COMPUTER SCIENCE TRIPOS Part II - 2014 - Paper 7

2 Artificial Intelligence II (SBH)

Consider the following Bayesian network:

The associated probability distributions for the binary random variables A, B, C and D are $\operatorname{Pr}(a)=0.2, \operatorname{Pr}(\neg a)=0.8$ and:

A	$\operatorname{Pr}(b \mid A)$	A	B	$\operatorname{Pr}(c \mid A, B)$	$\operatorname{Pr}(d \mid A, B)$
\perp	0.8	\perp	\perp	0.4	0.9
\top	0.7	\perp	\top	0.2	0.8
		\top	\perp	0.3	0.1
		\top	\top	0.1	0.2

(a) Write down an expression for the full joint distribution of the random variables A, B, C and D. Compute the probability that A, B and C are \perp while D is T.
(b) Use the variable elimination algorithm to compute the probability distribution of C conditional on the evidence that $D=\perp$.
[16 marks]
(c) Comment on the computational complexity of the variable elimination algorithm.

