
Intro Miracles Circus CAs Future

Confidentiality in Circus
Based on the work of Michael J. Banks

Jeremy L. Jacob

DEPARTMENT OF COMPUTER SCIENCE,

23 January 2013

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

Headlines

I Integrated notation to express confidentiality & functionality.
(Functionality is a lower limit on information flow; confidentiality is
an upper limit.)

I Inconsistency handled by miracles.

I Single notion of refinement.

Secondary headlines

I Confidentiality annotations integrated into Circus.

I Semantics in Hoare & He’s UTP.

I Semantics based on standard Circus semantics.

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

Intellectual ancestry
A very partial list

Confidentiality Goguen & Meseguer; Jacob; Morgan; Mantel.

Functionality Dijkstra; Morgan; Hoare & He; Woodcock, Cavalcanti,
Oliveira.

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

Trivial example
A one-shot buffer that protects the parity of the input

Key: original Circus; addition to Circus.

channel h, ` : N

process CMD =̂ begin
state S=̂[v : N]
Init=̂[S′|v ′ = 0] — initialisation
C=̂〈{`} : v ∈ Odd ⇐⇒ ṽ 6∈ Odd〉 — confidentiality annotation
H=̂h?n→ v := n? — action
L=̂`!2 ∗ (v ÷ 2)→ Stop — action
• 〈{`} : Init;H〉;C; 〈{`} : L〉 — behaviour

end

C: “If v ∈ Odd then communication on channels in {`} cannot allow v 6∈ Odd
to be ruled out, and vice versa.”
{`} ‘sees program counter’ between blocks and own actions within blocks.

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

Trivial example
A one-shot buffer that simultaneously leaks and protects the parity of the input

Key: original Circus; addition to Circus.

channel h, ` : N

process CMD =̂ begin
state S=̂[v : N]
Init=̂[S′|v ′ = 0] — initialisation
C=̂〈{`} : v ∈ Odd ⇐⇒ ṽ 6∈ Odd〉 — confidentiality annotation
H=̂h?n→ v := n? — action
L=̂`!v → Stop — action, inconsistent with C
• 〈{`} : Init;H〉;C; 〈{`} : L〉 — behaviour

end

This specification is only implementable by a miracle, because it encodes
inconsistent requirements.

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

An analogy for miracles
Consider N-valued expressions composed of N constants, addition and
partial subtraction.
An instance such as (4− 5) + 7 has a value, but contains an undefined term.
Three possibilities:

I Do nothing.

(4− 5) + 7 is lost to us as a legal expression.

I Invent theory of rearrangement.

Separate into added and subtracted terms; sum each; then (x, y) with x < y is
inconsistent, otherwise compute x − y .
(4− 5) + 7 (4 + 7, 5) (11, 5) 6.

I Totalise.
Introduce special values to represent the result of subtracting a bigger number
from a smaller number. If final result is -ve, then inconsistent, otherwise OK.

(4− 5) + 7 = (−1) + 7 = 6.

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

Extending programs with miracles
I Least upper bound P tQ of specifications is partial.

I Miracles are a way of totalising.

I Lattice of implementable specifications mirrored to add ‘upper half’.

I The name of the (alas, impossible to implement) perfect program is >;
mirrors the (alas, easily implementable) worst specification, ⊥.

I “Naked guarded command”:
wp(g guard S,P) ⇐⇒ (g =⇒ wp(S,P)).

Miraculous if guard g false. > = false → S, for any statement S.

I if x < y then (x ≤ y guard w := 0) else w := 1 fi same as
if x < y then w := 0 else w := 1 fi — OK.

I if x > y then (x ≤ y guard w := 0) else w := 1 fi same as
if x > y then > else w := 1 fi — KO.

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

Circus
I A specification language: control flow described in CSP; state

transitions in Z.
I Semantics in UTP.
I Refinement calculus.

Example: one-shot buffer that zeroes the lowest bit.

channel h, ` : N — declarations
process CMD =̂ begin

state S=̂[v : N] — state components (Z)
Init=̂[S′|v ′ = 0] — initialisation (Z)
H=̂h?n→ [∆S; n? : N|v ′ = n?] — piece of behaviour (CSP/Z)
L=̂`!2 ∗ (v ÷ 2)→ Stop — piece of behaviour (CSP)
• Init;H; L — overall behaviour (CSP)

end

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

UTP
A semantic framework

I UTP uses alphabetised predicates to describe things.
Particles have a mass-at-rest, m, and an energy equivalent, e.

Sequential programs have value-before x and value-after x ′ for each program

variable x; and also a special pair ok /ok ′ to record program started/finished.

I Classes of predicates described by “healthiness conditions”,
couched as fixed-point constructions of predicate transformers.
(Predicates describing) particles, P, satisfy P ⇐⇒ (P ∧ e = m.c2).

(Predicates describing) sequential programs, P, satisfy, among others,

healthiness condition ‘H1’: P ⇐⇒ (ok =⇒ P) (“values on termination not

predicted until programme starts”).

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

Circus semantics

I For each program variable x, a pair of variables x , x ′ in alphabet.

I Special variables ok , ok ′, wait , wait ′, tr , tr ′, ref , ref ′ in alphabet.

I Predicates that describe Circus actions must satisfy the
healthiness conditions for reactive systems, further restricted by
‘CSP’ conditions.

I The refinement lattice is standard for the UTP:
P v Q ⇐⇒ [Q =⇒ P].

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

Example operators

I Nondeterministic choice:
P uQ ⇐⇒ P ∨Q

I A coercion, [predicate], is a special annotation:
[P] ⇐⇒ SkipC P Bmiracle

h := 0u h := 1; [h = 0] ≡ h := 0; [h = 0] u h := 1; [h = 0]

≡ h := 0umiracle

≡ h := 0

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

Confidentiality annotations and blocks
Additions to Circus for specifying confidentiality

CAs

Syntax 〈channelset : predicate〉
Intuition The ‘fogging’ captured in the predicate must be

enforced throughout the process about the current
state.

Example 〈{`} : v ∈ Odd ⇐⇒ ṽ 6∈ Odd〉
Blocks

Syntax 〈channelset : action〉
Intuition Region in which location of ‘program counter’ cannot

be deduced by viewing communications on
channelset .

Example 〈{`} : Init;H〉

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

Confidentiality predicates

I Relate values of semantic variables with non-repudiable values.

I May refer to program variables (x), plus a ‘fog’ copy (x̃).

I The value in the semantic variable is the actual value; the possible
values of the fog variables may not be ruled out as the actual value
by communications on the channels in channelset = Low .

I Examples:
1. v ∈ Odd =⇒ ṽ 6∈ Odd “if v odd, then a correct implementation

must not allow Low to rule out v even (but may allow Low to be sure
that v is even)”.

2. v ∈ Odd ⇐⇒ ṽ 6∈ Odd “Low may not know the parity of v .”
3. a < b =⇒ ã ≥ b̃ “Low may not be sure that a is below b.”
4. x + y > 99 =⇒ x̃ + ỹ ≤ 99 “the state summing to more than 99

is secret.”

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

Extended semantics
I Add a copy of the action to record desired explanations for

observations: UA=̂A∧ A[ṽ/v].
Variables in copy indicated by a tilde.
(A[ṽ/v] is predicate A but with each variable decorated by a tilde.)

I Synchronise each copy on L’s interface: UC(L,A))=̂UA∧ IL
where

IL=̂ok = õk ∧ ok ′ = ˜ok ′ ∧ wait = ˜wait ∧ wait ′ = ˜wait ′

∧ (tr ′ − tr) � L = (˜tr ′ − t̃r) � L
∧ wait ′ =⇒ ref ′ ∩ L = ˜ref ′ ∩ L

I Each Circus operator, _⊕ _ lifted to an operator, _⊕̂_, in extended
space.

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

Semantics of CAs and Blocks

I Blocks:
〈L : A〉=̂UC(L,A)
Apply ordinary Circus rules, then apply UC.
Atomic constructs refined by composite: 〈A⊕ B〉 v 〈A〉⊕̂〈B〉

I CAs:
〈L : P〉=̂UC(L,Skip) ∧ (ok ∧ ¬wait =⇒ P)
CAs generalise the notion of coercions in extended space.
Main purpose is to desynchronise the two copies of A. (Extra
synchronisation can be added to record extra information known to
L.)

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

Refinement and Verification

I Proof technique for verifying miraculousness: backward
propagation of CAs [c.f weakest precondition].

I Refinement same definition as other UTP-based theories:
P v Q=̂[Q =⇒ P].

I Inconsistent refinement (removing too much fog) gives a
miraculous action: avoids so-called ‘refinement paradox’.

Confidentiality in Circus CS, UoY

Intro Miracles Circus CAs Future

Future work

I Idioms for writing confidentiality annotations.

I Pragmatics of refinement and verification, especially route to code.

I Tools.

Confidentiality in Circus CS, UoY

	Introduction
	Miracles
	Circus
	Confidentiality annotations
	Future

