2009 Paper 6 Question 4

Computation Theory

- (a) Define what it means for a subset $S \subseteq \mathbb{N}$ to be a recursively enumerable set of numbers. [2 marks]
- (b) Show that if S and S' are recursively enumerable sets of numbers, then so are the following sets (where $\langle x, y \rangle = 2^x (2y+1) 1$).
 - (i) $S_1 = \{x \mid x \in S \text{ or } x \in S'\}$
 - (*ii*) $S_2 = \{ \langle x, x' \rangle \mid x \in S \text{ and } x' \in S' \}$
 - (*iii*) $S_3 = \{x \mid \langle x, x' \rangle \in S \text{ for some } x' \in \mathbb{N}\}$
 - $(iv) S_4 = \{x \mid x \in S \text{ and } x \in S'\}$

Any standard results about partial recursive functions you use should be clearly stated, but need not be proved. [16 marks]

(c) Give an example of a subset $S \subseteq \mathbb{N}$ that is not recursively enumerable.

[2 marks]