
1

Hoare Logic
✓

http://www.cl.cam.ac.uk/~mjcg/HoareLogic.html

① Program specification using Hoare notation

① Axioms and rules of Hoare Logic

① Soundness and completeness

① Mechanised program verification

① Pointers, the frame problem and separation logic

0

7

A Little Programming Language
✓

Expressions:

E::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

Boolean expressions:

B::= T | F | E1=E2 | E1 ≤ E2 | . . .

Commands:

C::= V := E

| C1 ; C2

| IF B THEN C1 ELSE C2

| WHILE B DO C

6

9

Specification of Imperative Programs
✓

Acceptable
Initial State

Acceptable
Final State

“X is
greater than

zero”

“Y is the
square root

of X”

✲

Action
of the

Program

8

10

Hoare’s notation ✓

① C.A.R. Hoare introduced the following notation called a
partial correctness specification for specifying what a program does:

{P} C {Q}
where:

✉ C is a command

✉ P and Q are conditions on the program variables used in C

① Conditions on program variables will be written using standard
mathematical notations together with logical operators like:

✉ ∧ (‘and’), ∨ (‘or’), ¬ (‘not’), ⇒ (‘implies’)

① Hoare’s original notation was P {C} Q not {P} C {Q}, but the latter
form is now more widely used

9

11

Meaning of Hoare’s Notation
✓

① {P} C {Q} is true if

✉ whenever C is executed in a state satisfying P

✉ and if the execution of C terminates

✉ then the state in which C terminates satisfies Q

① Example: {X = 1} X:=X+1 {X = 2}
✉ P is the condition that the value of X is 1

✉ Q is the condition that the value of X is 2

✉ C is the assignment command X:=X+1

✉ i.e. ‘X becomes X+1’

① {X = 1} X:=X+1 {X = 2} is true

① {X = 1} X:=X+1 {X = 3} is false

10

16

Hoare Logic and Verification Conditions
✓

① Hoare Logic is a deductive proof system for Hoare triples {P} C {Q}

① Can use Hoare Logic directly to verify programs

✉ original proposal by Hoare

✉ tedious and error prone

✉ impractical for large programs

① Can ‘compile’ proving {P} C {Q} to verification conditions

✉ more natural

✉ basis for computer assisted verification

① Proof of verification conditions equivalent to proof with Hoare Logic

✉ Hoare Logic can be used to explain verification conditions

15

17

Partial Correctness Specification
✓

① An expression {P} C {Q} is called a partial correctness specification

✉ P is called its precondition

✉ Q its postcondition

① {P} C {Q} is true if

✉ whenever C is executed in a state satisfying P

✉ and if the execution of C terminates

✉ then the state in which C’s execution terminates satisfies Q

① These specifications are ‘partial’ because for {P} C {Q} to be true
it is not necessary for the execution of C to terminate when started
in a state satisfying P

① It is only required that if the execution terminates, then Q holds

① {X = 1} WHILE T DO X:=X {Y = 2} – this specification is true!

16

18

Total Correctness Specification
✓

① A stronger kind of specification is a total correctness specification

✉ there is no standard notation for such specifications

✉ we shall use [P] C [Q]

① A total correctness specification [P] C [Q] is true if and only if

✉ whenever C is executed in a state satisfying P the execution of C terminates

✉ after C terminates Q holds

① [X = 1] Y:=X; WHILE T DO X:=X [Y = 1]

✉ this says that the execution of Y:=X;WHILE T DO X:=X terminates when started

in a state satisfying X = 1

✉ after which Y = 1 will hold

✉ this is clearly false

17

19

Total Correctness ✓

① Informally:

Total correctness = Termination + Partial correctness

① Total correctness is the ultimate goal

✉ usually easier to show partial correctness and termination separately

① Termination is usually straightforward to show, but there are ex-
amples where it is not: no one knows whether the program below
terminates for all values of X

WHILE X>1 DO

IF ODD(X) THEN X := (3×X)+1 ELSE X := X DIV 2

✉ X DIV 2 evaluates to the result of rounding down X/2 to a whole number

✉ the Collatz conjecture is that this terminates with X=1

① Microsoft’s T2 tool proves systems code terminates

18

20

Auxiliary Variables
✓

① {X=x ∧ Y=y} R:=X; X:=Y; Y:=R {X=y ∧ Y=x}
✉ this says that if the execution of

R:=X; X:=Y; Y:=R

terminates (which it does)

✉ then the values of X and Y are exchanged

① The variables x and y, which don’t occur in the command and are
used to name the initial values of program variables X and Y

① They are called auxiliary variables or ghost variables

① Informal convention:

✉ program variable are upper case

✉ auxiliary variable are lower case

19

35

Floyd-Hoare Logic
✓

① To construct formal proofs of partial correctness specifications,
axioms and rules of inference are needed

① This is what Floyd-Hoare logic provides

✉ the formulation of the deductive system is due to Hoare

✉ some of the underlying ideas originated with Floyd

① A proof in Floyd-Hoare logic is a sequence of lines, each of which is
either an axiom of the logic or follows from earlier lines by a rule of
inference of the logic

✉ proofs can also be trees, if you prefer

① A formal proof makes explicit what axioms and rules of inference
are used to arrive at a conclusion

11

39

Judgements
✓

① Three kinds of things that could be true or false:

✉ statements of mathematics, e.g. (X + 1)2 = X2 + 2× X + 1

✉ partial correctness specifications {P} C {Q}
✉ total correctness specifications [P] C [Q]

① These three kinds of things are examples of judgements

✉ a logical system gives rules for proving judgements

✉ Floyd-Hoare logic provides rules for proving partial correctness specifications

✉ the laws of arithmetic provide ways of proving statements about integers

① ⊢ S means statement S can be proved

✉ how to prove predicate calculus statements assumed known

✉ this course covers axioms and rules for proving

program correctness statements

15

38

Reminder of our little programming language
✓

① The proof rules that follow constitute an axiomatic semantics of our
programming language

Expressions

E ::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

Boolean expressions

B ::= T | F | E1=E2 | E1 ≤ E2 | . . .

Commands

C ::= V := E Assignments

| C1 ; C2 Sequences

| IF B THEN C1 ELSE C2 Conditionals

| WHILE B DO C WHILE-commands

14

41

Substitution Notation ✓

① Q[E/V] is the result of replacing all occurrences of V in Q by E

✉ read Q[E/V] as ‘Q with E for V ’

✉ for example: (X+1 > X)[Y+Z/X] = ((Y+Z)+1 > Y+Z)

✉ ignoring issues with bound variables for now (e.g. variable capture)

① Same notation for substituting into terms, e.g. E1[E2/V]

① Think of this notation as the ‘cancellation law’

V [E/V] = E

which is analogous to the cancellation property of fractions

v × (e/v) = e

① Note that Q[x/V] doesn’t contain V (if V 6= x)

17

42

The Assignment Axiom (Hoare)
✓

① Syntax: V := E

① Semantics: value of V in final state is value of E in initial state

① Example: X:=X+1 (adds one to the value of the variable X)

The Assignment Axiom

⊢ {Q[E/V]} V :=E {Q}
Where V is any variable, E is any expression, Q is any statement.

① Instances of the assignment axiom are

✉ ⊢ {E = x} V := E {V = x}
✉ ⊢ {Y = 2} X := 2 {Y = X}
✉ ⊢ {X + 1 = n + 1} X := X + 1 {X = n + 1}
✉ ⊢ {E = E} X := E {X = E} (if X does not occur in E)

18

43

The Backwards Fallacy
✓

① Many people feel the assignment axiom is ‘backwards’

① One common erroneous intuition is that it should be

⊢ {P} V :=E {P[V/E]}

✉ where P[V/E] denotes the result of substituting V for E in P

✉ this has the false consequence ⊢ {X=0} X:=1 {X=0}
(since (X=0)[X/1] is equal to (X=0) as 1 doesn’t occur in (X=0))

① Another erroneous intuition is that it should be

⊢ {P} V :=E {P[E/V]}

✉ this has the false consequence ⊢ {X=0} X:=1 {1=0}
(which follows by taking P to be X=0, V to be X and E to be 1)

19

48

Validity
✓

① Important to establish the validity of axioms and rules

① Later will give a formal semantics of our little programming language

✉ then prove axioms and rules of inference of Floyd-Hoare logic are sound

✉ this will only increase our confidence in the axioms and rules to the extent

that we believe the correctness of the formal semantics!

① The Assignment Axiom is not valid for ‘real’ programming languages

✉ In an early PhD on Hoare Logic G. Ligler showed that the assignment axiom

can fail to hold in six different ways for the language Algol 60

24

49

Expressions with Side-effects
✓

① The validity of the assignment axiom depends on expressions not
having side effects

① Suppose that our language were extended so that it contained the
‘block expression’

BEGIN Y:=1; 2 END

✉ this expression has value 2, but its evaluation also ‘side effects’ the variable Y

by storing 1 in it

① If the assignment axiom applied to block expressions, then it could
be used to deduce

⊢ {Y=0} X:=BEGIN Y:=1; 2 END {Y=0}
✉ since (Y=0)[E/X] = (Y=0) (because X does not occur in (Y=0))

✉ this is clearly false; after the assignment Y will have the value 1

25

44

A Forwards Assignment Axiom (Floyd)
✓

① This is the original semantics of assignment due to Floyd

⊢ {P} V :=E {∃v. V = E[v/V] ∧ P[v/V]}
✉ where v is a new variable (i.e. doesn’t equal V or occur in P or E)

① Example instance

⊢ {X=1} X:=X+1 {∃v. X = X+1[v/X] ∧ X=1[v/X]}

① Simplifying the postcondition

⊢ {X=1} X:=X+1 {∃v. X = X+1[v/X] ∧ X=1[v/X]}
⊢ {X=1} X:=X+1 {∃v. X = v + 1 ∧ v = 1}
⊢ {X=1} X:=X+1 {∃v. X = 1 + 1 ∧ v = 1}
⊢ {X=1} X:=X+1 {X = 1 + 1 ∧ ∃v. v = 1}
⊢ {X=1} X:=X+1 {X = 2 ∧ T}
⊢ {X=1} X:=X+1 {X = 2}

① Forwards Axiom equivalent to standard one but harder to use

20

