2011 Paper 8 Question 6

Digital Signal Processing

(a) What can you say about the Fourier transform $X(f)$ if
(i) $x(t)$ is real;
(ii) $x(t)=-x(-t)$?
(b) Give the result of the Fourier transform $X(f)=\int_{-\infty}^{\infty} x(t) \mathrm{e}^{-2 \pi \mathrm{j} f t} \mathrm{~d} t$, using Dirac's delta where appropriate, of
(i) $\quad x(t)=1$;
(ii) $x(t)=\cos (2 \pi t)$;
(iii) $x(t)=\operatorname{rect}(t)$;
(iv) $x(t)=\left[\frac{1}{2}+\frac{1}{2} \cdot \cos (2 \pi t)\right] \cdot \operatorname{rect}(t)$.
(c) When is a random sequence $\left\{x_{n}\right\}$ called a "white noise" signal? [2 marks]
(d) Consider an n-dimensional random vector variable \mathbf{X}.
(i) How is its covariance matrix defined?
(ii) How can you change its representation without loss of information into a random vector of equal dimensionality in which all elements are mutually uncorrelated?

