
1

Exercises for which solution notes are available

Exercise 1

Write a specification which is true if and only if the following program ter-

minates.

WHILE X>1 DO IF ODD(X) THEN X := (3×X)+1 ELSE X := X DIV 2

Exercise 2

Let C be the following command

R:=X;
Q:=0;
WHILE Y≤R DO (R:=R-Y; Q:=Q+1)

Find a condition P such that [P ] C [R < Y ∧ X = R + (Y× Q)] is true.

Exercise 3

When is [T] C [T] true?

Exercise 4

Write a partial correctness specification which is true if and only if the com-

mand C has the effect of multiplying the values of X and Y and storing the

result in X.

Exercise 5

Write a specification which is true if the execution of C always halts when

execution is started in a state satisfying P .

Exercise 6

Find the flaw in the ‘proof’ of 1 = −1 below:

1.
√
−1×−1 =

√
−1×−1 Reflexivity of =.

2.
√
−1×−1 = (

√
−1)× (

√
−1) Distributive law of

√
over ×.

3.
√
−1×−1 = (

√
−1)2 Definition of ()2.

4.
√
−1×−1 = −1 definition of

√
.

5.
√
1 = −1 As −1×−1 = 1.

6. 1 = −1 As
√
1 = 1.

Exercise 7

Is the following specification true?

⊢ {X=x ∧ Y=y} X:=X+Y; Y:=X-Y; X:=X-Y {Y=x ∧ X=y}
If so, prove it. If not, give the circumstances in which it fails.



2

Exercise 8

Show in detail that ⊢ {X=R+(Y×Q)} R:=R-Y; Q:=Q+1 {X=R+(Y×Q)}

Exercise 9

Give a detailed formal proof that

⊢ {T} IF X≥Y THEN MAX:=X ELSE MAX:=Y {MAX=max(X,Y)}
follows from ⊢ X≥Y ⇒ max(X,Y)=X and ⊢ Y≥X ⇒ max(X,Y)=Y.

Exercise 10

Suppose we add to our little programming language commands of the form:

CASE E OF BEGIN C1; . . . ; Cn END

These are evaluated as follows:

(i) First E is evaluated to get a value x.

(ii) If x is not a number between 1 and n, then the CASE-command has no

effect.

(iii) If x = i where 1 ≤ i ≤ n, then command Ci is executed.

Why is the following rule for CASE-commands wrong?

⊢ {P ∧ E = 1} C1 {Q}, . . . , ⊢ {P ∧ E = n} Cn {Q}
⊢ {P} CASE E OF BEGIN C1; . . . ; Cn END {Q}

Hint: Consider the case when P is ‘X = 0’, E is ‘X ’, C1 is ‘Y :=0’ and Q is

‘Y = 0’.

Exercise 11

Devise a proof rule for the CASE-commands in the previous exercise and use

it to show:

⊢ {1≤X ∧ X≤3} CASE X OF BEGIN Y:=X-1; Y:=X-2; Y:=X-3 END {Y=0}

Exercise 12

Devise a proof rule for a command

REPEAT command UNTIL statement

The meaning of REPEAT C UNTIL S is that C is executed and then S

is tested; if the result is true, then nothing more is done, otherwise the

whole REPEAT command is repeated. Thus REPEAT C UNTIL S is equivalent

to C; WHILE ¬S DO C.



3

Additional exercises without solution notes

Exercise 13

Use your REPEAT rule to deduce:

⊢ {S = C+R ∧ R<Y}
REPEAT (S:=S+1; R:=R+1) UNTIL R=Y

{S = C+Y}

Exercise 14

Use your REPEAT rule to deduce:

⊢ {X=x ∧ Y=y}
S:=0;

REPEAT

R:=0;

REPEAT (S:=S+1; R:=R+1) UNTIL R=Y;

X:=X-1

UNTIL X=0

{S = x×y}

Exercise 15

The exponentiation function exp satisfies:

exp(m, 0) = 1
exp(m,n+1) = m× exp(m,n)

Devise a command C that uses repeated multiplication to achieve the

following partial correctness specification:
{X=x ∧ Y=y ∧ Y ≥ 0} C {Z=exp(x,y) ∧ X=x ∧ Y=y}

Prove that your command C meets this specification.

Exercise 16

Assume gcd(X,Y) satisfies:

⊢ (X>Y) ⇒ gcd(X,Y)=gcd(X-Y,Y)

⊢ gcd(X,Y)=gcd(Y,X)

⊢ gcd(X,X)=X

Prove:

⊢ {(A>0) ∧ (B>0) ∧ (gcd(A,B)=gcd(X,Y))}
WHILE A>B DO A:=A-B;

WHILE B>A DO B:=B-A

{(0<B) ∧ (B≤A) ∧ (gcd(A,B)=gcd(X,Y))}



4

Hence, or otherwise, use your rule for REPEAT commands to prove:

⊢ {A=a ∧ B=b}
REPEAT

WHILE A>B DO A:=A-B;

WHILE B>A DO B:=B-A

UNTIL A=B

{A=B ∧ A=gcd(a,b)}
Exercise 17

Deduce:

⊢ {S = (x×y)-(X×Y)}
WHILE ¬ODD(X) DO (Y:=2×Y; X:=X DIV 2)

{S = (x×y)-(X×Y) ∧ ODD(X)}
Exercise 18

Deduce:

⊢ {S = (x×y)-(X×Y)}
WHILE ¬(X=0) DO

WHILE ¬ODD(X) DO (Y:=2×Y; X:=X DIV 2);

S:=S+Y;

X:=X-1

{S = x×y}
Exercise 19

Deduce:

⊢ {X=x ∧ Y=y}
S:=0;

WHILE ¬(X=0) DO

(WHILE ¬ODD(X) DO (Y:=2×Y; X:=X DIV 2);

S:=S+Y;

X:=X-1)

{S = x×y}
Exercise 20

Using P×XN=xn as an invariant, deduce:

⊢ {X=x ∧ N=n}
P:=1;

WHILE ¬(N=0) DO

(IF ODD(N) THEN P:=P×X else P:=P;

N:=N DIV 2;

X:=X×X)

{P = xn}



5

Exercise 21

Prove that the command

Z:=0;

WHILE ¬(X=0) DO

(IF ODD(X) THEN Z:=Z+Y ELSE Z:=Z;

Y:=Y×2;

X:=X DIV 2)

computes the product of the initial values of X and Y and leaves the result in

Z.

Exercise 22

Prove that the command

Z:=1;

WHILE N>0 DO

(IF ODD(N) THEN Z:=Z×X else Z:=Z;

N:=N DIV 2;

X:=X×X)

assigns xn to Z, where x and n are the initial values of X and N respectively

and we assume n ≥ 0.

Exercise 23

What are the verification conditions for the following specification?

{T} IF X≥Y THEN MAX:=X ELSE MAX:=Y {MAX=max(X,Y)}

Are they true?

Exercise 24

What are the verification conditions for the following specification?

{X = R+(Y×Q)} R:=R-Y; Q:=Q+1 {X = R+(Y×Q)}

Are they true?

Exercise 25

What are the verification conditions generated by the following annotated

specification. Are they true?



6

{X=n}
BEGIN

Y:=1; {Y = 1 ∧ X = n}
WHILE X6=0 DO {Y×X! = n!}
(Y:=Y×X; X:=X-1)

END

{X=0 ∧ Y=n!}
Exercise 26

Why are the verification conditions for the annotated specification

{T} WHILE F DO {F} X:=0 {T}
not provable, even though ⊢ {T} WHILE F DO X:=0 {T}.

Exercise 27

Prove by induction on the structure of C that if no variable occurring in P

is assigned to in C, then ⊢ {P} C{P}.

Exercise 28

Devise verification conditions for commands of the form REPEAT C UNTIL S

(see Exercise 12).

Exercise 29

Consider the following alternative scheme for generating VCs from annotated

WHILE-commands (due to Silas Brown).

WHILE-commands

Alternative verification conditions generated from

{P} WHILE S DO {R} C {Q}

are

(i) P ∧ S ⇒ R

(ii) P ∧ ¬S ⇒ Q

(iii) the verification conditions generated by
{R} C{(Q ∧ ¬S) ∨ (R ∧ S)}

Either justify these VCs, or find a counterexample.


