2009 Paper 6 Question 4

Computation Theory

(a) Define what it means for a subset $S \subseteq \mathbb{N}$ to be a recursively enumerable set of numbers.
(b) Show that if S and S^{\prime} are recursively enumerable sets of numbers, then so are the following sets (where $\langle x, y\rangle=2^{x}(2 y+1)-1$).
(i) $S_{1}=\left\{x \mid x \in S\right.$ or $\left.x \in S^{\prime}\right\}$
(ii) $S_{2}=\left\{\left\langle x, x^{\prime}\right\rangle \mid x \in S\right.$ and $\left.x^{\prime} \in S^{\prime}\right\}$
(iii) $S_{3}=\left\{x \mid\left\langle x, x^{\prime}\right\rangle \in S\right.$ for some $\left.x^{\prime} \in \mathbb{N}\right\}$
(iv) $S_{4}=\left\{x \mid x \in S\right.$ and $\left.x \in S^{\prime}\right\}$

Any standard results about partial recursive functions you use should be clearly stated, but need not be proved.
(c) Give an example of a subset $S \subseteq \mathbb{N}$ that is not recursively enumerable.

