Total Correctness Specification

- So far our discussion has been concerned with partial correctness
 - what about termination
- A total correctness specification [P] C [Q] is true if and only if
 - whenever C is executed in a state satisfying P, then the execution of C terminates
 - after C terminates Q holds
- Except for the WHILE-rule, all the axioms and rules described so far are sound for total correctness as well as partial correctness

Termination of WHILE-Commands

- WHILE-commands are the only commands that might not terminate
- Consider now the following proof

1. \vdash {T} X := X {T}(assignment axiom)2. \vdash {T \land T} X := X {T}(precondition strengthening)3. \vdash {T} WHILE T DO X := X {T $\land \neg$ T}(2 and the WHILE-rule)

• If the WHILE-rule worked for total correctness, then this would show:

 \vdash [T] WHILE T DO X := X [T $\land \neg$ T]

• Thus the WHILE-rule is unsound for total correctness

Rules for Non-Looping Commands

- Replace { and } by [and], respectively, in:
 - Assignment axiom (see next slide for discussion)
 - Consequence rules
 - Conditional rule
 - Sequencing rule
- The following is a valid derived rule

$$\vdash \{P\} \ C \ \{Q\}$$
$$\vdash [P] \ C \ [Q]$$

if C contains no WHILE-commands

Total Correctness Assignment Axiom

• Assignment axiom for total correctness

 $\vdash [P[E/V]] V := E [P]$

- Note that the assignment axiom for total correctness states that assignment commands *always* terminate
- So all function applications in expressions must terminate
- This might not be the case if functions could be defined recursively
- Consider X := fact(-1), where fact(n) is defined recursively:

fact(n) = if n = 0 then 1 else $n \times fact(n-1)$

Error Termination

- We assume erroneous expressions like 1/0 don't cause problems
- Most programming languages will raise an error on division by zero
- In our logic it follows that

$$\vdash$$
 [T] X := 1/0 [X = 1/0]

- The assignment X := 1/0 halts in a state in which X = 1/0 holds
- This assumes that 1/0 denotes some value that X can have

• There are two possibilities

(i) 1/0 denotes some number;

(ii) 1/0 denotes some kind of 'error value'.

- It seems at first sight that adopting (ii) is the most natural choice
 - this makes it tricky to see what arithmetical laws should hold
 - is $(1/0) \times 0$ equal to 0 or to some 'error value'?
 - if the latter, then it is no longer the case that $\forall n. \ n \times 0 = 0$ is valid
- It is possible to make everything work with undefined and/or error values, but the resultant theory is a bit messy

WHILE-rule for Total Correctness (i)

- WHILE-commands are the only commands in our little language that can cause non-termination
 - they are thus the only kind of command with a non-trivial termination rule
- The idea behind the WHILE-rule for total correctness is
 - to prove WHILE S DO C terminates
 - show that some non-negative quantity decreases on each iteration of C
 - this decreasing quantity is called a variant

WHILE-Rule for Total Correctness (ii)

- In the rule below, the variant is E, and the fact that it decreases is specified with an auxiliary variable n
- The hypothesis $\vdash P \land S \Rightarrow E \ge 0$ ensures the variant is non-negative

The Derived While Rule

• Derived WHILE-rule needs to handle the variant

Derived WHILE-rule for total correctness $\begin{array}{l} \vdash P \Rightarrow R \\ \vdash R \land S \Rightarrow E \ge 0 \\ \vdash R \land \neg S \Rightarrow Q \\ \vdash [R \land S \land (E = n)] \ C \ [R \land (E < n)] \\ \hline \end{array}$ $\begin{array}{l} \vdash [P] \text{ WHILE } S \text{ DD } C \ [Q] \end{array}$

VCs for Termination

- Verification conditions are easily extended to total correctness
- To generate total correctness verification conditions for WHILEcommands, it is necessary to add a variant as an annotation in addition to an invariant
- Variant added directly after the invariant, in square brackets
- No other extra annotations are needed for total correctness
- VCs for WHILE-free code same as for partial correctness

WHILE Annotation

• A correctly annotated total correctness specification of a WHILEcommand thus has the form

$[P] \text{ WHILE } S \text{ do } \{R\}[E] \ C \ [Q]$

where R is the invariant and E the variant

- Note that the variant is intended to be a **non-negative** expression that **decreases** each time around the WHILE loop
- The other annotations, which are enclosed in curly brackets, are meant to be conditions that are true whenever control reaches them (as before)

• A correctly annotated specification of a WHILE-command has the form

[P] while S do $\{R\}[E]$ C [Q]

Summary

- We have given rules for total correctness
- They are similar to those for partial correctness
- The main difference is in the WHILE-rule
 - because WHILE commands are the only ones that can fail to terminate
- Must prove a non-negative expression is decreased by the loop body
- Derived rules and VC generation rules for partial correctness easily extended to total correctness
- Interesting stuff on the web
 - http://www.crunchgear.com/2008/12/31/zune-bug-explained-in-detail
 - $\bullet \ http://research.microsoft.com/en-us/projects/t2/$

Soundness and completeness of Hoare logic

- Review of first-order logic
 - syntax: languages, function symbols, predicate symbols, terms, formulae
 - semantics: interpretations, valuations
 - soundness and completeness
- Formal semantics of Hoare triples
 - preconditions and postconditions as terms
 - semantics of commands
 - soundness of Hoare axioms and rules
 - completeness and relative completeness

Semantics: terms and formulae

- Assume: language \mathcal{L} , interpretation $\mathcal{I} = (D, I)$, valuation $s \in Var \to D$
- Define Esem $E \ s \in D$ by:
 - if $E \in Var$ then Esem $E \ s = s(E)$
 - if E = f, where f a function symbol of arity 0, then Esem E = I[f]
 - if $E = f(E_1, \ldots, E_n)$, then Esem $E \ s = I[f]$ (Esem $E_1 \ s, \ldots$, Esem $E_n \ s)$
- Define Ssem $S \ s \in Bool$ by:
 - if S = p, where p a predicate symbol of arity 0, then Ssem S = I[p]
 - if $S = p(E_1, \ldots, E_n)$, then Ssem $S \ s = I[p](\text{Esem } E_1 \ s, \ldots, \text{Esem } E_n \ s)$

• Ssem $(\neg S) \ s = \neg(\text{Ssem } S \ s)$ Ssem $(S_1 \land S_2) \ s = (\text{Ssem } S_1 \ s) \land (\text{Ssem } S_2 \ s)$ Ssem $(S_1 \lor S_2) \ s = (\text{Ssem } S_1 \ s) \lor (\text{Ssem } S_2 \ s)$ Ssem $(S_1 \Rightarrow S_2) \ s = (\text{Ssem } S_1 \ s) \Rightarrow (\text{Ssem } S_2 \ s)$

- Ssem $(\forall v. S) \ s = if (for all \ d \in D)$: Ssem S (s[d/v]) = true) then true else false Ssem $(\exists v. S) \ s = if (for some \ d \in D)$: Ssem S (s[d/v]) = true) then true else false
- Note: will just say "Ssem S s" to mean that "Ssem S s = true"

Satisfiability, validity and completeness

- Recall that a language \mathcal{L} specifies predicate and function symbols
- S is satisfiable iff for some interpretation of \mathcal{L} and s: Ssem S = true
- S is valid iff for all interpretations of \mathcal{L} and all s: Ssem S = true
- Notation: $\models S$ means S is valid
- Deductive system for first-order logic specifies $\vdash S i.e. S$ is provable
- Soundness: $if \vdash S then \models S$ (easy induction on length of proof)
- Completeness: if $\models S$ then $\vdash S$ (Gödel 1929)

Sentences, Theories

- A sentence is a statement with no free variables
 - truth or falsity of sentences solely determined by interpretation
 - if S is a sentence then Ssem $S s_1 =$ Ssem $S s_2$ for all s_1, s_2
- A theory is a set of sentences
 - Γ will range over sets of sentences
- $\Gamma \vdash S$ means S can be deduced from Γ using first-order logic
- Γ is *consistent* iff there is no *S* such that $\Gamma \vdash S$ and $\Gamma \vdash \neg S$
- $\Gamma \models_{\mathcal{I}} S$ means S true if \mathcal{I} makes all of Γ true
- $\Gamma \models S$ means $\Gamma \models_{\mathcal{I}} S$ true for all \mathcal{I}
- Soundness and Completeness: $\Gamma \models S$ iff $\Gamma \vdash S$

Gödel's incompleteness theorem

- \mathcal{L}_{PA} is the language of Peano Arithmetic
- \mathcal{I}_{PA} is the standard interpretation of arithmetic
- $\models_{\mathcal{I}_{\mathbf{PA}}} S$ means S is true in $\mathcal{I}_{\mathbf{PA}}$
- PA is the first-order theory of Peano Arithmetic
- There exists a sentence G of \mathcal{L}_{PA} and neither $PA \vdash G$ nor $PA \vdash \neg G$
 - Gödel's first incompleteness theorem (1930)
 - as G is a sentence either $\models_{\mathcal{I}_{\mathbf{PA}}} G$ or $\models_{\mathcal{I}_{\mathbf{PA}}} \neg G$
 - so there is a sentences, G_T say, true in \mathcal{I}_{PA} but can't be proved from PA
 - i.e. $\models_{\mathcal{I}_{\mathbf{PA}}} G_T$ but not $\mathbf{PA} \vdash G_T$

Semantics of Hoare triples

- Recall that $\{P\} \ C \ \{Q\}$ is true if
 - whenever C is executed in a state satisfying P
 - and if the execution of C terminates
 - \bullet then C terminates in a state satisfying Q
- P and Q are first-order statements
- Will formalise semantics of $\{P\} \ C \ \{Q\}$ to express:
 - whenever C is executed in a state s_1 such that Ssem $P s_1$
 - and *if* the execution of C starting in s_1 terminates
 - then C terminates in a state s_2 such that Ssem $Q s_2 = true$
- Need to define "C starts in s_1 and terminates in s_2 "
 - this is the semantics of commands
 - will define Csem $C \ s_1 \ s_2$ to mean if C starts in s_1 then it can terminate in s_2
- Semantics of $\{P\} \ C \ \{Q\}$ is Hsem $P \ C \ Q$ where:

Hsem $P \ C \ Q = \forall s_1 \ s_2$. Ssem $P \ s_1 \land \texttt{Csem} \ C \ s_1 \ s_2 \Rightarrow \texttt{Ssem} \ Q \ s_2$

• Sometimes write $\models \{P\} \ C \ \{Q\}$ to mean Hsem $P \ C \ Q$