
SMT-LIB for HOL

Daniel Kroening Philipp Rümmer Georg Weissenbacher

Oxford University Computing Laboratory

ITP Workshop
MSR Cambridge
25 August 2009

1 / 13

The SMT-LIB Standard

SMT→ Satisfiability Modulo Theories

SMT-LIB is . . .
I a standardised input format for SMT-solvers (since 2003)
I a standardised format for exchanging SMT problems
I a library of more than 60 000 SMT benchmarks
I the basis for the annual SMT competition

(this year: at CADE)

Theories in SMT-LIB:
I integer and rational arithmetic (linear)
I uninterpreted functions
I arrays
I finite-width bit-vectors

2 / 13

The SMT-LIB Standard (2)

Some state-of-the-art SMT-solvers:
I Alt-Ergo, Argo-lib, Barcelogic, CVC3, DTP, Fx7, haRVey,

MathSAT, Spear, STP, Yices, Z3
I All are completely automatic
I Standard architecture:

DPLL + small theory engines + quantifier heuristics
I “Good for shallow reasoning”

I Used as back-ends in many verification systems:
Krakatoa, Caduceus, ESC/Java2, Spec#, VCC, Havoc,
CBMC, . . .

3 / 13

Example in SMT-LIB Format
(benchmark Ensures_Q_noinfer_2
:source { Boogie/Spec# benchmarks. }
:logic AUFLIA
[...]
:extrapreds ((InRange Int Int))
:extrafuns ((this Int))
:extrafuns ((intAtLeast Int Int Int))
[...]
:assumption
(forall (?t Int) (?u Int) (?v Int)
(implies (and (subtypes ?t ?u) (subtypes ?u ?v)) (subtypes ?t ?v))
:pat (subtypes ?t ?u) (subtypes ?u ?v))

[...]
:formula
(not (implies (implies (implies (implies
(and
(forall (?o Int) (?F Int)
(implies (and (= ?o this) (= ?F X)) (= (select2 H ?o ?F) 5)))
(implies
(forall (?o Int) (?F Int)
(implies (and (= ?o this) (= ?F X)) (= (select2 H ?o ?F) 5)))
(implies true true)))
(= ReallyLastGeneratedExit_correct Smt.true))
(= ReallyLastGeneratedExit_correct Smt.true))
(= start_correct Smt.true))
(= start_correct Smt.true))))

4 / 13

The SMT-LIB Format

SMT-LIB is currently quite low-level:
I No high-level types like sets, lists, maps, etc.

Solutions practically used:
I Much can be encoded in arrays + axioms

(+ prover-specific extensions)
I Some solvers offer algebraic datatypes

(not standardised)
⇒ Against the idea of SMT-LIB

5 / 13

The SMT-LIB Format (2)

I Current version of the standard: 1.2
I Version 2 to be finished sometime in 2009

New Features in Version 2
I Type constructors, parametric theories
I Various simplifications
I . . .

I New theories! (hopefully)

6 / 13

Our Proposal for New SMT-LIB Theories

Datatypes inspired by VDM-SL

I Tuples
I (Finite) Lists
I (Finite) Sets
I (Finite) Partial Maps

Our main applications

I Reasoning + test-case generation for UML/OCL
I (Bounded) Model checking with abstract library models
I VDM-SL

7 / 13

Signature of the SMT-LIB Theories

Tuples Sets Lists Maps

(Tuple
T1 ... Tn)

(Set T) (List T) (Map S T)

tuple
(x1, . . . , xn)

project
xk

product
M1×· · ·×Mn

emptySet ∅
insert

M ∪ {x}
in ∈
subset ⊆
union ∪
inter ∩
setminus \
card |M|

nil []
cons x :: L
head
tail
append y
length |l |
nth lk
inds

{1, . . . , |l |}
elems

{l1, . . . , l|l|}

emptyMap ∅
apply f (x)
overwrite

<+

domain
range
restrict C
subtract C–

8 / 13

Example: Verification Cond. Generated by VDMTools

In VDM-SL notation:

∀l : L(Z), i : N.
(
i ∈ inds(l)⇒ ∀j ∈ inds(l) \ {i}. j ∈ inds(l)

)
In SMT-LIB notation:

(forall ((l (List Int)) (i Int))
(implies

(and (>= i 0) (in i (inds l)))
(forall (j Int)

(implies
(in j (setminus (inds l) (set i)))
(in j (inds l))))))

9 / 13

Event-B File System Case Study (delete/inv8)
parent ∈ objects \ {root}→ objects,

obj ∈ objects \ {root}, des ⊆ objects,

des = (tcl(parent)) ∼ [{obj}], objs = des ∪ {obj}
⇒ objs C– parent ∈ (objects \ objs) \ {root}→ objects \ objs

objects, des, objs : (Set OBJECT)
parent : (Map OBJECT OBJECT)
obj : OBJECT

(implies ... (and
(= (domain (subtract parent objs))

(setminus objects
objs (insert emptySet root)))

(subset (range (subtract parent objs))
(setminus objects objs))

))
10 / 13

Application to Event-B Verification Conditions (2)

Translation of Event-B proof obligations

I Carrier sets → SMT-LIB types
I Sets → finite sets
I Functions → finite partial maps or arrays

I SMT-LIB is strongly typed→ type inference necessary
I Potential issue: finiteness of SMT-LIB datatypes

11 / 13

Status of the Proposal

I Syntax + Semantics of theories is formally defined
⇒ In collaboration with Cesare Tinelli
⇒Was presented at SMT workshop 2009

I Pre-processor is under development
⇒ Converter SMT-LIB 2→ SMT-LIB 1

I Decidability is being investigated

12 / 13

Proofs vs. Refutations

Refutations: SMT solvers produce satisfying assignments.

What about proofs?

I All SMT solvers use DPLL communicating with theory
solvers

I Theory solvers can be made to produce deduction steps

⇒ Proof can be exported, checked by trusted kernel in ITP

13 / 13

