COMPUTER SCIENCE TRIPOS Part IB 75%, Part II 50% - 2021 - Paper 7

7 Further Graphics (aco41)

- (a) Recall that the (local) rendering equation is given as $L_o(\mathbf{x}, \vec{\omega}_o) = L_e(\mathbf{x}, \vec{\omega}_o) + \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_o) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i d\vec{\omega}_i$. Simplify this expression progressively as much as possible after each of the following assumptions. [5 marks]
 - (i) There is no light emitted from this surface point \mathbf{x} .
 - (ii) Diffuse reflection.
 - (iii) Reflection is constant at all surface points.
 - (iv) The incoming light is the same for all incident angles but there can be occluders.
 - (v) There is a single object and we ignore self-occlusions.
- (b) Under certain assumptions, we can simplify the rendering equation to the following: $L_o(\mathbf{x}, \vec{\omega}_o) = f_r \int_{H^2} L_i(\vec{\omega}_i) \cos \theta_i d\vec{\omega}_i$. Assume we have a single known geometry for which we can compute surface normals $\mathbf{n}(\mathbf{x})$. Given three measurements from the surface $c_k = L_o(\mathbf{x}_k, \vec{\omega}_o)$ at known points \mathbf{x}_k , compute the reflected radiance $L_o(\mathbf{x}, \vec{\omega}_o)$ at an arbitrary point \mathbf{x} on the surface. [Hint: If you encounter a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$, assume \mathbf{A}^{-1} is known.]
- (c) Recall that for direct illumination, we have the following form for the reflection equation: $L_r(\mathbf{x}, \mathbf{z}) = \int_A f_r(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_i(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) dA(\mathbf{y})$. Starting from this form, provide answers to the following in terms of the provided parameters.

- (i) Assuming a surface point \mathbf{x} lit by a hemispherical light source with constant emitted light radiance L_i (left in the figure), derive the equation for the reflected light at \mathbf{x} if the BRDF is a constant c. [Hint: $\int \cos \theta \sin \theta d\theta \equiv -0.5 \cos^2 \theta$] [4 marks]
- (ii) Assuming a surface point \mathbf{x} with a constant BRDF c lit by a planar 1×1 square light source distance r away (middle of the figure) where the emitted light radiance decays as $L_i(\mathbf{x}, \mathbf{y}) = 1/\cos^4 \theta$ with θ the angle between the emitted light direction and plane normal, derive the equation for the reflected light at \mathbf{x} (the surface normal $\mathbf{n}(\mathbf{x})$ is orthogonal to the planar light source). [4 marks]
- (iii) Now assume we put an occluding opaque disc of radius 0.25 parallel to the light plane and centred at \mathbf{x} between the light plane and \mathbf{x} at a distance r/2 from \mathbf{x} (right in the figure). Derive the equation for the reflected light at \mathbf{x} . [3 marks]