
75

Backwards versus Forwards Proof ✓

① Backwards proof just involves using the rules backwards

① Given the rule

⊢ S1 . . . ⊢ Sn

⊢ S

① Forwards proof says:

✉ if we have proved ⊢ S1 . . . ⊢ Sn we can deduce ⊢ S

① Backwards proof says:

✉ to prove ⊢ S it is sufficient to prove ⊢ S1 . . . ⊢ Sn

① Having proved a theorem by backwards proof, it is simple to extract
a forwards proof

22



80

Annotations ✓

① The sequencing rule introduces a new statement R

⊢ {P} C1 {R} ⊢ {R} C2 {Q}
⊢ {P} C1;C2 {Q}

① To apply this backwards, one needs to find a suitable statement R

① If C2 is V :=E then sequenced assignment gives Q[E/V ] for R

① If C2 isn’t an assignment then need some other way to choose R

① Similarly, to use the derived While rule, must invent an invariant

27



81

Annotate First ✓

① It is helpful to think up these statements before you start the proof
and then annotate the program with them

✉ the information is then available when you need it in the proof

✉ this can help avoid you being bogged down in details

✉ the annotation should be true whenever control reaches that point

① Example, the following program could be annotated at the points
P1 and P2 indicated by the arrows

{T}
R:=X;

Q:=0; {R=X ∧ Q=0} ←−P1
WHILE Y≤R DO {X = R+Y×Q} ←−P2

(R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}

28



83

NEW TOPIC: Mechanizing Program Verification
✓

① The architecture of a simple program verifier will be described

① Justified with respect to the rules of Floyd-Hoare logic

① It is clear that

✉ proofs are long and boring, even if the program being verified is quite simple

✉ lots of fiddly little details to get right, many of which are trivial, e.g.

⊢ (R=X ∧ Q=0) ⇒ (X = R + Y×Q)

0



85

Architecture of a Verifier ✓

Specification to be proved

❄

• human expert

Annotated specification

❄

• VC generator

Set of logic statements (VCs)

❄

• theorem prover

Simplified set of

verification conditions

❄

• human expert

End of proof

2



87

Verification conditions ✓

① The three steps in proving {P}C{Q} with a verifier

① 1 The program C is annotated by inserting statements (assertions)
expressing conditions that are meant to hold at intermediate points

✉ tricky: needs intelligence and good understanding of how the program works

✉ automating it is an artificial intelligence problem

① 2 A set of logic statements called verification conditions (VCs) is then
generated from the annotated specification

✉ this is purely mechanical and easily done by a program

① 3 The verification conditions are proved

✉ needs automated theorem proving (i.e. more artificial intelligence)

① To improve automated verification one can try to

✉ reduce the number and complexity of the annotations required

✉ increase the power of the theorem prover

✉ still a research area

4



88

Validity of Verification Conditions
✓

① It will be shown that

✉ if one can prove all the verification conditions generated from {P}C{Q}

✉ then ⊢ {P}C{Q}

① Step 2 converts a verification problem into a conventional mathe-
matical problem

① The process will be illustrated with:

{T}
R:=X;

Q:=0;

WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}

5



89

Example
✓

① Step 1 is to insert annotations P1 and P2

{T}
R:=X;

Q:=0; {R=X ∧ Q=0} ←−P1
WHILE Y≤R DO {X = R+Y×Q} ←−P2

(R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}

① The annotations P1 and P2 state conditions which are intended to
hold whenever control reaches them

6



90

Example Continued
✓

{T}
R:=X;

Q:=0; {R=X ∧ Q=0} ←−P1
WHILE Y≤R DO {X = R+Y×Q} ←−P2

(R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}

① Control only reaches the point at which P1 is placed once

① It reaches P2 each time the WHILE body is executed

✉ whenever this happens X=R+Y×Q holds, even though the values of R and Q vary

✉ P2 is an invariant of the WHILE-command

7



91

Generating and Proving Verification Conditions
✓

① Step 2 will generate the following four verification conditions

(i) T ⇒ (X=X ∧ 0=0)

(ii) (R=X ∧ Q=0) ⇒ (X = R+(Y×Q))
(iii) (X = R+(Y×Q)) ∧ Y≤R) ⇒ (X = (R-Y)+(Y×(Q+1)))
(iv) (X = R+(Y×Q)) ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

① Notice that these are statements of arithmetic

✉ the constructs of our programming language have been ‘compiled away’

① Step 3 consists in proving the four verification conditions

✉ easy with modern automatic theorem provers

8



92

Annotation of Commands ✓

① An annotated command is a command with statements (assertions)
embedded within it

① A command is properly annotated if statements have been inserted at
the following places

(i) before C2 in C1;C2 if C2 is not an assignment command

(ii) after the word DO in WHILE commands

① The inserted assertions should express the conditions one expects to
hold whenever control reaches the point at which the assertion occurs

① Can reduce number of annotations using weakest preconditions
(see later)

9



93

Annotation of Specifications
✓

① A properly annotated specification is a specification {P}C{Q} where
C is a properly annotated command

① Example: To be properly annotated, assertions should be at points
1© and 2© of the specification below

{X=n}
Y:=1; ←− 1©
WHILE X 6=0 DO ←− 2©

(Y:=Y×X; X:=X-1)

{X=0 ∧ Y=n!}

① Suitable statements would be

at 1©: {Y = 1 ∧ X = n}
at 2©: {Y×X! = n!}

10



94

Verification Condition Generation ✓

① The VCs generated from an annotated specification {P}C{Q} are
obtained by considering the various possibilities for C

① We will describe it command by command using rules of the form:

① The VCs for C(C1, C2) are

✉ vc1, ... , vcn

✉ together with the VCs for C1 and those for C2

① Each VC rule corresponds to either a primitive or derived rule

11



96

Justification of VCs ✓

① This process will be justified by showing that ⊢ {P}C{Q} if all the
verification conditions can be proved

① We will prove that for any C

✉ assuming the VCs of {P}C{Q} are provable

✉ then ⊢ {P}C{Q} is a theorem of the logic

13



97

Justification of Verification Conditions ✓

① The argument that the verification conditions are sufficient will be
by induction on the structure of C

① Such inductive arguments have two parts

✉ show the result holds for atomic commands, i.e. assignments

✉ show that when C is not an atomic command, then if the result holds for

the constituent commands of C (this is called the induction hypothesis), then it

holds also for C

① The first of these parts is called the basis of the induction

① The second is called the step

① The basis and step entail that the result holds for all commands

14



98

VC for Assignments
✓

Assignment commands

The single verification condition generated by

{P} V :=E {Q}
is

P ⇒ Q[E/V ]

① Example: The verification condition for

{X=0} X:=X+1 {X=1}
is

X=0 ⇒ (X+1)=1

(which is clearly true)

① Note: Q[E/V ] = wlp("V :=E", Q)

15



99

Justification of Assignment VC
✓

① We must show that if the VCs of {P} V := E {Q} are provable
then ⊢ {P} V := E {Q}

① Proof:

✉ Assume ⊢ P ⇒ Q[E/V ] as it is the VC

✉ From derived assignment rule it follows that ⊢ {P} V := E {Q}

16



100

VCs for Conditionals ✓

Conditionals
The verification conditions generated from

{P} IF S THEN C1 ELSE C2 {Q}
are

(i) the verification conditions generated by

{P ∧ S} C1 {Q}
(ii) the verifications generated by

{P ∧ ¬S} C2 {Q}

① Example: The verification conditions for

{T} IF X≥Y THEN MAX:=X ELSE MAX:=Y {MAX=max(X,Y)}
are

(i) the VCs for {T ∧ X≥Y} MAX:=X {MAX=max(X,Y)}
(ii) the VCs for {T ∧ ¬(X≥Y)} MAX:=Y {MAX=max(X,Y)}

17



101

Justification for the Conditional VCs (1)
✓

① Must show that if VCs of

{P} IF S THEN C1 ELSE C2 {Q}
are provable, then

⊢ {P} IF S THEN C1 ELSE C2 {Q}

① Proof:

✉ Assume the VCs {P ∧ S} C1 {Q} and {P ∧ ¬S} C2 {Q}

✉ The inductive hypotheses tell us that if these VCs are provable then the

corresponding Hoare Logic theorems are provable

✉ i.e. by induction ⊢ {P ∧ S} C1 {Q} and ⊢ {P ∧ ¬S} C2 {Q}

✉ Hence by the conditional rule ⊢ {P} IF S THEN C1 ELSE C2 {Q}

18



102

Review of Annotated Sequences
✓

① If C1;C2 is properly annotated, then either

Case 1: it is of the form C1;{R}C2 and C2 is not an assignment

Case 2: it is of the form C;V := E

① And C, C1 and C2 are properly annotated

19



103

VCs for Sequences
✓

Sequences

1. The verification conditions generated by

{P} C1 {R} C2 {Q}
(where C2 is not an assignment) are the union of:

(a) the verification conditions generated by {P} C1 {R}
(b) the verifications generated by {R} C2 {Q}

2. The verification conditions generated by

{P} C;V :=E {Q}
are the verification conditions generated by {P} C {Q[E/V ]}

20



106

Justification of VCs for Sequences (1)
✓

① Case 1: If the verification conditions for

{P} C1 ; {R} C2 {Q}
are provable

① Then the verification conditions for

{P} C1 {R}
and

{R} C2 {Q}
must both be provable

① Hence by induction

⊢ {P} C1 {R} and ⊢ {R} C2 {Q}

① Hence by the sequencing rule

⊢ {P} C1;C2 {Q}

23



107

Justification of VCs for Sequences (2)
✓

① Case 2: If the verification conditions for

{P} C;V := E {Q}

are provable, then the verification conditions for

{P} C {Q[E/V }

are also provable

① Hence by induction

⊢ {P} C {Q[E/V ]}

① Hence by the derived sequenced assignment rule

⊢ {P} C;V := E {Q}

24



108

VCs for WHILE-Commands ✓

① A correctly annotated specification of a WHILE-command has the form

{P} WHILE S DO {R} C {Q}

① The annotation R is called an invariant

WHILE-commands

The verification conditions generated from

{P} WHILE S DO {R} C {Q}

are

(i) P ⇒ R

(ii) R ∧ ¬S ⇒ Q

(iii) the verification conditions generated by {R ∧ S} C{R}

25



111

Justification of WHILE VCs ✓

① If the verification conditions for

{P} WHILE S DO {R} C {Q}
are provable, then

⊢ P ⇒ R

⊢ (R ∧ ¬S) ⇒ Q

and the verification conditions for

{R ∧ S} C {R}
are provable

① By induction

⊢ {R ∧ S} C {R}
① Hence by the derived WHILE-rule

⊢ {P} WHILE S DO C {Q}

28



112

Summary
✓

① Have outlined the design of an automated program verifier

① Annotated specifications compiled to mathematical statements

✉ if the statements (VCs) can be proved, the program is verified

① Human help is required to give the annotations and prove the VCs

① The algorithm was justified by an inductive proof

✉ it appeals to the derived rules

① All the techniques introduced earlier are used

✉ backwards proof

✉ derived rules

✉ annotation

29



113

Dijkstra’s weakest preconditions
✓

① Weakest preconditions is a theory of refinement

✉ idea is to calculate a program to achieve a postcondition

✉ not a theory of post hoc verification

① Non-determinism a key idea in Dijksta’s presentation

✉ start with a non-deterministic high level pseudo-code

✉ refine to deterministic and efficient code

① Weakest preconditions (wp) are for total correctness

① Weakest liberal preconditions (wlp) for partial correctness

① If C is a command and Q a predicate, then informally:

• wlp(C,Q) = ‘The weakest predicate P such that {P} C {Q}’
• wp(C,Q) = ‘The weakest predicate P such that [P ] C [Q]’

① If P and Q are predicates then Q ⇒ P means P is ‘weaker’ than Q

30



114

Rules for weakest preconditions
✓

① Relation with Hoare specifications:

{P} C {Q} ⇔ P ⇒ wlp(C,Q)

[P ] C [Q] ⇔ P ⇒ wp(C,Q)

① Dijkstra gives rules for computing weakest preconditions:

wp(V :=E,Q) = Q[E/V ]

wp(C1;C2, Q) = wp(C1, wp(C2, Q))

wp(IF S THEN C1 ELSE C2, Q) = (S ⇒ wp(C1, Q)) ∧ (¬S ⇒ wp(C2, Q))

for deterministic loop-free code the same equations hold for wlp

① Rule for WHILE-commands doesn’t give a first order result

① Weakest preconditions closely related to verification conditions

① VCs for {P} C {Q} are related to P ⇒ wlp(C,Q)

✉ VCs use annotations to ensure first order formulas can be generated

31



117

Using wlp to improve verification condition method
✓

① If C is loop-free then VC for {P} C {Q} is P ⇒ wlp(C,Q)

✉ no annotations needed in sequences!

① Cannot in general compute a finite formula for wlp(WHILE S DO C, Q)

① The following holds

wlp(WHILE S DO C, Q) = if S then wlp(C, wlp(WHILE S DO C, Q)) else Q

① Above doesn’t define wlp(C,Q) as a finite statement

① Could use a hybrid VC and wlp method

34



122

Strongest postconditions
✓

① Define sp(C, P ) to be ‘strongest’ Q such that {P} C {Q}
✉ partial correctness: {P} C {sp(C,P )}

✉ strongest means if {P} C {Q} then sp(C,P ) ⇒ Q

① Note that wlp goes ‘backwards’, but sp goes ‘forwards’

✉ verification condition for {P} C {Q} is: sp(C,P ) ⇒ Q

① By ‘strongest’ and Hoare logic postcondition weakening

✉ {P} C {Q} if and only if sp(C,P ) ⇒ Q

4



123

Strongest postconditions for loop-free code
✓

① Only consider loop-free code

① sp(V := E, P ) = ∃v. V = E[v/V ] ∧ P[v/V ]

① sp(C1 ; C2, P ) = sp(C2, sp(C1, P ))

① sp(IF S THEN C1 ELSE C2, P ) = sp(C1, P ∧ S) ∨ sp(C2, P ∧ ¬S)

① sp(V :=E, P ) corresponds to Floyd assignment axiom

① Can dynamically prune conditionals because sp(C, F) = F

① Computer strongest postconditions is symbolic execution

5



126

Computing sp versus wlp
✓

① Computing sp is like execution

✉ can simplify as one goes along with the ‘current state’

✉ may be able to resolve branches, so can avoid executing them

✉ Floyd assignment rule complicated in general

✉ sp used for symbolically exploring ‘reachable states’

(related to model checking)

① Computing wlp is like backwards proof

✉ don’t have ‘current state’, so can’t simplify using it

✉ can’t determine conditional tests, so get big if-then-else trees

✉ Hoare assignment rule simpler for arbitrary formulae

✉ wlp used for improved verification conditions

8



128

Using sp to generate verification conditions
✓

① If C is loop-free then VC for {P} C {Q} is sp(C, P ) ⇒ Q

① Cannot in general compute a finite formula for sp(WHILE S DO C, P )

① The following holds

sp(WHILE S DO C, P ) = sp(WHILE S DO C, sp(C, (P ∧ S))) ∨ (P ∧ ¬S)

① Above doesn’t define sp(C, P ) to be a finite statement

① As with wlp, can use a hybrid VC and sp method

10



132

Summary
✓

① Annotate then generate VCs is the classical method

✉ practical tools: Gypsy (1970s), SPARK (current)

✉ weakest preconditions are alternative explanation of VCs

✉ wlp needs fewer annotations than VC method described earlier

✉ wlp also used for refinement

① VCs and wlp go backwards, sp goes forward

✉ sp provides verification method based on symbolic simulation

✉ widely used for loop-free code

✉ current research potential for forwards full proof of correctness

✉ probably need mixture of forwards and backwards methods (Hoare’s view)

14



133

Range of methods for proving {P}C{Q}
✓

• Bounded model checking (BMC)

– unwind loops a finite number of times

– then symbolically execute

– check states reached satisfy decidable properties

• Full proof of correctness

– add invariants to loops

– generate verification conditions

– prove verification conditions with a theorem prover

• Research goal: unifying framework for a spectrum of methods

decidable checking proof of correctness

15


