Discrete Mathematics II

The set S of strings over symbols a and b is defined to be the least set S of strings such that

 $a \in S$, $as \in S$ if $s \in S$, and $bst \in S$ if $s \in S$ and $t \in S$.

- (a) The set S may also be described as the least subset of strings closed under certain rules. Describe the rules. Write down a principle of rule induction appropriate for the set S. [5 marks]
- (b) Exhibit a derivation, indicating which rules are used, to show that the string aabbaaa is in S. [4 marks]
- (c) For a string s, let $N_a(s)$ denote the number of occurrences of a in s, and similarly, let $N_b(s)$ denote the number of occurrences of b. Prove for every string $s \in S$ that $N_a(s) > N_b(s)$, i.e. there are strictly more occurrences of a than occurrences of b. [5 marks]
- (d) Exhibit a string that has strictly more occurrences of a than occurrences of b and yet is not in S. Prove that your example string is not in S. [6 marks]