SMT-LIB for HOL

Daniel Kroening Philipp Rummer Georg Weissenbacher

Oxford University Computing Laboratory

ITP Workshop
MSR Cambridge
25 August 2009

13

The SMT-LIB Standard

SMT — Satisfiability Modulo Theories
SMT-LIBis ...

» a standardised input format for SMT-solvers (since 2003)
» a standardised format for exchanging SMT problems
» a library of more than 60 000 SMT benchmarks

» the basis for the annual SMT competition
(this year: at CADE)

Theories in SMT-LIB:
» integer and rational arithmetic (linear)
» uninterpreted functions
> arrays
» finite-width bit-vectors

The SMT-LIB Standard (2)

Some state-of-the-art SMT-solvers:

» Alt-Ergo, Argo-lib, Barcelogic, CVC3, DTP, Fx7, haRVey,
MathSAT, Spear, STP, Yices, Z3

» All are completely automatic

» Standard architecture:
DPLL + small theory engines + quantifier heuristics

» “Good for shallow reasoning”

» Used as back-ends in many verification systems:
Krakatoa, Caduceus, ESC/Java2, Spec#, VCC, Havoc,
CBMC, ...

13

Example in SMT-LIB Format

(benchmark Ensures_Q_ noinfer_2
:source { Boogie/Spec# benchmarks. }
:logic AUFLIA

rextrapreds ((InRange Int Int))
rextrafuns ((this Int))
rextrafuns ((intAtLeast Int Int Int))

rassumption
(forall (?t Int) (?2u Int) (?v Int)

(implies (and (subtypes ?t ?u) (subtypes ?u ?v)) (subtypes ?t ?v))

:pat (subtypes ?t ?u) (subtypes ?u ?v))

:formula

(not (implies (implies (implies (implies
(and
(forall (2o Int) (?F Int)
(implies (and (= 20 this) (= ?F X)) (= (select2 H 20 ?F) 5)))
(implies
(forall (2o Int) (?F Int)
(implies (and (= 2o this) (= ?F X)) (= (select2 H 20 ?F) 5)))

(implies true true)))

(= ReallylLastGeneratedExit_correct Smt.true))
(= ReallylastGeneratedExit_correct Smt.true))

(= start_correct Smt.true))

(= start_correct Smt.true))))

4/13

The SMT-LIB Format

SMT-LIB is currently quite low-level:

» No high-level types like sets, lists, maps, etc.

Solutions practically used:

» Much can be encoded in arrays + axioms
(+ prover-specific extensions)

» Some solvers offer algebraic datatypes
(not standardised)

= Against the idea of SMT-LIB

13

The SMT-LIB Format (2)

» Current version of the standard: 1.2
» Version 2 to be finished sometime in 2009

New Features in Version 2

» Type constructors, parametric theories
» Various simplifications
> ...

» New theories! (hopefully)

/13

Our Proposal for New SMT-LIB Theories

Datatypes inspired by VDM-SL

» Tuples

» (Finite) Lists

» (Finite) Sets

» (Finite) Partial Maps

Our main applications

» Reasoning + test-case generation for UML/OCL
» (Bounded) Model checking with abstract library models
» VDM-SL

Signature of the SMT-LIB Theories

Tuples Sets Lists Maps
(Tuple (Set T) (List T) (Map S T)
Ty ... Tp)
tuple emptySet | nil [] | emptyMap 0
(X1,...,Xn) | insert cons x:L|apply f(x)
project MuU{x} | head overwrite
Xk | in € | tail <+
product subset C | append M | domain
Mi x---x M, | union U | length |l | range
inter N | nth I | restrict <
setminus \ | inds subtract 4
card M| {1,..., 1/}
elems

{h,..

Nm

/13

Example: Verification Cond. Generated by VDMTools

In VDM-SL notation:

VI L(Z),i:N. (i € inds(/) = Vj € inds(/) \ {i}. j € inds(/))

In SMT-LIB notation:

(forall ((1 (List Int)) (i Int))
(implies
(and (>= i 0) (in i (inds 1)))
(forall (3j Int)
(implies
(in j (setminus (inds 1) (set 1)))

(in j (inds 1))))))

/13

Event-B File System Case Study (delete/inv8)

parent € objects \ {root} — objects,
obj € objects \ {root}, des C objects,
des = (fcl(parent)) ~ [{obj}], objs = des U {obj}
= objs gparent € (objects \ objs) \ {root} — objects\ objs

objects, des, objs : (Set OBJECT)
parent : (Map OBJECT OBJECT)
obj : OBJECT

(implies ... (and
(= (domain (subtract parent obijs))
(setminus objects
objs (insert emptySet root)))
(subset (range (subtract parent obijs))
(setminus objects objs))

))

10/13

Application to Event-B Verification Conditions (2)

Translation of Event-B proof obligations

» Carrier sets — SMT-LIB types
» Sets — finite sets
» Functions — finite partial maps or arrays

» SMT-LIB is strongly typed — type inference necessary
» Potential issue: finiteness of SMT-LIB datatypes

11/13

Status of the Proposal

» Syntax + Semantics of theories is formally defined
= In collaboration with Cesare Tinelli
= Was presented at SMT workshop 2009

» Pre-processor is under development
= Converter SMT-LIB 2 — SMT-LIB 1

» Decidability is being investigated

12/13

Proofs vs. Refutations

Refutations: SMT solvers produce satisfying assignments.

What about proofs?

» All SMT solvers use DPLL communicating with theory
solvers

» Theory solvers can be made to produce deduction steps

= Proof can be exported, checked by trusted kernel in ITP

13/13

