
Automated reverse engineering of Automated reverse engineering of

security protocols security protocols

Learning to fuzz, fuzzing to learnLearning to fuzz, fuzzing to learn

Fides Aarts Erik Poll Fides Aarts Erik Poll

Joeri de Ruiter Sicco Verwer

Radboud University NijmegenRadboud University Nijmegen

FuzzingFuzzing

1. Plain fuzzing, with long inputs to trigger seg-faults and find hence find 1. Plain fuzzing, with long inputs to trigger seg-faults and find hence find

buffer overflows

2. Protocol fuzzing based on known protocol format, fuzzing interesting 2. Protocol fuzzing based on known protocol format, fuzzing interesting
fields [eg SNOOZE]

3. State-based fuzzing to reach interesting states in the protocol state-
machine, and then fuzz there

essentially model-based testing

[eg Peach, jTor] [eg Peach, jTor]

2

Example: protocol fuzzing to crash thingsExample: protocol fuzzing to crash things

• GSM is a very “rich” protocol• GSM is a very “rich” protocol

• Fuzzing protocol fields quickly reveals weird behaviour

• using USRP as GSM cell tower• using USRP as GSM cell tower

• no SMS-of-death found, but lots of

but lots of phones crashing in weird ways

3

Example: protocol fuzzing for information leakageExample: protocol fuzzing for information leakage

• e-passport implements protocol to prevent “skimming”• e-passport implements protocol to prevent “skimming”

• correct protocols runs don’t leak info to an eavesdropper

• But fuzzing “incorrect” instructions leaks a fingerprint, • But fuzzing “incorrect” instructions leaks a fingerprint,

unique per implementation and hence (almost) unique per country

• for Australian, Belgian, Dutch, French, German, Greek, Italian, Polish, • for Australian, Belgian, Dutch, French, German, Greek, Italian, Polish,
Spanish, Swedish passports

4

In the other direction:In the other direction:

Instead of using protocol knowledge when testing, Instead of using protocol knowledge when testing,
we can also use testing to gain protocol knowledge

or to gain knowledge about protocol implementationor to gain knowledge about protocol implementation

In orderIn order

• to analyse your own code and hunt for bugs, or

• to reverse-engineer someone else’s unknown protocol, • to reverse-engineer someone else’s unknown protocol,

eg a botnet, to fingerprint or analyse (and attack) it

5

What to reverse engineer?What to reverse engineer?

Different aspects that can be learned:Different aspects that can be learned:

• timing/traffic analyis

• protocol formats • protocol formats [eg Discoverer, Dispatcher, Tupni,....]

• protocol state-machine [eg LearnLib]

or both protocol format & state-machine [eg Prospex]

6

How to reverse engineer?How to reverse engineer?

• passive vs active learning• passive vs active learning

ie passive observing or active testing

active learning involves a form of fuzzing• active learning involves a form of fuzzing

• active learning is harder, as it requires more software in test harness

that produces meaningful datathat produces meaningful data

• these approach learns different things;

passive learning uses & produces statisticspassive learning uses & produces statistics

• black box vs white boxblack box vs white box

ie only observing in/output or also looking inside running code

• white-box analysis for eg encypted traffic, by looking at handling of • white-box analysis for eg encypted traffic, by looking at handling of

data after decryption [eg ReFormat, TaintScope]

7

Passive learningPassive learning

eg (timed) state machineeg (timed) state machine

Learning malware modelsLearning malware models

Passive learningPassive learning

positive data: aa, b, bbapositive data: aa, b, bba

negative data: a, aaa, aabb

in a prefix treein a prefix tree

10

Passive learningPassive learning

select two statesselect two states

combine and iterate

positive data: aa, b, bbapositive data: aa, b, bba

negative data: a, aaa, aabb

in a prefix treein a prefix tree

11

Active learning with Angluin’s L* algorithm Active learning with Angluin’s L* algorithm

Basic idea: compare a deterministic system’s response to Basic idea: compare a deterministic system’s response to

• a

b ; a• b ; a

a a
??

If response is different, then

a a

b

otherwise ?

a
?

otherwise ?

bb

?

12

Active learning with L*Active learning with L*

Implemented in LearnLib library

reset

Implemented in LearnLib library

Learner Teacherinput

reset

H Moutput M
equivalence:

M = H ?

yes or a counterexample

Equivalence can only be approximated in a black box setting

13

Learning set-up for banking cardsLearning set-up for banking cards

abstract instructions

Learner

abstract instructions

and response concrete instructions

and response

Learner Teacher
instruction

INS
M

H test 2 byte

INS + args
M

test

harness
2 byte

status word SW
data + SW

14

Test harness for EMVTest harness for EMV

Our test harness implements standard EMV instructionsOur test harness implements standard EMV instructions

• SELECT (to select application)

INTERNAL AUTHENTICATE (for a challenge-response)• INTERNAL AUTHENTICATE (for a challenge-response)

• VERIFY (to check the PIN code)

• READ RECORD

• GENERATE AC (to generate application cryptogram)• GENERATE AC (to generate application cryptogram)

LearnLib then tries to learn all possible combinations

Most commands with fixed parameters, but some with different options• Most commands with fixed parameters, but some with different options

15

Maestro application on Volksbank bank card Maestro application on Volksbank bank card

raw result

16

Maestro application on Volksbank bank cardMaestro application on Volksbank bank card

merging arrows with identical outputs

17

Maestro application on Volksbank cardMaestro application on Volksbank card

merging all arrows with same start & end state

18

Formal models for free!Formal models for free!

• Experiments with Dutch, German and Swedish banking and credit cards• Experiments with Dutch, German and Swedish banking and credit cards

• Learning takes between 9 and 26 minutes

• Editing by hand to merge arrows and choose sensible names for states

• could be automated• could be automated

• Limitations

• We do not try to learn response to incorrect PIN as cards would quickly • We do not try to learn response to incorrect PIN as cards would quickly
block...

• We cannot learn about one protocol step which requires knowledge of card’s
secret 3DES keysecret 3DES key

• No security problems found, but interesting insight in implementations

19

SecureCode application on Rabobank cardSecureCode application on Rabobank card

used for internet banking, hence

entering PIN with VERIFY obligatoryentering PIN with VERIFY obligatory

20

understanding & comparing implementationsunderstanding & comparing implementations

Volksbank Maestro Rabobank Maestro

Are both implementations correct & secure? And compatible?

Volksbank Maestro

implementation

Rabobank Maestro

implementation

Are both implementations correct & secure? And compatible?

21

Using these state-diagramsUsing these state-diagrams

• Analysing the models by hand, or with model checker, for flaws• Analysing the models by hand, or with model checker, for flaws

• to see if all paths are correct & secure

Fuzzing or model-based testing• Fuzzing or model-based testing

• using the diagram as basis for automated fuzz testing• using the diagram as basis for automated fuzz testing

• fuzzing the order and/or the parameters of commands

• Program verification• Program verification

• proving that there is no functionality beyond that in the diagram

• Using it when doing a manual code review

22

Case study: analysis of internet banking devicesCase study: analysis of internet banking devices

• Just in case you think that of course there won’t be security flaws in • Just in case you think that of course there won’t be security flaws in
banking soft/hardware that could be found using these techniques...

• We analysed a USB-connected smartcard reader for internet banking • We analysed a USB-connected smartcard reader for internet banking

that provides a trusted display for What-You-Sign-Is-What-You-See

• Reverse engineering reveal a major security protocol flaw

• This was done manually but could have been found by fuzzing USB • This was done manually but could have been found by fuzzing USB

instructions
[Blom et al., Designed to fail, NORDSEC 2012]

23

ConclusionsConclusions

• Fuzzing (model-based testing) and active learning are closely related• Fuzzing (model-based testing) and active learning are closely related

• State machines are a great specification formalism

• easy to draw on white boards, typically omitted in official specs

and you can extract them for free from implementationsand you can extract them for free from implementations

• using very standard, off-the-shelf, tools like LearnLib

• Useful for security analysis of protocol implementations• Useful for security analysis of protocol implementations

• for reverse engineering, fuzz testing, or formal verification

• Future work: learning extended finite state machines with variables
(eg the internal transaction counter in EMV cards)

24

Questions?Questions?

25

