
134

Total Correctness Specification
✓

① So far our discussion has been concerned with partial correctness

✉ what about termination

① A total correctness specification [P] C [Q] is true if and only if

✉ whenever C is executed in a state satisfying P ,

then the execution of C terminates

✉ after C terminates Q holds

① Except for the WHILE-rule, all the axioms and rules described so far
are sound for total correctness as well as partial correctness

16

135

Termination of WHILE-Commands ✓

① WHILE-commands are the only commands that might not terminate

① Consider now the following proof

1. ⊢ {T} X := X {T} (assignment axiom)

2. ⊢ {T ∧ T} X := X {T} (precondition strengthening)

3. ⊢ {T} WHILE T DO X := X {T ∧ ¬T} (2 and the WHILE-rule)

① If the WHILE-rule worked for total correctness, then this would show:

⊢ [T] WHILE T DO X := X [T ∧ ¬T]

① Thus the WHILE-rule is unsound for total correctness

17

136

Rules for Non-Looping Commands
✓

① Replace { and } by [and], respectively, in:

✉ Assignment axiom (see next slide for discussion)

✉ Consequence rules

✉ Conditional rule

✉ Sequencing rule

① The following is a valid derived rule

⊢ {P} C {Q}
⊢ [P] C [Q]

if C contains no WHILE-commands

18

137

Total Correctness Assignment Axiom
✓

① Assignment axiom for total correctness

⊢ [P[E/V]] V :=E [P]

① Note that the assignment axiom for total correctness states that
assignment commands always terminate

① So all function applications in expressions must terminate

① This might not be the case if functions could be defined recursively

① Consider X := fact(−1), where fact(n) is defined recursively:

fact(n) = if n = 0 then 1 else n× fact(n−1)

19

138

Error Termination ✓

① We assume erroneous expressions like 1/0 don’t cause problems

① Most programming languages will raise an error on division by zero

① In our logic it follows that

⊢ [T] X := 1/0 [X = 1/0]

① The assignment X := 1/0 halts in a state in which X = 1/0 holds

① This assumes that 1/0 denotes some value that X can have

20

139

Two Possibilities ✓

① There are two possibilities

(i) 1/0 denotes some number;

(ii) 1/0 denotes some kind of ‘error value’.

① It seems at first sight that adopting (ii) is the most natural choice

✉ this makes it tricky to see what arithmetical laws should hold

✉ is (1/0)× 0 equal to 0 or to some ‘error value’?

✉ if the latter, then it is no longer the case that ∀n. n× 0 = 0 is valid

① It is possible to make everything work with undefined and/or error
values, but the resultant theory is a bit messy

21

141

WHILE-rule for Total Correctness (i)
✓

① WHILE-commands are the only commands in our little language that
can cause non-termination

✉ they are thus the only kind of command with a non-trivial termination rule

① The idea behind the WHILE-rule for total correctness is

✉ to prove WHILE S DO C terminates

✉ show that some non-negative quantity decreases on each iteration of C

✉ this decreasing quantity is called a variant

23

142

WHILE-Rule for Total Correctness (ii)
✓

① In the rule below, the variant is E, and the fact that it decreases is
specified with an auxiliary variable n

① The hypothesis ⊢ P ∧S ⇒ E ≥ 0 ensures the variant is non-negative

WHILE-rule for total correctness

⊢ [P ∧ S ∧ (E = n)] C [P ∧ (E < n)], ⊢ P ∧ S ⇒ E ≥ 0

⊢ [P] WHILE S DO C [P ∧ ¬S]

where E is an integer-valued expression

and n is an identifier not occurring in P , C, S or E.

24

148

The Derived While Rule ✓

① Derived WHILE-rule needs to handle the variant

Derived WHILE-rule for total correctness

⊢ P ⇒ R

⊢ R ∧ S ⇒ E ≥ 0

⊢ R ∧ ¬S ⇒ Q

⊢ [R ∧ S ∧ (E = n)] C [R ∧ (E < n)]

⊢ [P] WHILE S DO C [Q]

30

149

VCs for Termination ✓

① Verification conditions are easily extended to total correctness

① To generate total correctness verification conditions for WHILE-
commands, it is necessary to add a variant as an annotation in ad-
dition to an invariant

① Variant added directly after the invariant, in square brackets

① No other extra annotations are needed for total correctness

① VCs for WHILE-free code same as for partial correctness

31

150

WHILE Annotation ✓

① A correctly annotated total correctness specification of a WHILE-
command thus has the form

[P] WHILE S DO {R}[E] C [Q]

where R is the invariant and E the variant

① Note that the variant is intended to be a non-negative expression
that decreases each time around the WHILE loop

① The other annotations, which are enclosed in curly brackets, are
meant to be conditions that are true whenever control reaches them
(as before)

32

151

WHILE VCs ✓

① A correctly annotated specification of a WHILE-command has the form

[P] WHILE S DO {R}[E] C [Q]

WHILE-commands

The verification conditions generated from

[P] WHILE S DO {R}[E] C [Q]

are

(i) P ⇒ R

(ii) R ∧ ¬S ⇒ Q

(iii) R ∧ S ⇒ E ≥ 0

(iv) the verification conditions generated by

[R ∧ S ∧ (E = n)] C[R ∧ (E < n)]

where n is a variable not occurring in
P , R, E, C, S or Q.

33

154

Summary
✓

① We have given rules for total correctness

① They are similar to those for partial correctness

① The main difference is in the WHILE-rule

✉ because WHILE commands are the only ones that can fail to terminate

① Must prove a non-negative expression is decreased by the loop body

① Derived rules and VC generation rules for partial correctness easily
extended to total correctness

① Interesting stuff on the web

✉ http://www.crunchgear.com/2008/12/31/zune-bug-explained-in-detail

✉ http://research.microsoft.com/en-us/projects/t2/

36

155

Soundness and completeness of Hoare logic
✓

① Review of first-order logic

✉ syntax: languages, function symbols, predicate symbols, terms, formulae

✉ semantics: interpretations, valuations

✉ soundness and completeness

① Formal semantics of Hoare triples

✉ preconditions and postconditions as terms

✉ semantics of commands

✉ soundness of Hoare axioms and rules

✉ completeness and relative completeness

0

160

Semantics: terms and formulae ✓

① Assume: language L, interpretation I = (D, I), valuation s ∈ Var → D

① Define Esem E s ∈ D by:
✉ if E ∈ Var then Esem E s = s(E)

✉ if E = f , where f a function symbol of arity 0, then Esem E s = I [f]

✉ if E = f(E1, . . . , En), then Esem E s = I [f](Esem E1 s, . . . , Esem En s)

① Define Ssem S s ∈ Bool by:
✉ if S = p, where p a predicate symbol of arity 0, then Ssem S s = I [p]

✉ if S = p(E1, . . . , En), then Ssem S s = I [p](Esem E1 s, . . . , Esem En s)

✉ Ssem (¬S) s = ¬(Ssem S s)

Ssem (S1 ∧ S2) s = (Ssem S1 s) ∧ (Ssem S2 s)

Ssem (S1 ∨ S2) s = (Ssem S1 s) ∨ (Ssem S2 s)

Ssem (S1 ⇒ S2) s = (Ssem S1 s) ⇒ (Ssem S2 s)

✉ Ssem (∀v. S) s = if (for all d ∈ D : Ssem S (s[d/v]) = true) then true else false

Ssem (∃v. S) s = if (for some d ∈ D : Ssem S (s[d/v]) = true) then true else false

① Note: will just say “Ssem S s” to mean that “Ssem S s = true”

5

161

Satisfiability, validity and completeness
✓

① Recall that a language L specifies predicate and function symbols

① S is satisfiable iff for some interpretation of L and s: Ssem S s = true

① S is valid iff for all interpretations of L and all s: Ssem S s = true

① Notation: |= S means S is valid

① Deductive system for first-order logic specifies ⊢ S – i.e. S is provable

① Soundness: if ⊢ S then |= S (easy induction on length of proof)

① Completeness: if |= S then ⊢ S (Gödel 1929)

6

162

Sentences, Theories
✓

① A sentence is a statement with no free variables

✉ truth or falsity of sentences solely determined by interpretation

✉ if S is a sentence then Ssem S s1 = Ssem S s2 for all s1, s2

① A theory is a set of sentences

✉ Γ will range over sets of sentences

① Γ ⊢ S means S can be deduced from Γ using first-order logic

① Γ is consistent iff there is no S such that Γ ⊢ S and Γ ⊢ ¬S

① Γ |=I S means S true if I makes all of Γ true

① Γ |= S means Γ |=I S true for all I

① Soundness and Completeness: Γ |= S iff Γ ⊢ S

7

163

Gödel’s incompleteness theorem
✓

① LPA is the language of Peano Arithmetic

① IPA is the standard interpretation of arithmetic

① |=IPA S means S is true in IPA

① PA is the first-order theory of Peano Arithmetic

① There exists a sentence G of LPA and neither PA ⊢ G nor PA ⊢ ¬G
✉ Gödel’s first incompleteness theorem (1930)

✉ as G is a sentence either |=IPA G or |=IPA ¬G

✉ so there is a sentences, GT say, true in IPA but can’t be proved from PA

✉ i.e. |=IPA GT but not PA ⊢ GT

8

164

Semantics of Hoare triples
✓

① Recall that {P} C {Q} is true if
✉ whenever C is executed in a state satisfying P

✉ and if the execution of C terminates

✉ then C terminates in a state satisfying Q

① P and Q are first-order statements

① Will formalise semantics of {P} C {Q} to express:
✉ whenever C is executed in a state s1 such that Ssem P s1✉ and if the execution of C starting in s1 terminates

✉ then C terminates in a state s2 such that Ssem Q s2 = true

① Need to define “C starts in s1 and terminates in s2”✉ this is the semantics of commands

✉ will define Csem C s1 s2 to mean if C starts in s1 then it can terminate in s2

① Semantics of {P} C {Q} is Hsem P C Q where:

Hsem P C Q = ∀s1 s2. Ssem P s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2

① Sometimes write |= {P} C {Q} to mean Hsem P C Q

9

