2009 Paper 2 Question 5

Discrete Mathematics II

The set S of strings over symbols a and b is defined to be the least set S of strings such that
$a \in S$,
as $\in S$ if $s \in S$, and
$b s t \in S$ if $s \in S$ and $t \in S$.
(a) The set S may also be described as the least subset of strings closed under certain rules. Describe the rules. Write down a principle of rule induction appropriate for the set S.
(b) Exhibit a derivation, indicating which rules are used, to show that the string aabbaaa is in S.
(c) For a string s, let $N_{a}(s)$ denote the number of occurrences of a in s, and similarly, let $N_{b}(s)$ denote the number of occurrences of b. Prove for every string $s \in S$ that $N_{a}(s)>N_{b}(s)$, i.e. there are strictly more occurrences of a than occurrences of b.
(d) Exhibit a string that has strictly more occurrences of a than occurrences of b and yet is not in S. Prove that your example string is not in S. [6 marks]

