
9

COMPUTER SCIENCE TRIPOS Part IB – 2019 – Paper 4

Semantics of Programming Languages (pes20)

Consider the following pure functional language, in which n ranges over the
mathematical integers.

T ::= int1 | int8 | int16 | uint1 | uint8 | uint16 | T → T ′ | T ∗ T ′ | T + T ′

e ::= n | e +T e ′ | x | fn x :T ⇒ e | e e ′ | (e, e ′) | #1 e | #2 e | inlT e | inrT e
| case e of inl (x1 : T1)⇒ e1 ||| inr (x2 : T2)⇒ e2

Its operational semantics is defined as a relation e −→ e ′ with the standard rules for
a pure call-by-value left-to-right functional language, except with the following rules
for addition of values. As usual, the expression n +T n ′ is stuck if one of these does
not apply.

n ∈ −2N−1 . . . 2N−1 − 1
n ′ ∈ −2N−1 . . . 2N−1 − 1
n ′′=n + n ′

n ′′ ∈ −2N−1 . . . 2N−1 − 1

n +intN n ′ −→ n ′′
plus int

n ∈ 0 . . . 2N − 1
n ′ ∈ 0 . . . 2N − 1
n ′′=n + n ′

n′′′ = n′′ mod 2N

n +uintN n ′ −→ n ′′′
plus uint

(a) Define a subtype relation T <: T ′ and type relation Γ ` e : T for this syntax and
operational semantics that will permit flexible use of integers in the appropriate
ranges. You can omit the standard type relation rules for the expressions (e, e ′),
#1 e, #2 e, inlT e, inrT e, and case. [14 marks]

(b) Explain three main aspects of your definitions, with reference to the program-
ming idioms they permit and the runtime errors they exclude, with examples.

[6 marks]

1

