y:=[Y+Z] changes the value of Y in the store
✉ Y assigned in the store the contents of Y+Z in the heap

✉ faults if the value of Y+Z is not in the heap

5

267

Local Reasoning and Separation Logic
✓

① Want to just reason about just those locations being modified

✉ assume all other locations unchanged

① Solution: separation logic

✉ small and forward assignment axioms + separating conjunction

✉ small means just applies to fragment of heap (footprint)

✉ forward means Floyd-style forward rules that support symbolic execution

✉ non-faulting semantics of Hoare triples

✉ symbolic execution used by tools like smallfoot

✉ separating conjunction solves frame problem - like rule of constancy for heap

① Need new kinds of assertions to state separation logic axioms

15

266

Sneak preview of the Frame Rule
✓

The frame rule

⊢ {P}C {Q}
⊢ {P ⋆ R}C {Q ⋆ R}

where no variable modified by C occurs free in R.

① Separating conjunction P ⋆ Q

✉ heap can be split into two disjoint components

✉ P is true of one component and Q of the other

✉ ⋆ is commutative and associative

14

267

Local Reasoning and Separation Logic
✓

① Want to just reason about just those locations being modified

✉ assume all other locations unchanged

① Solution: separation logic

✉ small and forward assignment axioms + separating conjunction

✉ small means just applies to fragment of heap (footprint)

✉ forward means Floyd-style forward rules that support symbolic execution

✉ non-faulting semantics of Hoare triples

✉ symbolic execution used by tools like smallfoot

✉ separating conjunction solves frame problem - like rule of constancy for heap

① Need new kinds of assertions to state separation logic axioms

15

271

Separation logic assertions: emp
✓

① emp is an atomic statement of separation logic

① emp is true iff the heap is empty

① The semantics of emp is:

emp (s, h) ⇔ h = {} (where {} is the empty heap)

① Abbreviation: E1
.
= E2 =def (E1 = E2) ∧ emp

① From the semantics: (E1
.
= E2) (s, h) ⇔ E1(s) = E2(s) ∧ h = {}

① E1 = E2 is independent of the heap and only depends on the store

① Semantics of E1 = E2 is:

(E1 = E2)(s, h)⇔ E1(s) = E2(s)

no constraint on the heap – any h will do

19

276

Separation logic: small axioms and faulting
✓

① One might expect a heap assignment axiom to entail:

⊢ {T}[0]:=0{0 7→0}
i.e. after executing [0]:=0 the contents of location 0 in the heap is 0

① Recall the sneak preview of the frame rule:

The frame rule

⊢ {P}C {Q}
⊢ {P ⋆ R}C {Q ⋆ R}

where no variable modified by C occurs free in R.

① Taking R to be the points-to statement 0 7→1 yields:

⊢ {T ⋆ 0 7→1}[0]:=0{0 7→0 ⋆ 0 7→1}
something is wrong with the conclusion!

① Solution: define Hoare triple so ⊢ {T}[0]:=0{0 7→0} is not true

24

281

Non-faulting interpretation of Hoare triples
✓

① The non-faulting semantics of Hoare triples {P}C {Q} is:

if P holds then
(i) executing C doesn’t fault and
(ii) if C terminates then Q holds

|= {P}C{Q} =
∀s h. P (s, h)⇒ ¬(C(s, h)fault) ∧ ∀s′ h′. C(s, h)(s′, h′)⇒ Q(s′, h′)

① Now ⊢ {T}[0]:=0{0 7→0} is not true as ([0]:=0)(s, {})fault
① Recall the sneak preview of the frame rule:

The frame rule

⊢ {P}C {Q}
⊢ {P ⋆ R}C {Q ⋆ R}

where no variable modified by C occurs free in R.

① So can’t use frame rule to get ⊢ {T ⋆ 0 7→1}[0]:=0{0 7→0 ⋆ 0 7→1}

29

284

Store assignment axiom
✓

Store assignment axiom

⊢ {V .
= v}V :=E {V .

= E[v/V]}
where v is an auxiliary variable not occurring in E.

① E1
.
= E2 means value of E1 and E2 equal in the store and heap is empty

① In Hoare logic (no heap) this is equivalent to the assignment axiom

⊢ {V =v}V :=E {V =E[v/V]} store assign. ax.

⊢ {V =v ∧Q[E[v/V]/V]}V :=E {V =E[v/V] ∧Q[E[v/V]/V]} rule of constancy

⊢ {∃v. V =v ∧Q[E[v/V]/V]}V :=E {∃v. V =E[v/V] ∧Q[E[v/V]/V]} exists introduction

⊢ {∃v. V =v ∧Q[E[V /V]/V]}V :=E {∃v. V =E[v/V] ∧Q[V /V]} predicate logic

⊢ {∃v. V =v ∧Q[E/V]}V :=E {∃v. V =E[v/V] ∧Q} [V /V] is identity

⊢ {(∃v. V =v) ∧Q[E/V]}V :=E {(∃v. V =E[v/V]) ∧Q} predicate logic: v not in E

⊢ {T ∧Q[E/V]}V :=E {(∃v. V =E[v/V]) ∧Q} predicate logic

⊢ {Q[E/V]}V :=E {Q} rules of consequence

① Separation logic: exists introduction valid, rule of constancy invalid

32

285

Fetch assignment axiom
✓

Fetch assignment axiom

⊢ {(V = v1) ∧ E 7→v2}V :=[E]{(V = v2) ∧ E[v1/V] 7→v2}
where v1, v2 are auxiliary variables not occurring in E.

① Precondition guarantees the assignment doesn’t fault

① V is assigned the contents of E in the heap

① Small axiom: precondition and postcondition specify singleton heap

① If neither V nor v occur in E then the following holds:

⊢ {E 7→ v}V :=[E]{(V = v) ∧ E 7→ v}
(proof: instantiate v1 to V and v2 to v and then simplify)

33

286

Heap assignment axiom
✓

Heap assignment axiom (heap mutation)

⊢ {E 7→ }[E]:=F {E 7→F}

① Precondition guarantees the assignment doesn’t fault

① Contents of E in heap is updated to be value of F

① Small axiom: precondition and postcondition specify singleton heap

34

287

Pointer allocation ✓

Allocation assignment axiom

⊢ {V .
= v}V :=cons(E1, . . . , En){V 7→E1[v/V], . . . , En[v/V]}

where v is an auxiliary variable not equal to V or occurring in E1,. . .,En

① Never faults

① If V doesn’t occur in E1,. . .,En then:

⊢ {V .
= v}V :=cons(E1, . . . , En){V 7→E1[v/V], . . . , En[v/V]} alloc. assign. ax

⊢ {V .
= v}V :=cons(E1, . . . , En){V 7→E1, . . . , En} V not in Ei assump.

⊢ {∃v. V .
= v}V :=cons(E1, . . . , En){∃v. V 7→E1, . . . , En} exists intro.

⊢ {∃v. V =v ∧ emp}V :=cons(E1, . . . , En){∃v. V 7→E1, . . . , En} definition of
.
=

⊢ {emp}V :=cons(E1, . . . , En){V 7→E1, . . . , En} predicate logic

① Which is a derivation of:

Derived allocation assignment axiom

⊢ {emp}V :=cons(E1, . . . , En){V 7→E1, . . . , En}
where V doesn’t occur in E1,. . .,En.

35

288

Pointer deallocation ✓

Dispose axiom

⊢ {E 7→ }dispose(E){emp}

① Attempting to deallocate a pointer not in the heap faults

① Small axiom: singleton precondition heap, empty postcondition heap

① Sanity checking example proof:

⊢ {E1 7→ }dispose(E1){emp} dispose axiom

⊢ {emp}V :=cons(E2){V 7→E2} derived allocation assignment axiom

⊢ {E1 7→ }dispose(E1);V :=cons(E2){V 7→E2} sequencing rule

36

290

Compound command rules
✓

① Following rules apply to both Hoare logic and separation logic

The sequencing rule

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R}
⊢ {P} C1;C2 {R}

The conditional rule

⊢ {P ∧ S} C1 {Q}, ⊢ {P ∧ ¬S} C2 {Q}
⊢ {P}IFS THENC1 ELSEC2 {Q}

The WHILE-rule

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C {P ∧ ¬S}

① For separation logic, need to think about faulting

38

